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Abstract
In this paper, we study the local uniformly upper semicontinuity of pullback attractors
for a strongly damped wave equation. In particular, under some proper assumptions,
we prove that the pullback attractor {Aε(t)}t∈R of Eq. (1.1) with ε ∈ [0, 1] satisfies
limε→ε0 supt∈[a,b] distH10×L2 (Aε(t),Aε0 (t)) = 0 for any [a,b] ⊂ R and ε0 ∈ [0, 1].
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1 Introduction
The theory of pullback (or random) attractors is a useful tool to study the long-time be-
havior of nonautonomous (or random) dynamical systems (see [1, 3, 7] and references
therein), in which the trajectory can be unbounded as “time” goes to infinity, and thus
classical theory of global (or uniform) attractors is not applicable. A pullback attractor
is a parameterized family {A (t)}t∈R of nonempty compact sets of the state space, which
attracts bounded deterministic sets starting from earlier time. In recent years the upper
semicontinuity of pullback attractors for dynamical systems with different kind of pertur-
bations has also been widely studied (see, e.g., [2, 6, 10, 13, 14, 19, 21, 23, 24]). Simply
speaking, if {Aε(t)}t∈R is the pullback attractor generated by the perturbed dynamical sys-
tems and {A0(t)}t∈R is the pullback attractor for the unperturbed one, then we say that
{Aε(t)}t∈R and {A0(t)}t∈R are upper semicontinuous in a metric space (X, d) if

lim
ε→0

distX
(
Aε(t), A0(t)

)
= 0, ∀t ∈ R,

where, distX(·, ·) denotes the Hausdorff semidistance distX(A, B) = supa∈A infb∈B d(a, b).
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In this paper, we consider the upper semicontinuity of pullback attractors for the fol-
lowing strongly damped wave equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂2
t u + ∂tu – ε�∂tu – �u + f (u) = g(x, t) in � × [r,∞),

(u(r), ∂tu(r)) = (ur , u′
r),

u(x, t)|∂�×[r,∞) = 0,

(1.1)

where � ⊂R
3 ia a bounded smooth domain, and ε ∈ [0, 1]. For the nonlinearity f ∈ C2(R)

with f (0) = 0„ we assume that it satisfies:

∣
∣f ′′(u)

∣
∣ ≤ C

(|u| + 1
)
, (1.2)

lim inf|u|→∞ f ′(u) > –λ1, (1.3)

where λ1 > 0 is the first eigenvalue of –�.
The external force g(x, t) is assumed to satisfy: g(x, t), ∂tg(x, t) ∈ L2

loc(R; L2(�)), and

∫ t

–∞
eσ s∥∥g(x, s)

∥∥2 ds < ∞ for all t ∈R, (1.4)

where the positive constant σ will be settled in the proof of Lemma 3.1.
The dynamic behavior of analogous equations have been analyzed in the literature under

different hypotheses. In the autonomous case (i.e., the forcing term g(x, t) = g(x)), the well-
posedness, existence, and regularity of global attractors have been studied extensively for
more general damped wave equations [4, 5, 8, 9, 12, 15, 16], and the exponential attrac-
tors and dimension estimates for global attractors are considered in [11, 15, 17]. In the
nonautonomous case, we refer the readers to [20–22, 25] and references therein.

When ε = 0, Eq. (1.1) reduces to the usual wave equation without strong damping term
–�∂tu. Our main purpose in this paper is to study the limiting behavior of Eq. (1.1) as ε

goes to 0. More precisely, we will prove the upper semicontinuity of pullback attractors
in H1

0 (�) × L2(�) for Eq. (1.1), that is, that the pullback attractor {Aε(t)}t∈R (ε ∈ [0, 1]) for
Eq. (1.1) satisfies

lim
ε→ε0

sup
t∈[a,b]

distH1
0 ×L2

(
Aε(t), Aε0 (t)

)
= 0 for all ε0 ∈ [0, 1] and [a, b] ⊂R.

For Eq. (1.1), if the initial data belong to H1
0 (�) × L2(�), then its solution is always in

H1
0 (�) × L2(�) and has no higher regularity, and we cannot obtain the compactness prop-

erty by showing the boundedness of solutions in higher regular phase spaces. In this paper,
we apply the techniques of Zelik [25] to overcome this difficulty and establish the asymp-
totic compactness of solution operators with perturbations (see Lemmas 3.3–3.5).

The structure of the paper is as follows. In the next section, we first recall some basic
concepts and conclusions of the theory of pullback attractors and then prove an abstract
result for verifying the upper semicontinuity of pullback attractors (Theorem 2.2), by ap-
plying which we prove the upper semicontinuity of pullback attractors for Eq. (1.1) in
Sect. 3.

We introduce some notation that will be used in the paper. We denote by 〈·, ·〉 and ‖ · ‖
the inner product and norm in L2(�), respectively. Let Hα = D((–�) α

2 ) (α ∈ R) be the
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scale of Hilbert spaces generated by the Laplacian with Dirichlet boundary conditions on
L2(�) (see [18] for more detail) and endowed with standard inner products and norms,
respectively,

〈·, ·〉Hα =
〈
(–�)

α
2 ·, (–�)

α
2 ·〉 and ‖ · ‖Hα =

∥
∥(–�)

α
2 ·∥∥.

In particular,

H–1 = H–1(�), H0 = L2(�), H1 = H1
0 (�).

Then we have the continuous embeddings Hs ↪→Hr for any s > r,

Hs ↪→ L
6

3–2s (�), ∀s ∈
[

0,
3
2

)
, (1.5)

and the following inequalities.
Interpolation inequalities: if r = θs + (1 – θ )q, where r, s, q ∈ R, s ≥ q, and θ ∈ [0, 1], then

there exists a constant C > 0 such that

‖u‖Hr ≤ C‖u‖θ
Hs‖u‖1–θ

Hq , ∀u ∈Hs.

Generalized Poincaré inequality:

λ1‖u‖2
Hα ≤ ‖u‖2

Hα+1 , ∀u ∈Hα+1. (1.6)

We define the product Hilbert spaces as follows:

E–1 = L2(�) × H–1(�), E = H1
0 (�) × L2(�),

and

Eα = Hα+1 ×Hα(α ∈R).

For any given function u(t), we shortly write

ξu(t) =
(
u(t), ∂tu(t)

)
and

∥
∥ξu(t)

∥
∥2
E = ‖∇u‖2 + ‖∂tu‖2.

Throughout the paper, the symbols C and Q stand for a generic positive constant and a
generic positive increasing function, respectively.

2 Preliminaries
In this section, we collect some basic facts from general theory of pullback attractors (see,
e.g., [1, 3]) and then state an abstract result for verifying the upper semicontinuity of pull-
back attractors.

Let us define a nonautonomous dynamical system by a process on a Banach space X
with norm ‖ · ‖X , that is, a family of continuous mappings U(t, τ ) : X → X, t ≥ τ , such that
U(τ , τ ) = Id and U(t, s)U(s, τ ) = U(t, τ ) for all t ≥ s ≥ τ .
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Definition 2.1 A family of compact sets A = {A(t)}t∈R is called a pullback attractor for
process U(·, ·) if

(i) A is pullback attracting, that is, limτ→∞ distX(U(t, t – τ )D, A(t)) = 0 for all bounded
D ⊂ X ;

(ii) A is invariant, that is, U(t, τ )A(τ ) = A(t) for all t ≥ τ .

Definition 2.2 A family of sets D = {D(t)}t∈R is said to be pullback absorbing with respect
to U(·, ·) if for every t ∈ R and any bounded D ⊂ X, there exists T > 0 (which depends on
t and D) such that

U(t, t – τ )D ⊂ D(t) for all τ ≥ T .

Definition 2.3 A process U(·, ·) is said to be pullback D-asymptotically compact in X if for
any t ∈R and any sequences τn

n→∞−→ ∞ and xn ∈ D(t – τn), the sequence {U(t, t – τn)xn}n∈N
is relatively compact in X.

Theorem 2.1 (see [3]) Let a family D = {D(t)}t∈R be pullback absorbing, and let U(·, ·)
be pullback D -asymptotically compact in X . Then the family A = {A(t)}t∈R defined by
A(t) := (D , t), where

(D , t) =
⋂

s≥0

⋃

τ≥s
U(t, t – τ )D(t – τ )

X
for t ∈R, (2.1)

is a pullback attractor for U(·, ·). Moreover, if for any t ∈ R, there exists T > 0 (which de-
pends on t) such that

U(t, t – τ )D(t – τ ) ⊂ D(t) for all τ ≥ T , (2.2)

then

lim
τ→∞ distX

(
U(t, t – τ )D(t – τ ), A(t)

)
= 0 for each t ∈R. (2.3)

Lemma 2.1 Assume that for every ε ∈ [0,μ], a process Uε(·, ·) has a pullback absorbing
family Dε = {Dε(t)}t∈R satisfying (2.2). Assume that for any sequences {εn}n∈N ⊂ [0,μ],
{tn}n∈N ⊂ [a, b] ⊂ R, {τn}n∈N ⊂ R

+ with τn
n→∞−→ ∞, and xn ∈ Dεn (a – τn), the sequence

{Uεn (tn, a – τn)xn}n∈N is precompact in X. Then
(i) for every ε ∈ [0,μ], Uε(·, ·) has a pullback attractor Aε = {Aε(t)}t∈R;

(ii)
⋃

t∈[a,b]
⋃

ε∈[0,μ] Aε(t) is precompact in X .

Proof From Theorem 2.1 we immediately get (i). Taking any sequence
xn ∈ ⋃

t∈[a,b]
⋃

ε∈[0,μ] Aε(t), without loss of generality, we let xn ∈ Aεn (tn). Then we can
find sequences τn → ∞ and ξn ∈ Dεn (a – τn) such that

∥
∥Uεn (tn, a – τn)ξn – xn

∥
∥ ≤ 1

n
, ∀n ∈N.

Then from the assumptions we easily obtain the precompactness of {xn}nN. �
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The theory for verifying the upper semicontinuity of pullback attractors has been con-
sidered by many authors; see [7, 13] and references therein. By applying the ideas of [13,
Theorem 4.1] we get the following result.

Theorem 2.2 Let X, Y be two Banach spaces with norms ‖ ·‖X and ‖ ·‖Y , respectively, and
let X be continuously embedded into Y . Assume that for every ε ∈ [0,μ], a process Uε(·, ·)
has a pullback absorbing family Dε = {Dε(t)}t∈R satisfying (2.2), and a pullback attractor
Aε = {Aε(t)}t∈R is given by Theorem 2.1. Suppose the following assumptions hold:

(i) Dε = {Dε(t)}t∈R is independent of ε, and Dε(t) is closed in X for each t ∈R;
(ii) for any τ > 0, any sequences {tn}n∈N ⊂ [a, b] such that tn

n→∞−→ t0, {εn}n∈N ⊂ [0,μ]
such that εn

n→∞−→ ε0, and {xn}n∈N ⊂ X such that xn
n→∞−→ x0 in X ,

Uεn (tn, a – τ )xn
n→∞−→ Uε0 (t0, a – τ )x0 in Y ; (2.4)

(iii) for any [a, b] ⊂R,

⋃

t∈[a,b]

⋃

ε∈[0,μ]

Aε(t) is precompact in X. (2.5)

Then

lim
ε→ε0

sup
t∈[a,b]

distX
(
Aε(t), Aε0 (t)

)
= 0 for all ε0 ∈ [0,μ]. (2.6)

Proof Step 1. We prove that under our assumptions, for any t ∈ R, any sequences
{εn}n∈N ⊂ [0,μ] such that εn

n→∞−→ ε0, and yn ∈ Aεn (t), there exist y0 ∈ Aε0 (t) and a sub-
sequence {ynk }k∈N ⊂ {yn}n∈N such that

ynk

k→∞−→ y0 in X. (2.7)

Let τm
m→∞−→ ∞. For all m, n ∈N, there exist z(m)

n ∈ Aεn (a – τm) such that

yn = Uεn (t, a – τm)z(m)
n . (2.8)

By assumption (i) we let

Dε(t) = D(t) for all t ∈R and ε ∈ [0,μ],

and by assumption (iii), without loss of generality, for each m, we let

z(m)
n

n→∞−→ zm ∈ D(a – τm).

Let y0,m = Uε0 (t, a – τm)zm, and, without loss of generality, let

y0,m
m→∞−→ y0 ∈ Aε0 (t). (2.9)
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By assumption (ii) we find

lim
n→∞‖yn – y0,m‖Y = lim

n→∞
∥
∥Uεn (t, a – τm)z(m)

n – Uε0 (t, a – τm)zm
∥
∥

Y = 0. (2.10)

Then, combining (2.9) and (2.10), for any δ > 0, we can find mδ , Nδ ∈N such that

‖yn – y0‖Y ≤ ‖yn – y0,mδ
‖Y + ‖y0,mδ

– y0‖Y ≤ δ for all n ≥ Nδ . (2.11)

From assumption (iii) we also know that {yn}n∈N is precompact in X. Thus by (2.11), noting
that X ↪→ Y , we immediately get (2.7).

Step 2. We claim that for any sequences {tn}n∈N ⊂ [a, b] such that tn
n→∞−→ t0, {εn}n∈N ⊂

[0,μ] such that εn
n→∞−→ ε0, and xn ∈ Aεn (tn), there exist a subsequence {xnk }k∈N ⊂ {xn}n∈N

and x∗
k ∈ Aε0 (tnk ) such that for any δ > 0, we can find N ∈N large enough such that

∥∥xnk – x∗
k
∥∥

X ≤ δ for all k ≥ N . (2.12)

Let τ > 0. We can find yn ∈ Aεn (a – τ ) such that

xn = Uεn (tn, a – τ )yn for all n ∈N. (2.13)

By (2.7), without loss of generality, we let

yn
n→∞−→ y0

(∈ Aε0 (a – τ )
)
.

Setting

x∗
n = Uε0 (tn, a – τ )y0

(∈ Aε0 (tn)
)

and using assumption (ii), we readily check that

lim
n→∞

∥∥xn – x∗
n
∥∥

Y = 0. (2.14)

On the other hand, assumption (iii) implies that sequences {xn}n∈N and {x∗
n}n∈N are pre-

compact in X, from which, together with (2.14), noting that X ↪→ Y , we immediately ob-
tain (2.12).

Now we are ready to prove (2.6). If not true, then we can find δ > 0, sequences {εn}n∈N ⊂
[0,μ] such that εn

n→∞−→ ε0, {tn}n∈N ⊂ [a, b] such that tn
n→∞−→ t0, and xn ∈ Aεn (tn) such that

distX
(
xn, Aε0 (tn)

) ≥ δ for all n ∈N. (2.15)

It follows from (2.12) that we can extract a subsequence {xnk }k∈N from {xn}n∈N and x∗
k ∈

Aε0 (tnk ) such that

∥∥xnk – x∗
k
∥∥

X

k→∞−→ 0,

which contradicts (2.15). The proof is completed. �
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3 Upper semicontinuity of pullback attractors for Eq. (1.1)
The existence and uniqueness of (weak) solutions u to Eq. (1.1) is classical (see, e.g., [4, 5])
and can be obtained by the standard Faedo–Galerkin method. Such solutions satisfy: for
any ε ≥ 0 and [r, T] ⊂ R,

u ∈ C
(
[r, T], H1

0 (�)
)
, ∂tu ∈ C

(
[r, T], L2(�)

)
.

As a consequence, for any ε ≥ 0, we can construct the process Uε(t, r) associated with
Eq. (1.1) as follows:

Uε(t, r)ξ =
(
u(t), ∂tu(t)

)
with ξ ∈ E ,

and the mapping Uε(t, r) : E → E is continuous.
The main result of this section can be stated as follows.

Theorem 3.1 Let assumptions (1.2)–(1.4) be satisfied. For any ε ∈ [0, 1], there exists a
pullback attractor Aε = {Aε(t)}t∈R for Eq. (1.1) such that

lim
ε→ε0

sup
t∈[a,b]

distE
(
Aε(t), Aε0 (t)

)
= 0 for all ε0 ∈ [0, 1] and [a, b] ⊂R (3.1)

and

⋃

t∈[a,b]

⋃

ε∈[0,1]

Aε(t) is precompact in E . (3.2)

Lemma 3.1 Under assumptions (1.2)–(1.4), we have the estimate

∥∥ξu(t)
∥∥2
E + e–σ t

∫ t

r
eσ s(∥∥∇u(s)

∥∥2 +
∥∥∂tu(s)

∥∥2)ds

≤ Ce–σ (t–r)(∥∥ξu(r)
∥∥4
E + 1

)
+ Ce–σ t

∫ t

r
eσ s∥∥g(x, s)

∥∥2 ds + C (3.3)

for all ε ∈ [0, 1], t ≥ r, and any ξu(r) = (u(r), ∂tu(r)) ∈ E , where σ > 0 satisfies (3.16), and
C > 0 is independent of r, t, and ε.

Proof Let F(u) =
∫ u

0 f (s) ds. From (1.3) we obtain that

〈
f (u), u

〉 ≥ –ρ‖u‖2 – Cρ , (3.4)

〈
F(u), 1

〉 ≥ –
1
2
ρ‖u‖2 – Cρ , (3.5)

〈
f (u), u

〉
–

〈
F(u), 1

〉 ≥ –
1
2
ρ‖u‖2 – Cρ (3.6)

for positive constants ρ < λ1 and Cρ (see [17] for more detail).
Multiplying Eq. (1.1) by 2(∂tu + δu) and integrating over �, we have

d
dt

(t) + δ(t) + 2ε‖∇∂tu‖2 + �(t) = 2
〈
g(x, t), ∂tu + δu

〉
, (3.7)



Wang et al. Boundary Value Problems         (2021) 2021:56 Page 8 of 19

where

(t) = (1 + εδ)‖∇u‖2 + δ‖u‖2 + ‖∂tu‖2 + 2δ〈∂tu, u〉 + 2
〈
F(u), 1

〉
+ 2Cρ

and

�(t) = 2δ‖∇u‖2 + (2 – 2δ)‖∂tu‖2 + 2δ
〈
f (u), u

〉
– δ(t).

Let

0 < δ < min

{
1
2

,
λ1 – ρ

λ1 + 2

}
. (3.8)

By (1.2) and the Sobolev embeddings H1
0 (�) ↪→ L6(�) ↪→ L4(�) we have

∣∣〈f (u), u
〉∣∣ ≤ C

∫

�

(
1 + |u|4)dx ≤ C

(
1 + ‖u‖4

L4
) ≤ C

(
1 + ‖∇u‖4). (3.9)

From (3.4)–(3.9), applying Cauchy’s inequality and Poincaré’s inequality λ1‖u‖2 ≤ ‖∇u‖2,
we deduce that

(t) ≥ (1 + εδ)‖∇u‖2 + δ‖u‖2 + ‖∂tu‖2

– δ‖∂tu‖2 – δ‖u‖2 – ρ‖u‖2

≥ (
1 – ρλ–1

1
)‖∇u‖2 + (1 – δ)‖∂tu‖2

≥ C1
∥∥ξu(t)

∥∥2
E , (3.10)

(t) ≤ (1 + εδ)‖∇u‖2 + (2δ + ρ)‖u‖2 + (1 + δ)‖∂tu‖2

+ 2C
(
1 + ‖∇u‖4) + 4Cρ

≤ (1 + 2C)‖∇u‖4 +
1
2
‖∂tu‖4 +

1
2

(1 + εδ)2 +
1
2
(
(2δ + ρ)λ–1

1
)2

+
1
2

(1 + δ)2 + 2C + 4Cρ

≤ C2
(∥∥ξu(t)

∥∥4
E + 1

)
(3.11)

and

�(t) ≥ 2δ‖∇u‖2 + (2 – 2δ)‖∂tu‖2 – δ(1 + εδ)‖∇u‖2

– δ2‖u‖2 – δ‖∂tu‖2 – 2δ2〈∂tu, u〉
+ 2δ

(〈
f (u), u

〉
–

〈
F(u), 1

〉)
– 2δCρ

≥ (
2δ – δ(1 + εδ) – 2δ2λ–1

1 – δρλ–1
1

)‖∇u‖2

+
(
2 – 2δ – δ – δ2)‖∂tu‖2 – 4δCρ

≥ λ–1
1 δ

(
(λ1 – ρ) – δ(λ1 + 2)

)‖∇u‖2

+ (2 – 4δ)‖∂tu‖2 – 4δCρ
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≥ C3
∥∥ξu(t)

∥∥2
E – C4, (3.12)

where C1 = min{1 – ρλ–1
1 , 1 – δ}, C2 = 4 + (2λ–1

1 + 1)2 + 2C + 4Cρ , C3 = min{λ–1
1 δ((λ1 – ρ) –

δ(λ1 + 2)), 2 – 4δ}, and C4 = 4δCρ .
By (3.8) and Cauchy’s inequality we observe that

2
〈
g(x, t), ∂tu + δu

〉

≤ 2
〈
g(x, t), ∂tu

〉
+ 2

〈
g(x, t), δu

〉

≤ 4C–1
3

∥
∥g(x, t)

∥
∥2 +

C3

2
(
δ2‖u‖2 + ‖∂tu‖2)

≤ 4C–1
3

∥∥g(x, t)
∥∥2 +

C3

2
∥∥ξu(t)

∥∥2
E . (3.13)

Combining (3.10)–(3.13), we estimate (3.7) as follows:

d
dt

(t) + δ(t) + ε‖∇∂tu‖2 ≤ 4C–1
3

∥
∥g(x, t)

∥
∥2 + C4. (3.14)

Multiplying this inequality by eσ t , we have

d
dt

(
eσ t(t)

)
+ (δ – σ )eσ t(t) ≤ 4C–1

3 eσ t∥∥g(x, t)
∥∥2 + C4eσ t , (3.15)

where

0 < 2σ < δ. (3.16)

Integrating (3.15) from r to t and considering (3.10)–(3.11), we have

C1eσ t∥∥ξu(t)
∥
∥2
E + C1(δ – σ )

∫ t

r
eσ s∥∥ξu(s)

∥
∥2
E ds

≤ C2eσ r(∥∥ξu(r)
∥
∥4
E + 1

)
+ 4C–1

3

∫ t

r
eσ s∥∥g(x, s)

∥
∥2 ds + C4σ

–1eσ t .

After a simple computation, we arrive at

∥
∥ξu(t)

∥
∥2
E + e–σ t

∫ t

r
eσ s∥∥ξu(s)

∥
∥2
E ds

≤ C5

(
e–σ (t–r)(∥∥ξu(r)

∥
∥4
E + 1

)
+ e–σ t

∫ t

r
eσ s∥∥g(x, s)

∥
∥2 ds + 1

)
, (3.17)

where C5 = (C1(δ – σ ))–1(C2 + 4C–1
3 + C4σ

–1). The proof is completed. �

Corollary 3.1 Assume (1.2)–(1.4). Then, for every ε ∈ [0, 1], the process Uε(·, ·) has a pull-
back absorbing family D = {D(t)}t∈R in E , which is independent of ε ∈ [0, 1] and satisfies
(2.2).
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Proof Set

R(t) =
(

2Ce–σ t
∫ t

–∞
eσ s∥∥g(x, s)

∥∥2 ds + 2C
)1/2

, (3.18)

D(t) =
{
ξ ∈ E | ‖ξ‖E ≤ R(t)

}
, (3.19)

where C given by (3.3). By Lemma 3.1 the family D = {D(t)}t∈R is pullback absorbing for
every Uε(·, ·).

Choose γ > 0 satisfying

2σ < γ < δ, (3.20)

where δ > 0 is given by (3.8).
From the proof of Lemma 3.1 we easily check that inequality (3.3) still holds if σ is re-

placed by γ , that is,

∥∥ξu(t)
∥∥2
E ≤ Ce–γ τ

((
R(t – τ )

)4 + 1
)

+ Ce–γ t
∫ t

t–τ

e(γ –σ )seσ s∥∥g(x, s)
∥∥2 ds + C

≤ Ce–γ τ
((

R(t – τ )
)4 + 1

)
+ Ce–σ t

∫ t

–∞
eσ s∥∥g(x, s)

∥∥2 ds + C (3.21)

for all ut–τ ∈ D(t – τ ).
By (3.18) and (3.20) we observe that

e–γ τ
(
R(t – τ )

)4 τ→∞−→ 0, (3.22)

which, together with (3.19), implies that the family {D(t)}t∈R satisfies (2.2). �

Lemma 3.2 Under assumptions (1.2)–(1.4), for any {tn}n∈N ⊂ [a, b] such that tn
n→∞−→ t0,

{εn}n∈N ⊂ [0, 1] such that εn
n→∞−→ ε0, and {xn}n∈N ⊂ E such that xn

n→∞−→ x0, we have

∥∥Uεn (tn, a – τ )xn – Uε0 (t0, a – τ )x0
∥∥
E–1

n→∞−→ 0, ∀τ ≥ 0. (3.23)

Proof Set ξun (t) = (un(t), ∂tun(t)) = Uεn (t, a – τ )xn and ξu0 (t) = (u0(t), ∂tu0(t)) = Uεn (t, a –
τ )x0 be solutions of Eq. (1.1) with initial data ξun (a–τ ) = xn and ξu0 (a–τ ) = x0, respectively.

Set zn = un – u0, which solves the equation

∂2
t zn + ∂tzn – �zn – ε0�∂tzn = –

(
f (un) – f (u0)

)
+ (εn – ε0)�∂tun (3.24)

with initial condition ξzn (a – τ ) = xn – x0.
Let us introduce the functional

�(t) = (1 + ε0δ)‖zn‖2 + δ‖zn‖2
H–1 + ‖∂tzn‖2

H–1 + 2δ
〈
(–�)– 1

2 ∂tzn, (–�)– 1
2 zn

〉
.

Taking 0 < δ < 1, we observe that

(1 – δ)
∥∥ξzn (t)

∥∥2
E–1 ≤ �(t) ≤ 2

(
1 + λ–1

1
)∥∥ξzn (t)

∥∥2
E–1 . (3.25)
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Multiplying (3.24) by (–�)–1(∂tzn + δzn) and integrating over �, we have

d
dt

�(t) + 2δ‖zn‖2 + (2 – 2δ)‖∂tzn‖2
H–1 + 2ε0‖∂tzn‖2

= –2
〈
f (un) – f (u0), (–�)–1(∂tzn + δzn)

〉

– 2(εn – ε0)
〈
–�∂tun, (–�)–1(∂tzn + δzn)

〉
.

By (1.2), (3.25), and the embeddings H1 ↪→ L6(�), H0 ↪→ H–1, applying Cauchy’s and
Hölder’s inequalities, the right-hand side of the above equality can be estimated as follows:

2
∣
∣〈f (un) – f (u0), (–�)–1(∂tzn + δzn)

〉∣∣

≤ C
∫

�

(|un|2 + |u0|2 + 1
)|zn|

∣∣(–�)–1(∂tzn + δzn)
∣∣dx

≤ C
(∫

�

(|un|6 + |u0|6 + 1
)

dx
) 1

3
(∫

�

|zn|2 dx
) 1

2
(∫

�

∣∣(–�)–1(∂tzn + δzn)
∣∣6 dx

) 1
6

≤ C
(‖un‖2

H1 + ‖u0‖2
H1 + 1

)‖zn‖
(∥∥(–�)–1∂tzn

∥∥
H1 +

∥∥(–�)–1zn
∥∥
H1

)

= C
(‖un‖2

H1 + ‖u0‖2
H1 + 1

)‖zn‖
(‖∂tzn‖H–1 + ‖zn‖H–1

)

≤ C
(‖un‖2

H1 + ‖u0‖2
H1 + 1

)
�(t)

and

2(εn – ε0)
∣∣〈–�∂tun, (–�)–1(∂tzn + δzn)

〉∣∣

≤ 2(εn – ε0)
∣∣〈(–�)

1
2 ∂tun, (–�)– 1

2 (∂tzn + δzn)
〉∣∣

≤ 2(εn – ε0)2‖∂tun‖2
H1 + ‖∂tzn‖2

H–1 + δ2‖zn‖2
H–1 .

Hence

d
dt

�(t) ≤ C
(‖un‖2

H1 + ‖u0‖2
H1 + 1

)
�(t) + 2ε–1

n (εn – ε0)2 · εn‖∂tun‖2
H1 . (3.26)

Integrating (3.14) from a – τ to b, we get

∫ b

a–τ

(∥∥u(t)
∥∥2
H1 + ε

∥∥∂tu(t)
∥∥2
H1

)
dt ≤ Q for all ε ∈ [0, 1], (3.27)

where Q > 0 depends on a – τ , b, and ‖ξu(a – τ )‖E but is independent of ε.
By (3.25) and (3.27) an application of Gronwall’s inequality to (3.26) entails

sup
t∈[a,b]

∥
∥ξzn (t)

∥
∥2
E–1 ≤ Q

∥
∥ξzn (a – τ )

∥
∥2
E–1 + Qε–1

n (εn – ε0)2,

where Q > 0 depends on a – τ , b, and D(a – τ ) but is independent of ε.
Taking the limits as n → ∞ yields

sup
t∈[a,b]

∥∥Uεn (t, a – τ )xn – Uε0 (t, a – τ )x0
∥∥
E–1

n→∞−→ 0. (3.28)
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Since Uε(·, a – τ )x ∈ C([a – τ , b],E), we have

∥∥Uεn (tn, a – τ )xn – Uε0 (t0, a – τ )x0
∥∥
E–1

≤ ∥
∥Uεn (tn, a – τ )xn – Uε0 (tn, a – τ )x0

∥
∥
E–1

+
∥
∥Uε0 (tn, a – τ )x0 – Uε0 (t0, a – τ )x0

∥
∥
E–1

n→∞−→ 0. (3.29)

This finishes the proof. �

To obtain the regularity estimates, we will apply the ideas of Zelik [25].
Split the solution U(t, r)ξu(r) = u(t) of Eq. (1.1) as follows:

U(t, r)ξu(r) = V (t, r)ξv(r) + W (t, r)ξw(r), (3.30)

where V (t, r)ξv(r) = ξv(t) and W (t, r)ξw(r) = ξw(t) solve the following equations, respec-
tively:

⎧
⎨

⎩
∂2

t v + ∂tv – ε�∂tv – �v + f (v) + Lv = 0,

ξv(r) = ξu(r), v(x, t) |∂�×[r,∞)= 0,
(3.31)

and
⎧
⎨

⎩
∂2

t w + ∂tw – ε�∂tw – �w + f (u) – f (v) = Lv(t) + g(x, t),

ξw(r) = 0, w(x, t) |∂�×[r,∞)= 0,
(3.32)

where L > 0 will be settled in the proof of Lemma 3.3.

Lemma 3.3 Assume (1.2)–(1.4). Then for any [a, b] ⊂ R and μ > 0, there exists Tμ > 0 such
that the following estimate holds:

sup
ξv(a–τ )∈D(a–τ )

t∈[a,b]
ε∈[0,1]

∥∥V (t, a – τ )ξv(a – τ )
∥∥2
E ≤ μ for all τ ≥ Tμ, (3.33)

where {D(t)}t∈R is defined by (3.19).

Proof Let γ > 0 satisfy (3.20). Using the same argument as in the proof of Lemma 3.1, we
have

sup
ξv(a–τ )∈D(a–τ )

ε∈[0,1]

∥∥ξv(t)
∥∥2
E ≤ Ce–γ (t–a+τ )((R(a – τ )

)4 + 1
)

+ C.

Then we can find T > 0 large enough such that

sup
ξv(a–τ )∈D(a–τ )

t∈[a,b]
ε∈[0,1]

∥
∥ξv(t)

∥
∥2
E ≤ C for all τ ≥ T . (3.34)
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From (1.3), noting that f (0) = 0, we have

〈
f (v), v

〉 ≥ –K‖v‖2 and
〈
F(u), 1

〉 ≥ –
K
2

‖v‖2 (3.35)

for some positive K .
Let 0 < δ < 1 and L > K . Multiplying (3.31) by ∂tv + δv and integrating over �, we have

d
dt

�ε(t) + β
∥∥ξv(t)

∥∥2
E ≤ 0 for all ε ∈ [0, 1], (3.36)

where β = min{2(1 – δ), 2δ}, and

�ε(t) := �ε

(
V (t, a – τ )ξv(a – τ )

)

:= ‖∂tv‖2 + ‖∇v‖2 + δ‖v‖2 + εδ‖∇v‖2 + 2δ〈∂tv, v〉 + 2
〈
F(v), 1

〉
+ L‖v‖2. (3.37)

In light of (1.2) and (3.35), noting that L > K , we easily realize that �ε(t) fulfills the in-
equalities

C1
∥∥ξv(t)

∥∥2
E ≤ �ε(t) ≤ C2

(∥∥ξv(t)
∥∥4
E + 1

)
(3.38)

for some suitable positive constants C1, C2, which are independent of ε.
By (3.34) and (3.38) there exists T > 0 such that

sup
ξv(a–τ )∈D(a–τ )

t∈[a,b]
ε∈[0,1]

�ε

(
V (t, a – τ )ξv(a – τ )

)
< C̃ for all τ ≥ T , (3.39)

where C̃ > 0 is independent of a – τ , t, and ε.
Next, we claim that for any η > 0, there exist τη > a and tη ∈ [a – τη, a] such that

d
dt

�ε

(
V (t, a – τη)ξv(a – τη)

)∣∣
t=tη

≥ –η (3.40)

for all ε ∈ [0, 1] and ξv(a – τη) ∈ D(a – τη). If not, then for τn
n→∞−→ ∞, there exist εn ∈ [0, 1]

and ξv(a – τn) ∈ D(a – τn) such that

d
dt

�εn

(
V (t, a – τn)ξv(a – τn)

)
< –η for all t ∈ [a – τn, a] and n ∈N. (3.41)

Hence, integrating the above inequality over [a – C̃
η

, a] and considering (3.39), we get that
there exists N ∈N large enough such that

�εn

(
V (a, a – τn)ξv(a – τn)

)

< –C̃ + �εn

(
V

(
a –

C̃
η

, a – τn

)
ξv(a – τn)

)
< 0 for all n ≥ N , (3.42)

which contradicts the positivity of �ε(t) (see (3.38)). Thus (3.40) is correct.
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Exploiting (3.36) and (3.40), we have

sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

β
∥∥ξv(tη)

∥∥2
E ≤ η, (3.43)

which implies

sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

�ε

(
V (tη, a – τη)ξv(a – τη)

)

≤ sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

{
�ε

(
V (tη, a – τη)ξv(a – τη)

) | β∥∥ξv(tη)
∥∥2
E ≤ η

}
. (3.44)

Inequality (3.36) implies that �ε(t) is a nonincreasing function. Note that tη ∈ [a – τη, a]
and hence

�ε

(
V (t, a – τη)ξv(a – τη)

) ≤ �ε

(
V (tη, a – τη)ξv(a – τη)

)
for all t ≥ a, (3.45)

which, together with (3.44), yields

sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]
t∈[a,b]

�ε

(
V (t, a – τη)ξv(a – τη)

)

≤ sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

{
�ε

(
V (tη, a – τη)ξv(a – τη)

) | β∥∥ξv(tη)
∥∥2
E ≤ η

}
. (3.46)

Since V (·, ·) forms a process on E , by (3.34) we can find Tη > 0 large enough, which depends
on τη , such that

V (a – τη, a – τ )D(a – τ ) ⊂ D(a – τη) for all τ ≥ Tη and all ε ∈ [0, 1].

Thus, in view of (3.46), we arrive at

sup
ξv(a–τ )∈D(a–τ )

ε∈[0,1]
t∈[a,b]

�ε

(
V (t, a – τ )ξv(a – τ )

)

≤ sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

{
�ε

(
V (tη, a – τη)ξv(a – τη)

) | β∥∥ξv(tη)
∥∥2
E ≤ η

}

for all τ ≥ Tη. (3.47)

From the definition of �ε(t) we easily to check that �ε((v1, v2)) → 0 as ‖(v1, v2)‖2
E → 0 uni-

formly with respect to ε ∈ [0, 1]. Then from the above analysis, fixing μ > 0 small enough,
we can choose η > 0, τη > 0, and tη ∈ [a – τη, a] such that

sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

β
∥∥ξv(tη)

∥∥2
E ≤ η
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�⇒ sup
ξv(a–τη)∈D(a–τη)

ε∈[0,1]

�ε

(
V (tη, a – τη)ξv(a – τη)

) ≤ C1μ,

which, together with (3.38) and (3.47), implies

sup
ξv(a–τ )∈D(a–τ )

t∈[a,b]
ε∈[0,1]

∥
∥ξv(t)

∥
∥2
E ≤ μ for all τ ≥ T , (3.48)

where T > 0 large enough. This completes the proof. �

To obtain the regularity of w, we need the following result in [25].

Lemma 3.4 Let α ∈ [0, 1
2 ). Then

∥∥u1 · (–�)α–1u2
∥∥

L3 ≤ C‖u1‖Hα+1‖u2‖Hα–1 , (3.49)
∥
∥u3 · (–�)α–1u2

∥
∥

L
3
2

≤ C‖u3‖Hα‖u2‖Hα–1 (3.50)

for all u1 ∈Hα+1, u2 ∈Hα–1, and u3 ∈Hα , where the positive constant C depends on α but
is independent of u1 and u2.

Lemma 3.5 Under the same assumptions of Lemma 3.3, for any α ∈ [0, 1
2 ), [a, b] ⊂ R, and

M > 0, we have

sup
‖ξw(a–τ )‖≤M

t∈[a,b]
ε∈[0,1]

∥∥W (t, a – τ )ξw(a – τ )
∥∥
Eα ≤ Q, (3.51)

where Q > 0 depends on α, a – τ , b, and M but is independent of ε.

Proof Multiplying Eq. (3.32) by (–�)α∂tw and integrating over �, we have

d
dt

(‖∂tw‖2
Hα + ‖w‖2

Hα+1
)

+ 2‖∂tw‖2
Hα + 2ε‖∂tw‖2

Hα+1

≤ 2
∣∣〈f (v + w) – f (v), (–�)α∂tw

〉∣∣ + 2
∣∣〈Lv + g(x, t), (–�)α∂tw

〉∣∣. (3.52)

Applying (1.2) and the embeddings H1 ↪→ L6(�), Hα+1 ↪→H2α , we deduce that

2
∣
∣〈f (v + w) – f (v), (–�)α∂tw

〉∣∣

≤ C
∫

�

(
1 + |u|2 + |v|2)(|u| + |v|)∣∣(–�)α∂tw

∣
∣dx

≤ C
(∫

�

(
1 + |u|6 + |v|6)dx

) 1
3
(∫

�

(|u|6 + |v|6)dx
) 1

6
(∫

�

∣∣(–�)α∂tw
∣∣2 dx

) 1
2

≤ C
(
1 + ‖u‖2

H1 + ‖v‖2
H1

)(‖u‖H1 + ‖v‖H1
)‖∂tw‖H2α

≤ C
ε

(
1 + ‖u‖6

H1 + ‖v‖6
H1

)
+

ε

2
‖∂tw‖2

Hα+1
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and

2
∣∣〈Lv + g(x, t), (–�)α∂tw

〉∣∣ ≤ C
ε

(‖v‖2 +
∥∥g(x, t)

∥∥2) +
ε

2
‖∂tw‖2

Hα+1 .

As a consequence, inequality (3.52) improves to

d
dt

(‖∂tw‖2
Hα + ‖w‖2

Hα+1
)

+ ε‖∂tw‖2
Hα+1 ≤ C

ε

(
1 + ‖u‖6

H1 + ‖v‖6
H1 +

∥∥g(x, t)
∥∥2).

Integrating this inequality from a – τ to t and considering Lemmas 3.1 and 3.3, we deduce

∫ t

a–τ

ε2∥∥∂tw(s)
∥∥2
Hα+1 ds ≤ Q for all t ∈ [a, b], (3.53)

where the positive constant Q depends on a – τ , b, and M but is independent of ε.
Differentiating Eq. (3.32) with respect to t and setting θ (t) = ∂tw, we have

∂2
t θ + ∂tθ – ε�∂tθ – �θ = –

(
f ′(u) – f ′(v)

)
∂tu – f ′(v)θ + L∂tv(t) + ∂tg(x, t) (3.54)

with initial condition

θ (r) = 0, ∂tθ (r) = Lu(r) + g(x, r). (3.55)

Taking the scalar product of (3.54) with (–�)α–1(∂tθ + δθ ) (where δ > 0 is small enough),
we find that

d
dt

�(t) + δ�(t)

≤ –
〈(

f ′(v + w) – f ′(v)
)
∂tu, (–�)α–1(∂tθ + δθ )

〉

–
〈(

f ′(v) – f ′(0)
)
θ , (–�)α–1(∂tθ + δθ )

〉

+
〈
L∂tv(t) + ∂tg(x, t) – f ′(0)θ , (–�)α–1(∂tθ + δθ )

〉

:= I1 + I2 + I3, (3.56)

where

�(t) = ‖ξθ‖2
Eα–1 + δ‖θ‖2

Hα–1 + εδ‖θ‖2
Hα + 2δ

〈
∂tθ , (–�)α–1θ

〉
, (3.57)

and we easily check that

C1‖ξθ‖2
Eα–1 ≤ �(t) ≤ C2‖ξθ‖2

Eα–1 (3.58)

for some positive constants C1 and C2.
Next, we estimate I1, I2, and I3 one by one.
From (1.2) we have

∣∣f ′(v + w) – f ′(w)
∣∣ ≤ C

(
1 + |v + w| + |v|)|w|, (3.59)

where C > 0 is independent of v, w, and ε.
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Taking the Hα–1-norm of the both sides of Eq. (3.32), applying (1.2), Lemmas 3.1 and
3.3, and the embedding H1 ↪→ L6(�), we derive that

‖ε∂tw + w‖Hα+1 ≤ ∥
∥∂2

t w
∥
∥
Hα–1 + C

(‖∂tw‖ +
∥
∥f (u)

∥
∥ +

∥
∥f (v)

∥
∥ +

∥
∥g(x, t)

∥
∥ + L‖v‖)

≤ ‖∂tθ‖Hα–1 + Q, (3.60)

where Q > 0 depends on a – τ , b, and M but is independent of ε.
Due to Lemma 3.4 and (3.59) and (3.60), we estimate Ii as follows:

I1 ≤ C
(
1 + ‖u‖L6 + ‖v‖L6

)‖∂tu‖∥∥w · (–�)α–1(∂tθ + δθ )
∥∥

L3

≤ Q‖w‖Hα+1‖∂tθ + δθ‖Hα–1

≤ Q
(‖w + ε∂tw‖Hα+1 + ε‖∂tw‖Hα+1

)‖∂tθ + δθ‖Hα–1

≤ Q‖ξθ‖2
Eα–1 + ε2‖∂tw‖2

Hα+1 + Q, (3.61)

I2 ≤ ∥∥f ′(v) – f ′(0)
∥∥

L3

∥∥θ · (–�)α–1(∂tθ + δθ )
∥∥

L
3
2

≤ C
(‖v‖2

H1 + 1
)‖θ‖Hα‖∂tθ + δθ‖Hα–1

≤ Q‖ξθ‖2
Eα–1 , (3.62)

and

I3 ≤ C
(‖∂tu‖ + ‖∂tv‖ +

∥∥∂tg(x, t)
∥∥)‖∂tθ + δθ‖Hα–1 ≤ ‖ξθ‖2

Eα–1 + Q, (3.63)

where Q > 0 depends on α, a – τ , b, and M but is independent of ε.
Combining (3.58) and (3.61)–(3.63), we simplify (3.56) as follows:

d
dt

�(t) ≤ Q�(t) + ε2∥∥∂tw(t)
∥∥2
Hα+1 + Q. (3.64)

Applying the Gronwall inequality to (3.64) and using of (3.53), it follows that
∥∥∂tw(t)

∥∥
Hα +

∥∥∂2
t w

∥∥
Hα–1 ≤ Q for all t ∈ [a – τ , b] and ε ∈ [0, 1], (3.65)

provided that ‖ξu(r)‖ ≤ M.
Now we rewrite Eq. (3.32) as

ε∂tw(t) + w(t) = (–�)–1H(t), (3.66)

where H(t) = –∂2
t w – ∂tw – (f (u) – f (v)) + Lv + g(x, t) and (–�)–1H(t) ∈ Cb([a – τ , b], L2(�)).

Applying the variation of constants method and considering the fact that ξw(a – τ ) = 0, we
obtain

w(t) =
1
ε

e– 1
ε t

∫ t

a–τ

e
1
ε s(–�)–1H(s) ds. (3.67)

From Lemmas 3.1 and 3.3 and (3.65) we find
∥∥H(t)

∥∥
Hα–1 ≤ Q for all t ∈ [a – τ , b] and ε ∈ [0, 1], (3.68)

where Q > 0 depends on α, a – τ , b, and M but is independent of ε.
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Finally, combining (3.65) and (3.68) and taking the Hα+1-norm of both sides of (3.67),
we get the desired conclusion. The proof is finished. �

The proof of Theorem 3.1 The existence of pullback attractors follows directly from The-
orem 2.1, Corollary 3.1, and Lemmas 3.3 and 3.5. Then by Lemmas 2.1, 3.2, 3.3, and 3.5
we readily check that all assumptions of Theorem 2.2 (with X = E and Y = E–1) are satis-
fied. �
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