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Abstract
This paper presents a numerical algorithm for solving high-order BVPs. We introduce
the construction method of multiscale orthonormal basis inWm

2 [0, 1]. Based on the
orthonormal basis, the numerical solution of the boundary value problem is obtained
by finding the ε-approximate solution. In addition, the convergence order, stability,
and time complexity of the method are discussed theoretically. At last, several
numerical experiments show the feasibility of the proposed method.
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1 Introduction
High-order BVPs are important mathematical models in the field of electro-magnetics,
fluid mechanics, and material science. Many problems in the theory of elastic stability can
be handled by BVPs [1]. It is difficult to find the analytic solutions of high-order BVPs be-
cause of the complexity of the systems, many numerical algorithms for high-order BVPs
have been proposed in recent years. The multistage integration method is an important
method to solve the numerical solution of high-order models by reducing the order grad-
ually [2–5]. Ref. [6–8] discuss the existence of solutions to higher-order differential equa-
tions. Cao [9] solved a class of high-order fractional ordinary differential equations by the
quadratic interpolation function method. The collocation method proposed by [10] and
the orthonormal Bernstein polynomials method proposed by Mirzaee [11, 12] can solve
high-order linear complex differential equations effectively. Mirzaee et al. [13–22] pro-
posed a variety of numerical algorithms for solving high-order integro-differential equa-
tions. Many scholars have also proposed many methods in the field of numerical solution
of high-order partial differential equations [23–25]. Reproducing kernel space is an impor-
tant Banach space which has been used in the field of numerical analysis. The reproducing
kernel methods are used in the numerical solutions of high-order models, singular BVPs,
and interface problems [26–31].

In this paper, we construct a set of multiscale orthonormal bases based on the idea
of wavelet in the reproducing kernel space. This set of bases is orthonormal, which can
improve the computational efficiency. For the numerical solution of differential equa-
tions, many literature works, such as [32, 33], use the idea of ε-approximate solution. ε-
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approximate solution provided the stability of the algorithm, good order of convergence
in the calculation method. In this article, we construct the multiscale method for the fol-
lowing high-order boundary value problems (BVPs):

⎧
⎨

⎩

u(m) + p1(x)u(m–1) + · · · + pm–1(x)u′ + pm(x)u = f (x), x ∈ (0, 1)

Biu = αi, i = 1, . . . , m,
(1.1)

where Bi (i = 1, 2, . . . , m) are bounded linear functionals on W m
2 [0, 1], pi(x) (i = 1, 2, . . . , m)

have certain smoothness.
The paper is organized as follows: In Sect. 2, we construct a set of multiscale orthonor-

mal bases in the reproducing kernel space W m
2 [0, 1]. In Sect. 3, we introduce a method to

obtain the numerical solution of BVPs by finding an ε-approximate solution, and verify the
existence of the ε-approximate solution. In Sect. 4, the convergence, stability, and com-
plexity of this method are discussed. In Sect. 5, we report the numerical result obtained
by the present method and compare this method with other previous methods.

2 Multiscale orthonormal basis
In this section, the reproducing kernel space is defined and a set of multiscale orthonormal
bases is constructed. This knowledge is very useful in the following article.

Definition 2.1 The reproducing kernel space W m
2 [0, 1] = {u|u(m–1) ∈ C[0, 1], u(m) ∈

L2[0, 1]}, and the inner product of W m
2 is

〈u, v〉W m
2

=
m–1∑

i=0

u(i)(0)v(i)(0) +
∫ 1

0
u(m)v(m) dx, ‖u‖W m

2
=

√
〈u, u〉W m

2
.

Definition 2.2 The reproducing kernel space

W m
2,0[0, 1] =

{
u|u ∈ W m

2 , u(0) = u′(0) = · · · = u(m–1)(0) = 0, u(m–1)(1) = 0
}

.

Clearly, W m
2,0[0, 1] is the closed subspace of W m

2 [0, 1]. In Ref. [32], we set up a multiscale
orthonormal basis in W 1

2,0:

φi,k(x) = 2
i–1
2

⎧
⎪⎪⎨

⎪⎪⎩

(x – k
2i–1 ), x ∈ [ k

2i–1 , k+1/2
2i–1 ],

( k+1
2i–1 – x), x ∈ [ k+1/2

2i–1 , k+1
2i–1 ],

0, else,

(2.1)

where i = 1, 2, . . . , k = 0, 1, 2, . . . , 2i–1 – 1. The graph of φi,k is shown in Fig. 1.
In order to solve Eq. (1.1), this paper constructs a set of orthonormal bases in W m

2 [0, 1]
by {φi,k}∞,2i–1–1

i=1,k=0 . First, let us construct the basis functions in W m
2,0[0, 1]. Note

Jm–1
0 u =

1
(m – 2)!

∫ x

0
(x – s)m–2u(s) ds (m ∈ N , m ≥ 2).

Theorem 2.1 {Jm–1
0 φ1,0(x), Jm–1

0 φ2,0(x), Jm–1
0 φ2,1(x), . . . , Jm–1

0 φi,k(x), . . .} is the multiscale or-
thonormal basis of W m

2,0[0, 1].
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Figure 1 φi,k (x)

Proof We just prove the orthogonality and completeness.
First, orthonormality. Obviously,

〈
Jm–1
0 φi,k , Jm–1

0 φj,m
〉

W m
2,0

= 〈φi,k ,φj,m〉W 1
2,0

=

⎧
⎨

⎩

1, i = j, k = m,

0, else,

orthogonality is true.
Second, completeness. If 〈u, Jm–1

0 φi,k〉W m
2,0

= 0, then u ≡ 0, which means the basis is com-
plete. In fact,

〈
Jm–1
0 φi,k , u

〉

W m
2,0

=
〈
φi,k , u(m–1)〉

W 1
2,0

= 0 implied to u(m–1) = 0.

According to Def. 2.2, u ≡ 0. �

Next, we construct the orthonormal basis in W m
2 [0, 1]. There are m + 1 more conditions

in space W m
2,0[0, 1] than in space W m

2 [0, 1]. If the basis in W m
2 [0, 1] is constructed from the

basis in W m
2,0[0, 1], we need to look for m + 1 functions gk(x) ∈ W m

2 [0, 1], k = 0, 1, 2, . . . , m,
such that

〈
gi(x), gj(x)

〉

W m
2

= 0, (2.2)
〈
gk(x), gk(x)

〉

W m
2

= 1, (2.3)
〈
gi(x), Jm–1

0 φi,k(x)
〉

W m
2

= 0. (2.4)

It is clear that g1(x) = 1, g2(x) = x in W m
2 [0, 1] satisfy Eq. (2.2)–Eq. (2.4). Let gk(x) = axk ∈

W m
2 [0, 1], (k = 2, . . . , m). By the definition of inner product and Eq. (2.2)–Eq. (2.4), we can

obtain a = 1
k! .

Theorem 2.2

{
ρj(x)

}∞
j=1 =

{

1, x,
x2

2
, . . . ,

xm

m!
, Jm–1

0 φ1,0(x), Jm–1
0 φ2,0(x), Jm–1

0 φ2,1(x), . . . , Jm–1
0 φi,k(x), . . .

}

is the multiscale orthonormal basis of W m
2 [0, 1].



Zhang et al. Boundary Value Problems         (2021) 2021:48 Page 4 of 13

Proof According to Th. 2.1 and Eq. (2.2)–Eq. (2.4), it is clear that

〈
ρi(x),ρj(x)

〉

W m
2

=

⎧
⎨

⎩

1, i = j,

0, i 
= j.

So {ρj(x)}∞j=1 is orthogonal.
Next, we just need to prove completeness. That is, if 〈u,ρj〉W m

2
= 0, then u ≡ 0. In fact,

〈

u,
xk

k!

〉

W m
2

= 0 implied to u(k)(0) = 0, k = 0, 1, 2, . . . , m – 1. (2.5)

〈

u,
xm

m!

〉

W m
2

= 0 implied to u(m–1)(1) = 0. (2.6)

〈
u, Jm–1

0 φi,k(x)
〉

W m
2

=
〈
u(m–1),φi,k(x)

〉

W 1
2,0

= 0 implied to u(m–1) ≡ 0. (2.7)

From Eq. (2.5)–Eq. (2.7), u ≡ 0. �

3 ε-approximate solution of high-order BVPs
In this section, we give the ε-approximation of Eq. (1.1) and get the numerical solution of
BVPs by finding the ε-approximate solution of Eq. (1.1).

Put

Lu = u(m) + p1(x)u(m–1) + · · · + pm–1(x)u′ + pm(x)u,

where L : W m
2 [0, 1] → L2[0, 1].

Theorem 3.1 L : W m
2 [0, 1] → L2[0, 1] is a bounded linear operator.

Proof Because W m
2 [0, 1] is a reproducing kernel space,

∣
∣u(k)(x)

∣
∣ =

∣
∣
∣
∣

〈

u(·), ∂kK(x, ·)
∂xk

〉

W m
2

∣
∣
∣
∣

≤ ∥
∥u(·)∥∥W m

2

∥
∥
∥
∥
∂kK(x, ·)

∂xk

∥
∥
∥
∥

W m
2

, k = 0, 1, 2, . . . , m – 1. (3.1)

By Eq. (3.1), there exist positive constants Mk such that

∥
∥pm–k(x)u(k)(x)

∥
∥

L2 =
(∫ 1

0

(
pm–k(x)u(k)(x)

)2 dx
) 1

2

≤ max
x∈[0,1]

∣
∣pm–k(x)

∣
∣

(∫ 1

0

(
u(k)(x)

)2 dx
) 1

2

≤ Mk‖u‖W m
2

, k = 0, 1, 2, . . . , m – 1. (3.2)

Therefore

∥
∥u(m)∥∥2

L2 =
∫ 1

0

(
u(m))2 dx ≤

2∑

i=0

u(i)(0)u(i)(0) +
∫ 1

0

(
u(m))2 dx = ‖u‖2

W m
2

. (3.3)
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From Eq. (3.2) and Eq. (3.3), it follows that

‖Lu‖L2 ≤ M‖u‖W m
2

,

where M is a positive constant. �

Then Eq. (1.1) is equivalent to the following equation:

⎧
⎨

⎩

Lu = f (x), x ∈ (0, 1)

Biu = αi, i = 1, 2, . . . , m.
(3.4)

Zhang [32] proposed the ε-approximate theory of second-order differential equations,
now we define the ε-approximate solution of Eq. (3.4) based on the idea.

Definition 3.1 ∀ε > 0, ∃N > 0, when n > N , if ‖Lun – f ‖2
L2 +

∑m
i=1(Biun – αi)2 < ε2, un is

called ε-approximate solution of Eq. (3.4).

Lemma 3.1 ∀ε > 0, ∃N > 0, when n > N ,

un =
n∑

k=1

c∗
kρk (3.5)

is the ε-approximate solution of Eq. (3.4), where c∗
k satisfies

∥
∥
∥
∥
∥

n∑

k=1

c∗
kLρk – f

∥
∥
∥
∥
∥

2

L2

+
m∑

l=1

( n∑

k=1

c∗
kBlρk – αl

)2

= min
ck

[∥
∥
∥
∥
∥

n∑

k=1

ckLρk – f

∥
∥
∥
∥
∥

2

L2

+
m∑

l=1

( n∑

k=1

ckBlρk – αl

)2]

.

(3.6)

Put J is a quadratic form about c = (c1, . . . , cn),

J(c1, . . . , cn) =

∥
∥
∥
∥
∥

n∑

k=1

ckLρk – f

∥
∥
∥
∥
∥

2

L2

+
m∑

l=1

( n∑

k=1

ckBlρk – αl

)2

,

c∗
k is the minimum point of J . In fact, in order to find the minimum value of J , that is,

∂

∂cj
J(c1, . . . , cn) = 0.

Because of

∂

∂cj
J(c1, . . . , cn)

= 2
n∑

k=1

ck〈Lρk , Lρj〉L2 – 2〈Lρj, f 〉L2 + 2
m∑

l=1

n∑

k=1

ckBlρkBlρj – 2
m∑

l=1

Blρjαl,
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then

n∑

k=1

ck〈Lρk , Lρj〉L2 +
m∑

l=1

n∑

k=1

ckBlρkBlρj = 〈Lρj, f 〉L2 +
m∑

l=1

Blρjαl. (3.7)

Let

An =

(

〈Lρk , Lρj〉L2 +
m∑

l=1

BlρkBlρj

)

n×n

,

bn =

(

〈Lρk , f 〉L2 +
m∑

l=1

Blρjαl

)

n

.

Then Eq. (3.7) changes to

Anc = bn. (3.8)

According to [32], the unique solution of Eq. (3.8) is the minimum point of J .

4 Theoretical analysis
In this section, the properties of the algorithm, such as uniform convergence, stability, and
complexity, are introduced.

4.1 Convergence analysis
Theorem 4.1 Assume that u is the exact solution of Eq. (1.1), un is the ε-approximation
of Eq. (1.1). If u(m+1) is bounded on [0,1], then |u – un|2 ≤ 2–2nC, where C is a constant.

Proof Assume that

vn(x) =
m–1∑

j=0

cj
xj

j!
+

n∑

i=1

2i–1–1∑

k=0

ci,kJ2
0 φi,k(x) (4.1)

satisfies Eq. (3.4), where cj = 〈u, xj

j! 〉W m
2

, ci,k = 〈u, J2
0 φik〉W m

2
. Clearly, limn→+∞vn = u.

Due to Lemma 3.1, it can get

‖u – un‖2
W m

2
≤ ∥

∥L–1∥∥2‖Lu – Lun‖2
L2

≤ ∥
∥L–1∥∥2

(

‖Lu – Lun‖2
L2 +

m∑

i=1

|Biun – ai|2
)

≤ ∥
∥L–1∥∥2

(

‖Lu – Lvn‖2
L2 +

m∑

i=1

|Bivn – ai|2
)

≤ ∥
∥L–1∥∥2

(

‖Lu – Lvn‖2
L2 +

m∑

i=1

|Bivn – Biu|2
)

≤ ∥
∥L–1∥∥2(‖L‖2‖u – vn‖2

W m
2

+
m∑

i=1

‖Bi‖2‖u – vn‖3

≤ M‖u – vn‖W m
2

.
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That is,

‖u – un‖W m
2

≤ M‖u – vn‖2
W m

2

= M

∥
∥
∥
∥
∥

u –
m∑

j=0

cj
xj

j!
–

n∑

i=1

2i–1–1∑

k=0

ci,kJ2
0 φi,k

∥
∥
∥
∥
∥

W m
2

= M
∞∑

i=n+1

2i–1–1∑

k=0

(ci,k)2.

We can obtain (ci,k)2 ≤ ( 1
2 )3iC1. In fact,

|ci,k|2 =
∣
∣
〈
u, Jm–1

0 φi,k
〉

W m
2,0

∣
∣2 =

∣
∣
∣
∣

∫ 1

0
u(m)(φi,k)′ dx

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫ 1

0
u(m+1)φi,k dx

∣
∣
∣
∣

2

.

According to Holder’s inequality,

∣
∣
∣
∣

∫ 1

0
u(m+1)(φi,k) dx

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫ k+1
2i–1

k
2i–1

u(m+1)(φi,k) dx
∣
∣
∣
∣

2

≤
∫ k+1

2i–1

k
2i–1

(
u(m+1))2 dx

∫ k+1
2i–1

k
2i–1

(φi,k)2 dx.

Because u(m+1) is bound, so | ∫
k+1
2i–1
k

2i–1
(u(m+1))2 dx| ≤ 1

2i–1 M. Then

|ci,k|2 ≤ 1
2i–1 M

∫ k+1
2i–1

k
2i–1

(φi,k)2 dx

= M
(∫ k+1/2

2i–1

k
2i–1

(

x –
k

2i–1

)2

dx +
∫ k+1/2

2i–1

k
2i–1

(
k + 1
2i–1 – x

)2

dx
)

≤
(

1
2

)3i

C1.

So then

‖u – un‖2
W m

2
≤

∞∑

i=2n+1

2i–1–1∑

k=0

((
1
2

)3i

M
)

=
(

1
2

)2n

M,

where M is a constant.

∣
∣u(x) – un(x)

∣
∣2 =

∣
∣
〈
u – un, K(x, y)

〉

W m
2

∣
∣2 ≤ (‖u – un‖W m

2

∥
∥K(x, y)

∥
∥

W m
2

)2 ≤ 2–2nC,

where C is a constant, K(x, y) is the reproducing kernel of W m
2 . �

From Theorem 4.1, un uniformly converges to u.

4.2 Stability analysis
It is well known that if A is a reversible symmetrical matrix, then the condition number
of A is

cond(A)2 =
∣
∣
∣
∣
λ1

λn

∣
∣
∣
∣,

where λ1 and λn are the maximum and minimum eigenvalues of A respectively.
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Obviously, A of Eq. (3.8) is an invertible symmetric matrix. Therefore, in order to prove
the stability of the algorithm, we can first prove the boundedness of the eigenvalues.

Lemma 4.1 Suppose λx = Ax, ‖x‖ = 1, where x = (x1, . . . , xn)T is the related eigenvector of
λ, then

C2 ≤ λ ≤ ‖L‖2 +
m∑

l=1

‖Bl‖2.

Proof According to λx = Ax,

λxi =
n∑

j=1

aijxj =
n∑

j=1

(

〈Lρi, Lρj〉L2 +
m∑

l=1

BlρiBlρj

)

xj,

n∑

j=1

(

〈Lρi, xjLρj〉L2 +
m∑

l=1

BlρixjBlρj

)

=

〈

Lρi,
n∑

j=1

xjLρj

〉

L2

+
m∑

l=1

Blρi

n∑

j=1

xjBlρj.

(4.2)

Multiply both sides of (4.2) by xi (i = 1, 2, . . . , n) and add up to get

λ = λ

n∑

j=1

x2
j

=

〈 n∑

i=1

xiLρi,
n∑

j=1

xjLρj

〉

L2

+
m∑

l=1

( n∑

i=1

xiBlρi

n∑

j=1

xjBlρj

)

=

∥
∥
∥
∥
∥

n∑

i=1

xiLρi

∥
∥
∥
∥
∥

2

L2

+
m∑

l=1

(

Bl

n∑

j=1

xjρi

)2

≤ ‖L‖2
n∑

i=1

x2
i +

m∑

l=1

‖Bl‖2
n∑

i=1

x2
i

= ‖L‖2 +
m∑

l=1

‖Bl‖2.

So

λ ≤ ‖L‖2 +
m∑

l=1

‖Bl‖2.

In addition, λ ≥ ‖∑n
i=1 xiLρi‖L2 .

Let u =
∑n

i=1 xiρi, then λ ≥ ‖Lu‖2
L2 . Without loss of generality, put ‖u‖W m

2,0
= 1. According

to the inverse operator theorem [21], ‖Lu‖L2 ≥ C2‖u‖2
W m

2
.

So λ ≥ ‖Lu‖L2 ≥ C2‖u‖2
W m

2
= C2.

To sum up

C2 ≤ λ ≤ ‖L‖2 +
m∑

l=1

‖Bl‖2. �

From Lemma 4.1, we get

cond(A)2 =
∣
∣
∣
∣
λ1

λn

∣
∣
∣
∣ ≤ ‖L‖2 +

∑m
l=1 ‖Bl‖2

1
C2

=

(

‖L‖2 +
m∑

l=1

‖Bl‖2

)

C2.

That is, the presented method is stable.
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4.3 Complexity analysis
Complexity analysis includes time complexity and space complexity. But ultimately, it is
the time efficiency of the algorithm that matters. As long as the algorithm does not take
up storage space that is unacceptable to the computer. So this part analyzes the time com-
plexity.

Theorem 4.2 The time complexity of the algorithm is O(n3).

Proof There are four steps to calculate ε-the approximate solution un(x) of (3.1).
First, the calculation of matrix An in Eq. (3.8). The matrix An is

An =

(

〈Lρk , Lρj〉 +
m∑

l=1

BlρkBlρj

)

n×n

.

Set the number of multiplication required to compute 〈Lρk , Lρj〉 and BlρkBlρj as C1, C2

respectively, C1, C2 are constant. So each term of An is evaluated C1 + mC2 times. Since
An is a symmetric matrix, we only need to consider the calculation of the main diagonal
and above elements. The first row of An is evaluated n times, the second row n – 1 times,
and so on, so that the total number of multiplications required in calculation of An is

n(n + 1)
2

(C1 + mC2).

Second, the calculation of vector bn in Eq. (3.8). The vector bn is

bn =

(

〈Lρk , f 〉 +
m∑

l=1

Blρjαl

)

n

.

Let the number of multiplication of 〈Lρk , f 〉 and Blρjαl be C3, C4, C3, C4 are constant.
So each term of bn is evaluated C3 + mC4 times. So the total number of multiplications
required in calculation of bn is

(C3 + mC4)n.

Third, solve Eq. (3.8). We solve the system by Gaussian elimination. From the mathe-
matical knowledge, Gaussian elimination requires operations

n(n + 1)(2n + 1)
6

.

Forth, calculation un. When calculating the un, the total number of multiplications re-
quired is n.

To sum up, the total number of multiplication is

n(n + 1)
2

(C1 + m) + (C2 + m)n +
n(n + 1)(2n + 1)

6
+ n = O

(
n3). �
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5 Numerical experiments
In this section, we give several numerical experiments to verify the effectiveness of the
proposed algorithm. We denote by un(x) the approximation to the exact solution u(x) ob-
tained by the numerical schemes in the present work, and we measure the errors in the
following sense:

en(x) =
∣
∣un(x) – u(x)

∣
∣,

where n is the number of bases. C.R. represents the convergence order. All numerical
experiments are computed by Mathematica 9.0.

Example 5.1 Ref. [34] mentioned that in order to get the shear deformation of sandwich
beams, consider the following third-order BVP:

⎧
⎨

⎩

u′′′ – k2u′ + r = 0, x ∈ (0, 1)

u′(0) = u( 1
2 ) = u′(1) = 0,

where the physical constants are k = 5 and r = 1. The function u(x) shows the shear defor-
mation of sandwich beams. The analytic solution of this problem is

u(x) =
r(k(2x – 1) sinh(kx) + 2 cosh(kx) tanh( k

2 ))
2k3 .

The numerical results are given in Table 1.

Example 5.2 Our second example is for fourth-order BVP [31]

⎧
⎨

⎩

u(4) – 2u = –1 – (8π4 – 1) cos(2πx), x ∈ (0, 1)

u(0) = u(1) = u′(0) = u′(1) = 0.

Table 2 and Fig. 2 list the error comparison between the multilevel augmentation
method [31] and our method for this BVP.

Table 1 Absolute errors of Example 5.1

x Absolute error [28] Absolute error [29] Present method e131(x) Present method e259(x)

0 6.65e–5 2.81e–5 5.74e–5 1.34e–5
0.1 6.50e–5 2.26e–5 3.44e–5 7.65e–6
0.2 5.25e–5 1.41e–5 2.02e–5 4.08e–6
0.3 3.63e–5 7.32e–6 1.11e–5 1.81e–6
0.4 1.87e–5 2.95e–6 4.96e–6 2.55e–7
0.6 1.73e–5 2.95e–6 4.94e–6 2.23e–6
0.7 3.40e–5 7.32e–6 1.11e–5 3.80e–6
0.8 4.98e–5 1.41e–5 2.02e–5 6.09e–6
0.9 6.20e–5 2.26e–5 3.44e–5 9.68e–6
1.0 6.34e–5 2.81e–5 5.74e–5 1.54e–5
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Table 2 Absolute errors of Example 5.2

n Absolute error of [31] C.R. of [31] max en(x) of present method C.R. of present method

35 – – 3.693e–2 –
67 2.004e–2 1.99 9.232e–3 1.968
131 5.013e–3 2.00 2.307e–3 2.004
259 1.253e–3 1.99 5.674e–4 2.038
515 3.133e–4 1.99 1.441e–4 2.017

Figure 2 The error for Ex. 5.2 (n = 515)

Figure 3 The error for Ex. 5.3 (n = 67)

Example 5.3 Our third example is a fifth-order BVP

⎧
⎪⎪⎨

⎪⎪⎩

u(5) + u(4) – 3xu′′′ – u′′ + u′ = (2 – 3x)ex – 1, x ∈ (0, 1)

u(0) = u′(0) = 0, u′′(0) = 1,

u′(1) = e–1, u′′(1) = e.

The exact solution of this example is u(x) = ex – x – 1. Figure 3 shows the error of Exam-
ple 5.3.

6 Conclusion
In summary, this study used a set of multiscale orthonormal bases to find the ε-
approximate solutions of higher-order BVPs. This paper not only demonstrates the con-
vergence and stability in theory, but also demonstrates the feasibility of the method
through numerical experiments. Through theoretical analysis and numerical experi-
ments, this method can be extended to solve general linear models, such as linear integral
equations, differential equations, and fractional differential equations.
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