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1 Introduction
In this paper, we consider the following nonlocal equation:

⎧
⎨

⎩

–M(x,‖u‖2)�u = λf (x, u), x ∈ �,

u|x∈∂� = 0,
(1.1)

where � is a bounded open domain of RN with smooth boundary and

⎧
⎨

⎩

f ∈ C(� ×R,R),

M(x, t) = a(x) + b(x)t, ‖u‖ =
∫

�
|∇u|2 dx,

with a, b ∈ Cγ (�), γ ∈ (0, 1), a(x) ≥ a0 > 0, b(x) ≥ 0. Problem (1.1) is the steady-state
problem associated with

⎧
⎪⎪⎨

⎪⎪⎩

utt – M(x,‖u‖2)�u = f , (x, t) ∈ (0, +∞) × �,

u = 0, (x, t) ∈ ∂� × (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

(1.2)
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which is an open problem proposed by Lions [25] as a generalization of

⎧
⎪⎪⎨

⎪⎪⎩

utt – M(‖u‖2)�u = f , (x, t) ∈ (0, +∞) × �,

u = 0, (x, t) ∈ ∂� × (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

(1.3)

where M(t) = a + bt with a > 0 and b > 0. In [15, 24], the authors noted that Problem (1.2)
models small vertical vibrations of an elastic string with fixed ends when the density of the
material is not constant. When M(x, t) is independent of x, Problem (1.1) can be simplified
to

⎧
⎨

⎩

–M(‖u‖2)�u = λf (x, u), x ∈ �,

u|x∈∂� = 0.
(1.4)

The steady-state problem (1.4) associated with Problem (1.3) has received a lot of attention
in the literature (usually using variational methods); see [2, 3, 10, 14, 16, 20, 22, 23, 29, 33–
40] and the references therein.

There are many papers in the literature on sign-changing solutions for Dirichlet prob-
lems; see [4, 5, 7, 12, 19, 21] and their references. In [43], Zhang and Perera obtained sign-
changing solutions for a class of Problem (1.4) using variational methods and invariant sets
of descent flow; in [31] using minimax methods and invariant sets of descent flow, Mao
and Zhang established the existence of sign-changing solutions; and in [35] combining the
constraint variational method and the quantitative deformation lemma, Shuai proved that
Problem (1.4) possesses one least energy sign-changing solution. Other results on the ex-
istence of sign-changing solutions for Kirchhoff equations can be found in [5, 9, 28, 30, 37]
and their references.

Since M(x, t) is dependent on x in Problem (1.1), the variational approach cannot be used
to discuss it in a direct way, and fixed point theory and the Galerkin method were used to
establish existence in [33] and [38]. In [15], Figueiredo et al. established the existence and
uniqueness of a positive solution of Problem (1.1) via bifurcation theory, and in [17], Huy
and Quan considered a generalization of Problem (1.1)

⎧
⎨

⎩

–M(x,‖u‖2)�u = λf (x, u,∇u) – g(x, u,∇u), x ∈ �,

u|x∈∂� = 0,

and established existence results for both non-degenerate and degenerate cases of the
function M using the fixed point index theory. We note, to the best of our knowledge,
that there are no results in the literature on the existence of a sign-changing solution for
Problem (1.1). In this paper (motivated by [21]) using the steepest descent method for
gradient mappings of the isoperimetric variational problem (see [6]) and the method of
invariant sets of descending flow in critical point theory (see [27]), we establish the exis-
tence of an infinite number of solutions (some are positive, some are negative, and others
are sign-changing). Some ideas come from [18] and [42].

2 Main result
In this section, we suppose that f satisfies the following conditions:
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(1) f : � ×R →R is locally Lipschitz continuous;
(2) f (x, t)t ≥ 0 and f (x, t) 	≡ 0 in � × (–δ, 0) ∪ � × (0, δ);
(3) |f (x, t)| ≤ c1|t|p + c2, where c1, c2 ∈R

+, 1 ≤ p < N+2
N–2 if N ≥ 3 and 1 ≤ p < +∞ if N = 1

and N = 2.
Let A := N in our main result. The main theorem is as follows.

Theorem 2.1 Suppose that f satisfies (1), (2), and (3). Then Problem (1.1) has an infinite
number of positive solutions {u1,α}α∈A, an infinite number of negative solutions {u2,α}α∈A,
and an infinite number of sign-changing solutions {u3,α}α∈A.

First we establish the following lemma for Problem (1.1).

Lemma 2.1 Problem (1.1) has a nontrivial solution if and only if there exists r > 0 such
that the following problem

⎧
⎨

⎩

–�u = λ 1
M(x,r2) f (x, u), x ∈ �,

u = 0, x ∈ ∂�
(2.1)

has a nontrivial solution u with ‖u‖ = r.

Proof Sufficiency. There exists r > 0 such that Problem (2.1) has a nontrivial solution u
with ‖u‖ = r, and so u satisfies

⎧
⎨

⎩

–�u = λ 1
M(x,r2) f (x, u) = λ 1

M(x,‖u‖2) f (x, u), x ∈ �,

u = 0, x ∈ ∂�.

Clearly, u is a nontrivial solution of Problem (1.1).
Necessity. Problem (1.1) has a nontrivial solution u. Let r = ‖u‖ > 0. Then u satisfies

⎧
⎨

⎩

–�u = λ 1
M(x,‖u‖2) f (x, u) = λ 1

M(x,r2) f (x, u), x ∈ �,

u = 0, x ∈ ∂u,

that is, u is a nontrivial solution of Problem (2.1) with ‖u‖ = r.
The proof is completed. �

For given r > 0, set

Sr =
{

u ∈ H1
0 (�) :

∫

�

|∇u|2 dx = r2
}

and Sr = Sr ∩ C1
0(�).

From Lemma 2.1, we only consider the existence of a nontrivial solution of Problem (2.1)
in Sr .

Set

g(x, u) =
1

M(x, r)
f (x, u), G(x, u) =

∫ u

0
g(x, t) dt, ∀u ∈R,

�(u) = –
∫

�

G
(
x, u(x)

)
dx, ∀u ∈ H1

0 (�),
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and

F = �|Sr , F = F|Sr .

Note that

F ′(u) = � ′(u) –
(� ′(u), u)

‖u‖2 u = –T(u)u – KG(u),

where (·, ·) is the inner product in H1
0 (�) given by (u, v) =

∫

�
∇u · ∇v dx, K = (–�)–1 with

the Dirichlet boundary condition, G is the Nemitskii operator induced by g and

T(u) =
(� ′(u), u)

r2 .

From condition (2), we have (� ′(u), u) < 0 for all u ∈ Sr (see Lemma 1.0 in [19]), and we
know that the solutions of Problem (2.1) correspond to the critical points of f .

In order to discuss Problem (2.1), for r > 0, we let (here n ∈N)

fn(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

f (x, t), if |t| ≤ n,

f (x, n) + t – n, if t > n,

f (x, –n) + t + n, if t < –n,

(2.2)

gn(x, t) =
1

M(x, r2)
fn(x, t), (2.3)

Gn(x, u) =
∫ u

0
gn(x, t) dt, ∀u ∈R (2.4)

and consider
⎧
⎨

⎩

–�u = λgn(x, u), x ∈ �,

u|x∈∂� = 0.
(2.5)

Let

�n(u) = –
∫

�

Gn
(
x, u(x)

)
dx, ∀u ∈ H1

0 (�),

and

Fn = �n|Sr , Fn = Fn|Sr . (2.6)

We obtain that

F ′
n(u) = � ′

n(u) –
(� ′

n(u), u)
‖u‖2 u = –Tn(u)u – KGn(u), (2.7)

where Gn is the corresponding Nemitskii operator to gn and

Tn(u) =
(� ′

n(u), u)
r2 .
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From the definition of Fn in (2.6), we know that the solutions of Problem (2.5) correspond
to the critical points of Fn.

From the definition of gn and conditions (1), (2), and (3), it is easy to see that gn also
satisfies (1), (2), and (3) uniformly with respect to n and

(1)′ there exists Ln > 0 such that

∣
∣gn(x, t1) – gn(x, t2)

∣
∣ ≤ Ln|t1 – t2|, ∀x ∈ �, t1, t2 ∈R. (2.8)

We shall need the following results later.

Lemma 2.2 (see [1]) Let � be a bounded, open subset of RN , and suppose that ∂� is C1.
Assume that N < p ≤ +∞ and u ∈ W k+1,p(�). Then there is u∗ ∈ Ck,γ (�) with u(x) = u∗(x)
a.e. x ∈ � such that

∥
∥u∗∥∥

Ck,γ ≤ C‖u‖W k+1,p ;

here the constant C depends only on p, N , and �.

Lemma 2.3 (see [13]) Let � be a bounded open subset of RN with a C1 boundary. Assume
that u ∈ W k,p(�).

(1) If

k <
n
p

,

then u ∈ Lq(�), where

1
q

=
1
p

–
k
N

.

Also

‖u‖Lq(�) ≤ C‖u‖W k,p(�);

here the constant C depends only on k, p, N , and �.
(2) If

k >
n
p

,

then u ∈ Ck–[ n
p ]–1,γ (�), where

γ =

⎧
⎨

⎩

[ n
p ] + 1 – n

p , if n
p is not an integer,

any positive number < 1, if n
p is an integer.

Also

‖u‖
Ck–[ n

p ]–1,γ (�)
≤ C‖u‖W k,p(�);

here the constant C depends only on k, p, N , and �.
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Lemma 2.4 (see [11]) Let p, 1 ≤ p ≤ p0 = (N + 2)/(N – 2) (so that 2 ≤ p + 1 ≤ 2∗), and let
β = (2∗/N)(2∗ – (p + 1)). Then, for each γ , 0 ≤ γ ≤ β , there exists c > 0 such that

‖u‖p+1
p+1 ≤ c‖∇u‖p+1–γ

2 ‖u‖γ
2

for all u ∈ W 1,2
0 (�). (Here and henceforth ‖u‖p denotes the norm of u in Lp(�).)

Lemma 2.5 (see [8]) Let X be a Banach space and F be a closed subset in X. Assume that
V : X → Y is locally continuous and

lim
h↓0

d(u + hV (u), F)
h

= 0 (2.9)

for all u ∈ ∂F , where d(·, ·) is the distance on X. If u0 ∈ F and σ (t)(0 ≤ t < ω+(u0)) is the
solution of the initial value problem

⎧
⎨

⎩

dσ
dt = V (σ ),

σ (0, u0) = u0,

then σ (t) ∈ F for all t ∈ [0,ω+(u0)).

For each n, we consider

⎧
⎨

⎩

dσ
dt = –F ′

n(σ ) = Tn(σ )σ + KGn(σ ), t ≥ 0,

σ (0, u0) = u0
(2.10)

in H1
0 (�) for u0 ∈ Sr , where F ′

n is defined in (2.7). Since (1)′, (2), and (3) hold, we have the
following.

Lemma 2.6 (see [32]) Let c < b < 0. For every u ∈ F–1
n ([c, b]), if σn(t, u) is a solution of

Problem (2.10) in [0, +∞) (see step 3 in Lemma 2.7), then either there is a unique t(u) ∈
[0, +∞) such that Fn(σn(t(u), u)) = c or there is a critical point v of Fn in F–1

n ([c, b]) such
that σn(t, u) → v as t → +∞.

Lemma 2.7 Under conditions (1), (2), and (3), Problem (2.10) has a unique solution
σn(t, u0) on [0, +∞), which satisfies:

(i) σn(t, u0) ∈ Sr for all u0 ∈ Sr ; σn(t, u0) ∈ Sr for all u0 ∈ Sr ;

(ii) there exists un ∈ Sr such that limt→+∞ σn(t, u0))
H1

0= un for u0 ∈ Sr ;

(iii) if u0 ∈ Sr , then un ∈ Sr and limt→+∞ σn(t, u0)
C1

0= un.

Proof The proof is divided into six steps.
Step 1. We show that F ′

n(u) = –Tn(u)u – KGn(u) is globally Lipschitz continuous with
respect to H1

0 (�), that is, there is M > 0 such that

∥
∥F ′

n(u1) – F ′
n(u2)

∥
∥

H1
0
≤ M‖u1 – u2‖H1

0
, ∀u1, u2 ∈ Sr .
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Let 2∗ = 2N
N–2 . From (2.8), we have

∥
∥Gn(u1) – Gn(u2)

∥
∥

L2∗ =
(∫

�

∣
∣gn(x, u1) – gn(x, u2)

∣
∣2∗

dx
)1/2∗

≤
(∫

�

L2∗
n

∣
∣u2(x) – u1(x)

∣
∣2∗

dx
)1/2∗

= Ln‖u1 – u2‖L2∗ ,

i.e., Gn is globally Lipschitz in the L2∗ topology. Note that

H1
0 (�) ↪→ L2∗

(�)
G

↪→ L2∗
(�) K→ H1

0 (�),

K is a bounded linear operator, and so

∥
∥KG(u1) – KG(u2)

∥
∥ ≤ Ln‖u1 – u2‖

for some positive constant Ln, where ‖ · ‖ denotes the norm in H1
0 (�). Note

∣
∣Tn(u1) – Tn(u2)

∣
∣ =

1
r2 |(KGn(u1), u1

)
– (KGn)(u2), u2)|

≤ 1
r

Ln‖u1 – u2‖ +
1
r2

∥
∥KG(u2)

∥
∥‖u1 – u2‖,

and

∥
∥Tn(u1)u1 – Tn(u2)u2

∥
∥ ≤ ∣

∣Tn(u1) – Tn(u2)
∣
∣‖u1‖ +

∣
∣Tn(u2)

∣
∣‖u1 – u2‖.

Since ‖KGn(u)‖ is bounded in Sr , so Tn(u) is bounded also. Thus F ′
n(u) is globally Lipschitz

continuous.
Step 2. We show that F ′

n(u) = –Tn(u)u – KGn(u) is globally Lipschitz continuous with
respect to C1

0(�), that is, there is M > 0 such that

∥
∥F ′

n(u1) – F ′
n(u2)

∥
∥

C1
0
≤ M‖u1 – u2‖C1

0
, ∀u1, u2 ∈ Sr .

Let l > N . From (2.8), we have

∥
∥Gn(u1) – Gn(u2)

∥
∥

Ll =
(∫

�

∣
∣gn(x, u1) – gn(x, u2)

∣
∣l dx

)1/l

≤ Ln‖u1 – u2‖Ll ,

i.e., Gn is globally Lipschitz in the Ll(�) topology. Note that

C1
0(�) ↪→ Ll(�) G→ Ll(�) K→ W 2,l(�) ∩ W 2,l

0 (�) ↪→ C1
0(�),

K is a bounded linear operator, so there exists L′
n > 0 such that

∥
∥KGn(u1) – KGn(u2)

∥
∥

C1
0
≤ L′

n‖u1 – u2‖C1
0
.
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Note

∣
∣Tn(u1) – Tn(u2)

∣
∣

=
1
r2

∣
∣
(
KGn(u1), u1

)
– (KGn)(u2), u2)

∣
∣

=
1
r2

∣
∣
(
KGn(u1), u1

)
–

(
KGn(u2), u1

)
+

(
KGn(u2), u1

)
– (KGn)(u2), u2)

∣
∣

=
1
r2

∣
∣
(
KGn(u1) – KGn(u2), u1

)
+

(
KGn(u2), u1 – u2

)∣
∣

≤ 1
r

L′
n‖u1 – u2‖C1

0
+

1
r2

∥
∥KG(u2)

∥
∥

C1
0
‖u1 – u2‖C1

0
,

and

∥
∥Tn(u1)u1 – Tn(u2)u2

∥
∥

C1
0
≤ ∣

∣Tn(u1) – Tn(u2)
∣
∣‖u1‖C1

0
+

∣
∣Tn(u2)

∣
∣‖u1 – u2‖C1

0
.

Since ‖KGn(u)‖C1
0

is bounded in Sr , so Tn(u) is bounded also. Thus F ′
n(u) is globally Lips-

chitz continuous.
Step 3. We show that Problem (2.10) has a unique solution σn(t, u0) with maximal inter-

val [0, +∞) for u0 ∈ Sr and σn(t, u0) ∈ Sr for all t ∈ [0, +∞).
The theory of Cauchy problems of ordinary differential equations together with step

1 implies that (2.10) has a unique solution σn(t, u0) with maximal interval [0,ω+(u0)) for
u0 ∈ Sr . Note

σn(t, u0) = e–w(t)
{

u0 +
∫ t

0
ew(s)KG

(
σn(s, u0)

)
ds

}

where w(t) = –
∫ t

0
Tn

(
σn(s, u0)

)
ds.

Since d‖σn(t, u0)‖2/dt ≡ 0 for all t ∈ [0,ω+(u0)), we have σn(t, u0) ∈ Sr for t ∈ [0,ω+(u0))
if u0 ∈ Sr .

Also, since gn(σn(t, u0)) is bounded in H1
0 if u0 ∈ Sr , then ω+(u0) = +∞ (see [32]).

Step 4. We show that Problem (2.10) has a unique solution σn(t, u0) with maximal inter-
val [0, +∞) for u0 ∈ Sr and σn(t, u0) ∈ Sr for all t ∈ [0, +∞).

Since step 2 holds, the proof of step 4 is similar to that of step 3, so we omit it.
Step 5. For u0 ∈ Sr , we show that there exists un ∈ Sr such that

lim
t→+∞σn(t, u0) = un in H1

0 .

First, since Fn(u) < 0 for u ∈ Sr , choose b = Fn(u0) < 0. Since Sr is bounded and weakly
convergent closed and Fn is weakly semi-continuous from below, we have infu∈Sr Fn(u) >
–∞. Let c < infu∈Sr Fn(u). Then u0 ∈ F–1

n ([c, b]). From Lemma 2.6, there exists un ∈ Sr such
that

lim
t→+∞σn(t, u0) = un in H1

0 .
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Step 6. For u0 ∈ Sr , there exists un ∈ Sr such that

lim
t→+∞σn(t, u0) = un in C1

0 .

Using the proof of step 5, step 2 guarantees the conclusion is true. �

Let P be the positive cone in C1
0(�) and P̊ be the interior set of P. The elements of P̊ are

called positive and the elements of –P̊ are called negative.

Lemma 2.8 Under condition (1) and (2), the flow in Lemma 2.7 has the following proper-
ties:

σn(t, u0) ∈ ±P̊ for u0 ∈ ±P̊ ∩ Sr and t ∈ [0, +∞).

Proof The proof follows the ideas in Lemma 1 and 6 in [26].
(1) We show that KGn(u0) ∈ P̊ for u0 ∈ P – {θ}.
Let v = KGn(u0), and we have

–�v = gn(x, u0) ≥	≡ 0, ∀x ∈ �, v|∂� = 0.

The strong maximum principle implies that v ∈ P̊.
(2) We show that

KGn
(
σn(t, u0)

) ∈ P̊ for u0 ∈ P ∩ Sr , and t > 0. (2.11)

Now ∀u ∈ P, choose δ > 0 small such that, for all δ > h > 0, we have

u + h(
(
Tn(u)u + KGn(u)

)
=

(
1 + hTn(u)

)
u + hKGn(u) ∈ P,

i.e., (2.9) is satisfied. Now Lemma 2.5 guarantees that the solution σn(t, u0) of the initial
value problem (2.10) satisfies σn(t, u0) ∈ P for all t ∈ [0, +∞) (in fact σn(t, u0) ∈ P ∩ Sr since
u0 ∈ P ∩ Sr). Hence (as in (1)) (2.11) holds.

(3) We show that

σn(t, u0) ∈ P̊ for u0 ∈ P̊ ∩ Sr and t ∈ [0, +∞).

Let w(t) = –
∫ t

0 Tn(σn(s, u0)) ds. We have w′(t) > 0, w(t) > 0, and w(t) is strictly increasing.
Let w–1(t) be the inverse function of w(t). It follows from (2.11), for u0 ∈ P ∩ Sr , that

(
1/w′(t)

)
KGn

(
σn(t, u0)

) ∈ P̊. (2.12)

Let A(t) = (1/w′(t))KGn(σ (t, u0)) and Et = {A(s) : 0 ≤ s ≤ t}. Note that Et is a compact set in
C1

0(�) and (2.12) implies that Et ⊆ P̊ and hence coEt ⊆ P̊, where coEt is the closed convex
set hull of Et in C1

0(�). Note

1
ew(t) – 1

∫ t

0
ew(s)KGn

(
σn(s, u0)

)
ds =

1
ew(t) – 1

∫ ew(t)

1

KGn(σn(w–1(ln(s)), u0))
w′(w–1(ln(s)))

ds

= lim
m→+∞

1
m

m∑

i=1

A(w–1
(

ln

(

1 +
i

m
(
ew(t) – 1

)
))

.
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Therefore

1
ew(t) – 1

∫ t

0
ew(t)KG

(
σn(s, u0)

)
ds ∈ coFt ∈ P̊,

and this together with

σn(t, u0) = e–w(t)
{

u0 +
∫ t

0
ew(s)KG

(
σn(s, u0)

)
ds

}

, t ∈ [0, +∞)

and

e–w(t) =
(
1 – e–w(t)) 1

ew(t) – 1

yields

σn(t, u0) ∈ P̊ for u0 ∈ P̊ ∩ Sr and t ∈ [0, +∞).

For the case u0 ∈ (–P̊), the proof is similar, so we omit it.
The proof is completed. �

Lemma 2.9 Under conditions (1), (2), and (3), Problem (2.5) has at least one positive so-
lution u1,n ∈ Sr ∩ P, one negative solution u2,n ∈ S ∩ (–P), and one sign-changing solution
u3,n ∈ Sr ∩ (C1

0 – (–P ∪ P)).

Proof Let e1 be an eigenfunction corresponding to the first eigenvalue of the Dirichlet
eigenvalue problem: –�u = λu in �, u|∂� = 0, e2 be an eigenfunction corresponding to
the second one with ‖e1‖ = ‖e2‖ = r. Let � = span{e1, e2}∩ Sr . Note that �n(u) < 0 for each
n > 0 if u 	≡ 0 and

� = {cos θe1 + sin θe2 : 0 ≤ θ ≤ 2π}

is a compact set in Sr . Then there exists αn > 0 such that

max
{
�n(u) : u ∈ �

}
= max

{
�(u) : u ∈ �

}
< –αn. (2.13)

Set

�± =
{

u ∈ � : σn(t, u) ∈ ±P̊ for some t > 0
}

.

(1) We show that �± 	= ∅.
Since e1 ∈ Sr ∩ P̊, –e1 ∈ Sr ∩(–P̊), Lemma 2.8 guarantees that σn(t, e1) ∈ P̊ and σn(t, –e1) ∈

(–P̊) for t ∈ [0, +∞). Therefore, �± 	= ∅.
(2) We show that Problem (2.5) has at least one positive solution u1,n and one negative

solution u2,n.
Consider σn(t, e1), t ∈ [0, +∞). Lemma 2.7 guarantees that there exists u1,n ∈ Sr ∩ P such

that

lim
t→+∞σn(t, e1)

C1
0= u1,n,
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and u1,n is a critical point of Fn in Sr ∩ P. Then u1,n is a solution of Problem (2.5) and
u1,n ∈ Sr . By using the strong maximum principle, we have u1,n ∈ P̊.

For σn(t, –e1), t ∈ [0, +∞), a similar argument to that of σn(t, e1) shows that there exists
u2,n ∈ Sr ∩ (–P̊) such that u2,n is a solution of Problem (2.5).

(3) We show that Problem (2.5) has at least one sign-changing solution u3,n ∈ Sr ∩ (C1
0 –

(P ∪ (–P))).
From the proof of step 2, e1 ∈ �+, –e1 ∈ �–. Note that both �+ and λ– are open sets of �

since σn(t, u) depends continuously on u (see [32]). From Lemma 2.8, we have �+ ∩�– = ∅,
and the connectedness of � implies that there is u0 ∈ � – (�+ ∪ �–). By Lemma 2.7,
σn(t, u0) → u3,n, a critical point of Fn, in H1

0 (�) as t → +∞. Then u3,n is a solution of
Problem (2.5) and u3,n ∈ Sr . From (iii) of Lemma 2.7, we have that limt→+∞ σn(t, u0) = u3,n

in the C1
0(�)-topology. Therefore u3,n /∈ P̊ ∩ (–P̊) since σn(t, u0) /∈ P̊ ∩ (–P̊). Then u3,n /∈

P ∩ (–P) by using the strong maximum principle. Hence u3,n changes its sign in �. Also
�n(u3,n) < �n(σn(t, u0)) < –αn, ∀t ∈ [0, +∞) since σn is a negative descent flow. �

Proof (Theorem 2.1) We only prove the existence of sign-changing solutions of Problem
(1.1) since the proofs of the existence of positive solutions and negative solutions are sim-
ilar, so we omit them.

From Lemma 2.9, for given r > 0, Problem (2.5) has at least one sign-changing solution
u3,n with u3,n ∈ Sr ∩(C1

0 –(P∪(–P))), where λ–1
3,n =

∫

�
gn(x, u3,n)un dx/r2 > 0 and gn is defined

in (2.3) for each n ∈N.
(1) We first prove that {λ3,n} is bounded.
Since {u3,n} is bounded in the H1

0 (�) topology, we may assume that it converges weakly
to u∗ in H1

0 (�). Then u3,n → u∗ in Lp+1(�) since 1 ≤ p < N+2
N–2 . There exists a number c > 0

such that, for all t ∈R and for all n = 1, 2, . . . ,

∣
∣gn(x, t)

∣
∣ ≤ c

(
1 + |t|p) and

∣
∣Gn(x, t)

∣
∣ ≤ c

(
1 + |t|p+1), (2.14)

where Gn is defined in (2.4).
From Lemma A.1 in [41], there exists a subsequence of {u3,n}, denoted also by {u3,n}, and

there exists h ∈ Lp+1(�) such that un → u∗ a.e. in �, |u∗(x)| ≤ h(x), |u3,n(x)| ≤ h(x) a.e. in
�. From the Lebesgue dominated convergence theorem, we have

∫

�

Gn(x, u3,n) dx →
∫

�

G
(
x, u∗)dx as n → +∞. (2.15)

Let n > k0 = max{‖u‖C(�) : u ∈ �}. By the definitions of �n and � , if n > k0, we have
�n(u) = �(u) for u ∈ �.

From (2.2), (2.13), there exists a positive constant α > 0 such that

–�n(u) =
∫

�

Gn(x, u) dx = –�(u) =
∫

�

G(x, u) dx > α > 0 for u ∈ �, n > k0.

Since u3,n is obtained along a descending flow, it follows that

∫

�

Gn(x, u3,n) dx ≥
∫

�

Gn
(
x,σ (0, u0,n)

)
dx =

∫

�

Gn(x, u0,n) dx > α > 0, ∀n > k0,
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for some u0,n ∈ �, where σ (t, u0,n) is a solution of Problem (2.5). From (2.15), we have
∫

�
G(x, u∗) dx > 0. Hence u∗ 	≡ 0. Similar to (2.15), we have

∫

�

gn(x, u3,n)u3,n dx →
∫

�

g
(
x, u∗)u∗ dx �= 2β > 0.

Thus 0 < λ3,n = r2
∫

� gn(x,u3,n)un dx/r2 < r2/β for n large enough.
(2) We prove that {u3,n} is bounded in the C1

0 -topology.
Choose a sequence of numbers {qi} satisfying

q1 =
2N

N – 2
< q2 < · · · < qm–1 < qm = 2Np

and

1
qi+1

≥ p
qi

–
2
N

, i = 1, 2, . . . , m – 1.

Let pi = qi/p (i = 1, 2, . . . , m). From Lemma 2.4, we have

H1
0 ↪→ Lq1 (�). (2.16)

From (2.14), one has (note p1 p = q1)

∥
∥λ3,nGn(u3,n)

∥
∥

Lp1 ≤ 1
β

(∫

�

∣
∣gn(x, u3,n)

∣
∣p1 dx

) 1
p1 ≤ 2c

β

(|�| 1
p1 + ‖u3,n‖p

Lq1

)
(2.17)

for large n. Since K is a bounded linear operator, one has together with Lemma 2.3

Lp1 (�) K→ W 2,p1 (�) ∩ W 1,p1
0 (�) ↪→ Lq2 (�). (2.18)

Combining (2.16), (2.17), and (2.18), we have

{u3,n}n≥k ⊆ Lq2 (�) is bounded, for large k. (2.19)

Repeating the progress of (2.17), (2.18), and (2.19) for i = 2, 3, . . . , m, we have

{u3,n}n≥k ⊆ Lqm (�) is bounded, for large k.

We have (note pm p = qm)

∥
∥λ3,nGn(u3,n)

∥
∥

Lpm ≤ 1
β

(∫

�

∣
∣gn(x, u3,n)

∣
∣pm dx

) 1
pm ≤ 2c

β

(|�| 1
pm + ‖u3,n‖p

Lqm
)

for large n, which together with boundedness of the linear operator K guarantees that

{u3,n}n≥k ⊆ W 2,pm ∩ W 1,pm
0 is bounded, for large k.
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Now Lemma 2.2 implies (note pm = 2N > N ) that

{u3,n}n≥k ⊆ W 2,pm ∩ W 1,pm
0 ↪→ C1

0(�) is bounded, for large k. (2.20)

(3) We consider sign-changing solutions of Problem (1.1) in Sr .
From (2.20), set L > 0 such that

‖u3,n‖C1
0 (�) ≤ L, n ∈ {1, 2, . . .}. (2.21)

Choose n0 > L. From the definitions of fn0 and gn0 in (2.2) and (2.3), we have together with
(2.21) that

fn0

(
x, u3,n0 (x)

)
= f

(
x, u3,n0 (x)

)
, x ∈ �

and

gn0

(
x, u3,n0 (x)

)
=

1
M(x, r2)

f
(
x, u3,n0 (x)

)
, x ∈ �,

which implies that u3,n0 is a sign-changing solution of Problem (2.1) with

λ = r2
/ ∫

�

g
(
x, u3,n0 (x)

)
u3,n0 (x) dx.

For r > 0 given above, write u3,r(x) = u3,n0 (x) for x ∈ �. Lemma 2.1 guarantees that u3,r

is a sign-changing solution of Problem (1.1) with

λ = r2
/ ∫

�

g
(
x, u3,r(x)

)
u3,r(x) dx.

Similarly, we obtain a set {u1,r}r∈A of positive solutions of Problem (1.1) and a set {u2,r}r∈A

of negative solutions of Problem (1.1).
The proof is completed. �
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