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Abstract

Under the acoustic boundary conditions, the initial boundary value problem of a
wave equation with multiple nonlinear source terms is considered. This paper gives
the energy functional of regular solutions for the wave equation and proves the
decreasing property of the energy functional. Firstly, the existence of a global solution
for the wave equation is proved by the Faedo…Galerkin method. Then, in order to
obtain the nonexistence of global solutions for the wave equation, a new functional is
de“ned. When the initial energy is less than zero, the special properties of the new
functional are proved by the method of contraction. Finally, the conditions for the
nonexistence of global solutions of the wave equation with acoustic boundary
conditions are analyzed by using these special properties.
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1 Introduction
Wave equation is a partial di�erential equation describing wave phenomenon, it can be

used in many di�erent “elds, such as acoustics, electromagnetics, ”uid mechanics, and so

forth. The existence of global solutions has been one of the key issues in the study of wave

equation. As we all know, there are three kinds of boundary conditions commonly used

in wave equation, namely Dirichlet condition, Neumann condition, and mixed boundary

condition; however, the three conditions signify that the waves travel in the same medium.

In fact, when the sound waves enter from one medium to another, some of the sound waves

will be re”ected back and some of them will be transmitted through, so it is necessary

to discuss the wave equation under the acoustic boundary conditions. In this paper, we

analyze the existence and blow-up of the global solution of the wave equation under the

acoustic boundary conditions. We consider the following wave equation with acoustic

boundary conditions:

utt …� div
�
|� u|m…2� u

�
…div

�
|� ut|� …2� ut

�
…� � ut
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=
l1�

i=1

ai|u|pi…2u …
l2�

j=1

bj|u|qj…2u, x � � ,t > 0, (1)

the initial boundary conditions are as follows:

�
���������

���������

u|� 0× (0,+� ) = 0,

� � ut
� n + � |� u|m…2� u

� n + |� ut|� …2� ut
� n = h(x)yt, (x,t) � � 1 × (0,+� ),

ut + f (x)yt + q(x)y = 0, (x,t) � � 1 × (0,+� ),

u(x, 0) =u0(x), ut(x, 0) =u1(x), x � � ,

y(x, 0) =y0(x), x � � 1,

(2)

where � , � ,ai,bj > 0, 2 <� < m, and 2 <ql2 < · · · < q2 < q1 < p1 < p2 < · · · < pl1 < r� are

constants,r� = nm
n…m is the critical Sobolev index of the spaceW 1,m(� ). � � Rn (n � 3) is a

bounded domain with the smooth boundary� = � 0 � � 1, where� 0 and� 1 are disjoint and

closed. The unit outward normal vector to the boundary is denoted by� u
� n . f ,q,h : � 1 	 R+

are bounded essential functions, satisfying 0 <q0 
 q(x) and 0 <h0 
 h(x) for any x � � 1.

The di�erentiable function y indicates the material of the surface.

The second and third equations in (2) are known as acoustic boundary conditions, and

they simulate a porous boundary. For decades, many achievements have been achieved

on the wave equations with Dirichlet conditions, Neumann condition, or mixed bound-

ary condition; however, these conditions cannot perfectly deal with the problem of wave

propagation in mixed media. Hence, acoustic boundary conditions with intuitive mod-

els began to be widely considered by scholars. Morse and Ingard [1] introduced acoustic

boundary conditions in 1968. Beale and Rosencrans [2] “rstly proposed a general form

of acoustic boundary conditions and proved the existence and regularity of the solution

of wave equation under acoustic boundary conditions. Recently, many results have been

obtained under acoustic boundary conditions. For instance, Gerbi and Sai-Houari stud-

ied a class of semi-linear wave equations and proved the existence of local solutions by

the Faedo…Galerkin approximation and contraction mapping theorem in [3]. Frigeri ana-

lyzed the global asymptotic behavior of solutions of a class of wave equations in [4]. The

decay rate of viscoelastic wave equations are discussed in [5]. The existence and nonex-

istence of global solutions for viscoelastic wave equations are analyzed in [6]. Nonlinear

and quasi-linear viscoelastic wave equations are studied in [7] and [8], respectively. Jeong

et al. obtained the nonexistence conditions of global solutions for a class of quasi-linear

wave equations with acoustic boundary conditions by using the energy functional method

in [9]. The global solutions of wave equations with time delay are analyzed in [10]. More

studies on the wave equation with acoustic boundary conditions can be found in [11…13].

For the wave equation with positive de“nite energyutt …� u = …|u|p…2u, the existence

of solutions can be proved by the Galerkin approximation method. For the wave equa-

tion with nonpositive de“nite energy utt …� u = |u|p…2u, the global existence of solu-

tions was proved by using potential well method in 1968 [14], and the existence, blow-

up behavior, and vacuum isolation of solutions were also discussed in [15] and [16]. In

2007, [17] and [18] introduced a class of wave equations with di�erent sign source terms,

utt …� u = a|u|p…2u …b|u|q…2u, and investigated the existence and blow-up of global so-

lutions. Recently, [19] proposed a class of wave equations with multiple nonlinear source
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terms and studied the existence and nonexistence of global solutions. [20] and [21] applied
multiple nonlinear source terms to Schrodinger equation and Boussinesq equation, and
proved the existence and blow-up of global solutions. Wave equations with multiple non-
linear source terms are also investigated in [22] and [23]. The nonlinear wave equation
with weak and strong damping terms and logarithmic source term is discussed in [24].
However, the mentioned wave equations with multiple nonlinear source terms are under
Dirichlet condition, Neumann condition, or mixed boundary condition, and there are few
results under the acoustic boundary conditions. In this paper, the existence and nonex-
istence of global solutions of Eq. (1) are considered under acoustic boundary conditions,
the method used in this paper is partly from that in [9] and [25].

Since Eqs. (1)…(2) include multiple nonlinear source terms and acoustic boundary con-
ditions, the potential well theory in [17…23] cannot be used directly. In addition,m and�
order Laplacian term makes the problem more complicated. The di�culty of this paper is
to estimate� utt � 2 and � u(t)� pi , we need to deduce more precisely by using Minkowski•s
inequality, Hölder•s inequality, and Young•s inequality. Finally, the existence and nonexis-
tence of the global solutions of the equation are obtained.

2 Existence theorem
Many results have been obtained on the existence of global solutions for wave equations
with acoustic boundary conditions [3,5,7,8,12], the Faedo…Galerkin method is one of the
most used methods to prove the existence of solutions. [25] and [26] respectively proved
the existence of solutions for two di�erent kinds of wave equations with acoustic boundary
conditions by using the Faedo…Galerkin method, but these two kinds of equations contain
neither multiple nonlinear source terms norm and � order Laplacian operators. In this
paper, we use the Faedo…Galerkin method to prove the existence of global solutions of
Eqs. (1)…(2).

Some notations are given as follows:

W 1,s
� 0

(� ) =
	
u � W 1,s(� )|u|� 0 = 0



, (u,v) =

�

�
uv dx,

(u,v)� 1 =
�

� 1

uv d� , � v� p =
� �

�
|u|p dx


 1
p
.

The energy functional corresponding to Eqs. (1)…(2) is

E(t) =
1
2

�

�
u2

t dx +
1
m

�
�

�
|� u|m dx …

l1�

i=1

ai

pi

�

�
|u|pi dx

+
l2�

j=1

bj

qj

�

�
|u|qj dx +

1
2

�

� 1

h(x)q(x)y2(t)d� . (3)

For the convenience of calculation, the letterC in di�erent formulas stands for a di�erent
positive constant. We “rst give the monotonicity theorem of energy functional as follows.

Lemma 1 If u is a regular solution of Eq. (1)–(2), then the energy functional satisfies

E�(t) = …�
�

�
|� ut |2 dx …

�

�
|� ut|� dx …

�

� 1

h(x)f (x)y2
t (t)d� 
 0 (4)
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and

E(t) 
 E(0), (t � 0). (5)

Proof Multiplying Eq. (1) by ut and integrating on� , we can get the conclusion from the
initial boundary conditions. �

Remark 1 Formula (5) represents the energy inequality of the wave equation. It can be
seen from formula (4) that the energy is nonincreasing with respect tot. The proof of the
energy inequality of the wave equation with acoustic boundary conditions is similar to
that in [6, 10, 27], and [28]. In this lemma, the energy functional has a more complicated
form than in the previous literature works.

Theory 1 Suppose that the initial values of Eqs. (1)–(2) satisfies u0(x) � W 1,m
� 0

(� ) and
u1(x) � W 1,�

� 0
(� ), if pl1 
 � , then there exists a set of global solutions (u(x,t),y(x,t)), sat-

isfying

u � L� �
0,T ;W 1,m(� ) 
 Lql2 (� )

�
, ut � L� �

0,T ;W 1,� (� )
�
,

utt � L� �
0,T ;L2(� )

�

and y,yt,ytt � L� (0,T ;L2(� 1)) for any T > 0.

Proof Let {ws} and{	 s} be the basic functions of the Sobolev spaceW 1,m
� 0

(� ). The approx-
imate solutions of Eqs. (1)…(2) are constructed by the Faedo…Galerkin method as follows:

ul
 (x,t) =
l�

s=1

ds
l (t)ws(x), yl
 (x,t) =

l�

s=1

bs
l (t)	 s(x), (6)

and

�
�������������

�������������

(u��
l
 ,ws) + � (|� ul
 |m…2� ul
 , � ws) + (|� u�

l
 |
� …2� u�

l
 , � ws) + � (� u�
l
 , � ws)

… (h(x)y�
l
 ,ws)� 1 =

� l1
i=1 ai(|ul
 |pi…2ul
 ,ws) …

� l2
j=1 bj(|ul
 |qj…2ul
 ,ws),


 (y��
l
 , 	 s)� 1 + (h(x)[u�

l
 + f (x)y�
l
 + q(x)yl
 ], 	 s)� 1 = 0,

ul
 (0) =
� l

s=1(u0,ws)ws, u�
l
 (0) =

� l
s=1(u1,ws)ws,

yl
 (0) = …
u�

l
 (0)+f (x)y�
l
 (0)

q(x) ,

y�
l
 (0) =

�
� u�

l
 (0)
� n +� |� ul
 (0)|m…2� ul
 (0)

� n +|� u�
l
 (0)|� …2� u�

l
 (0)
� n

h(x) .

(7)

(1) First step estimation.
Multiplying ( 7) by the functionsd�s

l (t) andb�s
l (t), respectively, and summing with respect

to s, we have

d
dt

�
1
2

�

�
u�2

l
 dx +
�
m

�

�
|� ul
 |m dx …

l1�

i=1

ai

pi

�

�
|ul
 |pi dx +

l2�

j=1

bj

qj

�

�
|ul
 |qj dx

+
1
2



�

� 1

y�2
l
 d� +

1
2

�

� 1

hqy2
l
 d�

�

+
�

� 1

hfy�2
l
 d�
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= …�
�

�

�
� � u�

l

�
�2 dx …

�

�

�
�� u�

l

�
� � dx.

Integrating from 0 to t, we get

1
2

�

�
u�2

l
 dx +
�
m

�

�
|� ul
 |m dx …

l1�

i=1

ai

pi

�

�
|ul
 |pi dx

+
l2�

j=1

bj

qj

�

�
|ul
 |qj dx +

1
2



�

� 1

y�2
l
 d�

+
1
2

�

� 1

hqy2
l
 d� +

� t

0

�

� 1

hfy�2
l
 d� d�

+ �
� t

0

�

�
|� ul
 |�2 dx d� +

� t

0

�

�

�
�� u�

l

�
� � dx d�

=
1
2

�

�
u�2

l
 (0)dx +
�
m

�

�

�
� � ul
 (0)

�
�m dx …

l1�

i=1

ai

pi

�

�

�
�ul
 (0)

�
�pi dx

+
l2�

j=1

bj

qj

�

�

�
�ul
 (0)

�
�qj dx

+
1
2



�

� 1

y�2
l
 (0)d� +

1
2

�

� 1

hqy2
l
 (0)d� . (8)

Let us estimate the functional
� l1

i=1
ai
pi

�
� |ul
 |pi dx by use of the method in [9] and [22].

The following formula can be obtained by simple calculation:

ul
 (t) = ul
 (0) +
� t

0
u�

l
 (� )d� .

Using Minkowski•s inequality and Hölder•s inequality, it holds

�
� ul
 (t)

�
�

pi



�
� ul
 (0)

�
�

pi
+

� t

0

�
� u�

l
 (� )
�
�

pi
d� ,

�
� ul
 (t)

�
� pi

pi

 2pi

� �
� ul
 (0)

�
� pi

pi
+

� � t

0

�
� u�

l
 (� )
�
�

pi
d�


 pi �


 2pi

� �
� ul
 (0)

�
� pi

pi
+ tpi…1

� t

0

�
� u�

l
 (� )
�
� pi

pi
d�

�
. (9)

The following inequality can be obtained by use of Young•s inequality and the known

condition pi < � :

tpi…1
�
�u�

l

�
�pi 
 �

pi

�

�
�u�

l

�
� �

+ C1i(� )
� …pi

�
t

� (pi…1)
� …pi
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for any� > 0, whereC1i(� ) = �
pi

pi…� . Then, by using Sobolev•s embedding inequality, we can

get

tpi…1
� t

0

�
� u�

l
 (� )
�
� pi

pi
d� 
 �

pi

�

� t

0

�
� u�

l

�
� �

� d� + C1i(� )
� …pi

�
t

� (pi…1)
� …pi

+1|� |


 �
pi

�
C�

� t

0

�
� � u�

l

�
� �

� d� + C1i(� )
� …pi

�
t

pi(� …1)
� …pi |� |,

whereC� is the Sobolev embedding constant. Hence, we have

l1�

i=1

ai

pi

�

�
|ul
 |pi dx 


l1�

i=1

ai

pi
2pi

�
� ul
 (0)

�
� pi

pi
+

l1�

i=1

�
ai

�
C� 2pi

� t

0

�
� � u�

l

�
� �

� d�

+
l1�

i=1

C1i(� )ai
� …pi

� pi
t

pi(� …1)
� …pi 2pi |� |. (10)

We can select the appropriate value� to make
� l1

i=1 � ai
� C� 2pi = 1

2 and substitute (10)

into (8), then there exists a constantM1(T) > 0 such that

1
2

�

�
u�2

l
 dx +
�
m

�

�
|� ul
 |m dx +

l2�

j=1

bj

qj

�

�
|ul
 |qj dx +

1
2



�

� 1

y�2
l
 d� +

1
2

�

� 1

hqy2
l
 d�

+
� t

0

�

� 1

hfy�2
l
 d� d� + �

� t

0

�

�

�
�� u�

l

�
�2 dx d� +

1
2

� t

0

�

�

�
�� u�

l

�
� � dx d�


 M1(T).

(11)

(2) Second step estimation.
We “rstly estimate u��

l
 (0) andy��
l
 (0). Takingt = 0,w = u��

l
 (0), and	 = y��
l
 (0) in Eq. (7), we

obtain

�
� u��

l
 (0)
�
� 2

2 = �
�
div

� �� � ul
 (0)
�
�m…2

� ul
 (0)
�
,u��

l
 (0)
�

+
�
div

� ��� u�
l
 (0)

�
� � …2

� u�
l
 (0)

�
,u��

l
 (0)
�

+ �
�
� u�

l
 (0),u��
l
 (0)

�
+

l1�

i=1

ai
� ��ul
 (0)

�
�pi…2ul
 (0),u��

l
 (0)
�

…
l2�

j=1

bj
� ��ul
 (0)

�
�qj…2ul
 (0),u��

l
 (0)
�

and 
 � y��
l
 (0)� 2

2,� 1
+ (h(x)[u�

l
 (0) + f (x)y�
l
 (0) +q(x)yl
 (0)],y��

l
 (0))� 1 = 0.

Using the known conditions and Hölder•s inequality, it follows that there exists a con-

stant C > 0 such that� u��
l
 (0)� 2 
 C and � y��

l
 (0)� 2
2,� 1

= 0.

Di�erentiating Eq. (7) with respect to t and replacingws and 	 s with u��
l
 (t) and y��

l
 (t),
respectively, it holds

d
dt

�
1
2

�

�
u��2

l
 dx +


2

�

� 1

y��2
l
 d� +

1
2

�

� 1

hqy�2
l
 d�

�
+

�

�

�
�� u�

l

�
� � …2

|� ul
 |��2 dx
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+ (� … 2)
�

�

�
�� u�

l

�
� � …4�

� u�
l
 · � u��

l

� 2 dx + �

�

�

�
�� u��

l

�
�2 dx +

�

� 1

hfy��2
l
 d�

= …�
�

�
|� ul
 |m…2� u�

l
 · � u��
l
 dx

…� (m … 2)
�

�
|� ul
 |m…4� � ul
 · � u�

l

��

� ul
 · � u��
l


�
dx

+
l1�

i=1

ai(pi … 1)
�

�
|ul
 |pi…2u�

l
 u
��
l
 dx …

l2�

j=1

bj(qj … 1)
�

�
|ul
 |qj…2u�

l
 u
��
l
 dx. (12)

Using Hölder•s inequality and Young•s inequality, we have

�
�
�
�…�

�

�
|� ul
 |m…2� u�

l
 · � u��
l
 dx

…� (m … 2)
�

�
|� ul
 |m…4� � ul
 · � u�

l

��

� ul
 · � u��
l


�
dx

�
�
�
�




�
�
�
�� (m … 1)

�

�
|� ul
 |m…2� u�

l
 � u��
l
 dx

�
�
�
�


 � (m … 1)
�

�
|� ul
 |m…2

�
�� u�

l
 � u��
l


�
� dx


 � (m … 1)
� �

�

�
|� ul
 |m…2

�
�� u��

l

�
� � 2 dx


 1
2
� �

�

�
� � u�

l

�
�2 dx


 1
2


 � (m … 1)�
� �

�

�
|� ul
 |m…2

�
�� u��

l

�
� � 2 dx



+ � (m … 1)C1(� )

�

�

�
� � u�

l

�
�2 dx (13)

and

�
�
�
�
�

l1�

i=1

ai(pi … 1)
�

�
|ul
 |pi…2u�

l
 u
��
l
 dx

�
�
�
�
�



l1�

i=1

ai(pi … 1)�
�

�

�
|ul
 |pi…2u��

l

� 2 dx +

l1�

i=1

ai(pi … 1)C1(� )
�

�
u�2

l
 dx, (14)

�
�
�
�
�

l2�

j=1

bj(qj … 1)
�

�
|ul
 |qj…2u�

l
 u
��
l
 dx

�
�
�
�
�



l2�

j=1

bi(qi … 1)�
�

�

�
|ul
 |qi…2u��

l

� 2 dx +

l2�

i=1

bj(qj … 1)C1(� )
�

�
u�2

l
 dx (15)

for any � > 0. Let � be su�ciently small, we have the following inequality by use of

Eqs. (12)…(15):

d
dt

�
1
2

�

�
u��2

l
 dx +
1
�

�

�

�
�� u�

l

�
� � dx +



2

�

� 1

y��2
l
 d� +

1
2

�

� 1

hqy�2
l
 d�

�
+

�

� 1

hfy��2
l
 d�


 C
� �

�

�
� � u�

l

�
�2 dx +

�

�

�
�u�

l

�
�2 dx

�
.
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Integrating from 0 to t and using Eq. (11), it follows that there exists a constantM2(T) > 0
such that

1
2

�

�
u��2

l
 dx +
1
�

�

�

�
� � u�

l

�
� � dx +



2

�

� 1

y��2
l
 d� +

1
2

�

� 1

hqy�2
l
 d� +

� t

0

�

� 1

hfy��2
l
 d� d�


 M2(T). (16)

Finally, combining with (10), (11), and (16) and using the Lions…Aubin theorem [29], we
notice that M1(T) and M2(T) are independent of time, so we can obtain the existence of
global solutions of Eqs. (1)…(2) by taking the limit of Eq. (7) with the similar method in
[25], and the global solutions satisfy

u � L� �
0,T ;W 1,m(� ) 
 Lql2 (� )

�
, ut � L� �

0,T ;W 1,� (� )
�
,

utt � L� �
0,T ;L2(� )

�

andy,yt,ytt � L� (0,T ;L2(� 1)). �

Remark 2 The nonlinear term in Eq. (1) is more complicated than that of the viscoelastic
wave equation in [6]. This paper uses di�erent methods to deal with the nonlinear terms
and Laplacian operators. And a similar method is used to solve the double dispersive-
dissipative wave equation with the Neumann condition in [27].

3 Nonexistence theorem
Let H(t) = …E(t), using Eqs. (3) and (5), we have

H(0) 
 H(t) 

l1�

i=1

ai

pi

�

�
|u|pi dx (17)

for any t � 0. Let

L(t) = H(1…
 )(t) + 

�

�
uut dx …



2

�

� 1

h(x)f (x)y2(t)d� …

�

� 1

h(x)u(t)y(t)d� , (18)

where
 and 
 are constants.

Lemma 2 Suppose that u(x,t) is a regular solution of Eq. (1) under condition (2), and
the initial energy satisfies E(0) < 0.If 
 < min{ m…2

pl1
, m…�

pl1(� …1), 1}, then there exists a positive
constant r such that

L�(t) � r

�

H(t) + �� u� m
m + � ut � 2

2 +
�

� 1

h(x)q(x)y2(t)d�



. (19)

Proof Di�erentiating ( 18), the following equality can be obtained:

L�(t) = (1 …
 )H…
 (t)H �(t) + 

�

�
u2

t dx + 

�

�
uutt dx …


�

� 1

h(x)f (x)y(t)yt(t)d�

…

�

� 1

h(x)ut(t)y(t)d� …

�

� 1

h(x)u(t)yt(t)d� .
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Using Eqs. (1)…(2) and Green•s “rst formula, we obtain

L�(t) = (1 …
 )H…
 (t)H �(t) + 

�

�
u2

t dx

+ 

�

�
u

�

� div
�
|� u|m…2� u

�
+ div

�
|� ut|� …2� ut

�
+ � � ut

+
l1�

i=1

ai|u|pi…2u …
l2�

j=1

bj|u|qj…2u

�

dx

…

�

� 1

h(x)f (x)y(t)yt(t)d� …

�

� 1

h(x)ut(t)y(t)d� …

�

� 1

h(x)u(t)yt(t)d�

= (1 …
 )H…
 (t)H �(t) + 

�

�
u2

t dx

…
�
�

�
|� u|m dx …


�

�
|� ut|� …2� ut � udx …
�

�

�
� u� ut dx

+ 

l1�

i=1

ai

�

�
|u|pi dx

…

l2�

j=1

bj

�

�
|u|qj dx + 


�

� 1

�
�

� ut

� n
+ � |� u|m…2� u

� n
+ |� ut|� …2� ut

� n

�
ud�

…

�

� 1

h(x)f (x)y(t)yt(t)d� …

�

� 1

h(x)ut(t)y(t)d� …

�

� 1

h(x)u(t)yt(t)d�

= (1 …
 )H…
 (t)H �(t) + 

�

�
u2

t dx

…
�
�

�
|� u|m dx …


�

�
|� ut|� …2� ut � udx

…
�
�

�
� u� ut dx + 


l1�

i=1

ai

�

�
|u|pi dx

…

l2�

j=1

bj

�

�
|u|qj dx + 


�

� 1

h(x)q(x)y2(t)d� . (20)

We can obtain the following inequalities from Young•s inequality and Hölder•s inequal-
ity:

�

�
� u� ut dx 


1
4�

�

�
|� u|2 dx + �

�

�
|� ut|2 dx, (21)

�

�
|� ut|� …2� ut � udx 


� �

�

�

�
|� u|� dx +

� … 1
�

� … �
� …1

�

�
|� ut|� dx. (22)

Hence,

L�(t) � (1 …
 )H…
 (t)H �(t) + 

�

�
u2

t dx …
�
�

�
|� u|m dx

…

� �

�

�

�
|� u|� dx …


� … 1
�

� … �
� …1

�

�
|� ut|� dx
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…

�
4�

�

�
|� u|2 dx …
� �

�

�
|� ut|2 dx + 


l1�

i=1

ai

�

�
|u|pi dx

…

l2�

j=1

bj

�

�
|u|qj dx + 


�

� 1

h(x)q(x)y2(t)d� .

Taking � = M1H…
 (t) and � … �
� …1= M2H…
 (t), and usingf (x),h(x),H(t) > 0, we obtain

L�(t) � (1 …
 )H…
 (t)H �(t) + 

�

�
u2

t dx …
�
�

�
|� u|m dx …


�
4M1

H 
 (t)
�

�
|� u|2 dx

…
� M1H…
 (t)
�

�
|� ut|2 dx …


 M…(� …1)
2

�
H 
 (� …1)(t)

�

�
|� u|� dx

…

� … 1

�
M2H…
 (t)

�

�
|� ut|� dx

+ 

l1�

i=1

ai

�

�
|u|pi dx …


l2�

j=1

bj

�

�
|u|qj dx + 


�

� 1

h(x)q(x)y2(t)d� .

Let M = � M1 + � …1
� M2, using the energy functional (4), we have

L�(t) � (1 …
 …
 M)H…
 (t)H �(t) + 

�

�
u2

t dx …
�
�

�
|� u|m dx

…

�

4M1
H 
 (t)

�

�
|� u|2 dx

…

 M…(� …1)

2

�
H 
 (� …1)(t)

�

�
|� u|� dx + +


l1�

i=1

ai

�

�
|u|pi dx …


l2�

j=1

bj

�

�
|u|qj dx

+ 

�

� 1

h(x)q(x)y2(t)d� + 
 MH…
 (t)
�

� 1

h(x)f (x)y2
t (t)d�

� (1 …
 …
 M)H…
 (t)H �(t) + 

�

�
u2

t dx …
�
�

�
|� u|m dx

…

�

4M1
H 
 (t)

�

�
|� u|2 dx

…

 M…(� …1)

2

�
H 
 (� …1)(t)

�

�
|� u|� dx + 


l1�

i=1

ai

�

�
|u|pi dx

…

l2�

j=1

bj

�

�
|u|qj dx + 


�

� 1

h(x)q(x)y2(t)d� . (23)

From the de“nition of H(t), it follows that there is a constantk such that

L�(t) � (1 …
 …
 M)H…
 (t)H �(t) + kH(t) +
�


 +
k
2


 �

�
u2

t dx

+
�

k
m

…




�
�

�
|� u|m dx
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+
l1�

i=1

�

 …

k
pi



ai

�

�
|u|pi dx +

l2�

j=1

�
k
qj

…




bj

�

�
|u|q dx

+
�

k
2

+ 


 �

� 1

h(x)q(x)y2(t)d�

…


�

M…(� …1)
2 H 
 (� …1)(t)

�

�
|� u|� dx …


�
4M1

H 
 (t)
�

�
|� u|2 dx. (24)

Using W 1,m(� ) 	 H1(� ), W 1,m(� ) 	 Lpi (� ), m � � , and Inequality (17), after simple
calculation, it can be concluded

H 
 (t)
�

�
|� u|2 dx 
 C

l1�

i=1

�
a
pi


 
 � �

�
|u|pi dx


 
 �

�
|� u|2 dx


 C
l1�

i=1

�
a
pi


 
 � �

�
|� u|m dx


 
 pi+2
m

(25)

and

H 
 (� …1)(t)
�

�
|� u|� dx 
 C

l1�

i=1

�
ai

pi


 
 (� …1)� �

�
|� u|m dx


 pi 
 (� …1)+�
m

. (26)

For any constantsz � 0 andM > 0, the algebraic inequality

z� 
 z + 1 

�

1 +
1
M



(z + M), (0 <� < 1) (27)

holds. Using the known condition
 < min{ m…2
pl1

, m…�
pl1(� …1)}, we have
 < m…2

pi
and 
 < m…�

pi(� …1)

for any 1
 i 
 l1. Hence from (27) the following inequalities can be acquired:

� �

�
|� u|m dx


 
 pi+2
m



�

1 +
1

H(0)


� �

�
|� u|m dx + H(0)






�

1 +
1

H(0)


� �

�
|� u|m dx + H(t)



, (28)

and

� �

�
|� u|m dx


 pi 
 (� …1)+�
m



�

1 +
1

H(0)


� �

�
|� u|m dx + H(t)



. (29)

From Inequalities (25) and (26), we can obtain that there exist two positive constantsN1

andN2 such that


�
4M1

H 
 (t)
�

�
|� u|2 dx 
 
 N1

� �

�
|� u|m dx + H(t)



(30)

and



�

M…(� …1)
2 H 
 (� …1)(t)

�

�
|� u|� dx 
 
 N2

� �

�
|� u|m dx + H(t)



. (31)
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Consequently, takingk = 1
2(N1 + N2 + mN1

� + mN2
� + m + p1 + q1)
 , we obtain from (24)

that there exists a positive constantr such that

L�(t) � (1 …
 …
 M)H…
 (t)H �(t) + (k …N1
 …N2
 )H(t) +
�


 +
k
2


 �

�
u2

t dx

+
�

k
m

…
 …
N1

�

 …

N2

�





�
�

�
|� u|m dx +

l1�

i=1

�

 …

k
pi



ai

�

�
|u|pi dx

+
l2�

j=1

�
k
qj

…




bj

�

�
|u|q dx +

�
k
2

+ 


 �

� 1

h(x)q(x)y2(t)d�

� (1 …
 …
 M)H…
 (t)H �(t)

+ r

�
H(t) +

�

�
u2

t dx +
�

�
|� u|m dx +

�

� 1

h(x)q(x)y2(t)d�
�
. (32)

Taking 0 <
 < 1…

M , we can get the following formula from (18):

L(0) = H(1…
 )(0) + 

�

�
u0(x)u1(x)dx …



2

�

� 1

h(x)f (x)y2(0)d� …

�

� 1

h(x)u(0)y(0)d�

> 0.

Using Inequality (32), it holds

L�(t) � r

�
H(t) +

�

�
u2

t dx +
�

�
|� u|m dx +

�

� 1

h(x)q(x)y2(t)d�
�
.

After integral, we can getL(t) � L(0) > 0,(� t � 0). �

Theory 2 Suppose � , � ,ai,bj > 0 and 2 < � < m < ql2 < · · · < q2 < q1 < p1 < p2 < · · · < pl1 <

r� , where r� is the critical Sobolev index in W 1,m(� ). If the initial energy E(0) < 0,then any
regular solutions of Eqs. (1)–(2) must blow up in finite time.

Proof Firstly, it is proved that when 0 <
 < m…2
2m , there exists a positive constant C such

that

L
1

1…
 (t) 
 C
�

H(t) +
�

�
|� u|m dx +

�

�
|ut|2 dx +

�

� 1

h(x)q(x)y2(t)d�



. (33)

In fact, using (18) and f ,h > 0, we get

L
1

1…
 (t) 
 C(
 , 
 )
�
H(t) +

� �

�
uut dx


 1
1…


+
� �

� 1

h(x)u(t)y(t)d�

 1

1…

�
. (34)
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Furthermore, by using Hölder•s inequality and Young•s inequality, we can get

� �

�
uut dx


 1
1…




� �

�
u2 dx


 1
2(1…
 )

� �

�
u2

t dx

 1

2(1…
 )


 C
� �

�
|u|m dx


 1
m(1…
 )

� �

�
u2

t dx

 1

2(1…
 )


 C
�� �

�
|u|m dx


 µ
m(1…
 )

+
� �

�
u2

t dx

 �

2(1…
 )
�
,

where 1
µ + 1

� = 1. Taking� = 2(1…
 ), we haveµ = 2(1…
 )
1…2
 . By Poincare•s inequality, it follows

� �

�
uut dx


 1
1…



 C
�� �

�
|� u|m dx


 2
m(1…2
 )

+
�

�
u2

t dx
�
. (35)

If 0 < 
 < m…2
2m , then we get 0 < 2

m(1…2
 ) < 1. From (17), (27), and (35), we obtain

� �

�
uut dx


 1
1…



 C
� �

�
|� u|m dx + H(0) +

�

�
u2

t dx




 C
� �

�
|� u|m dx + H(t) +

�

�
u2

t dx



. (36)

On the other hand, by Hölder•s inequality andW 1,m
0 (� ) 	 L2(� 1), we have

�

� 1

h(x)u(t)y(t)d� =

�
�
�
�

�

� 1

h(x)q(x)
q(x)

u(t)y(t)d�

�
�
�
�



� h�

1
2
� � q�

1
2
�

q0

� �

� 1

h(x)q(x)y2(t)d�

 1

2
� �

� 1

u2(t)d�

 1

2


 C
� �

� 1

h(x)q(x)y2(t)d�

 1

2
� �

�
|� u|m dx


 1
m

.

Hence, using (27) and the similar method above, it can be obtained

� �

� 1

h(x)u(t)y(t)d�

 1

1…



 C
� �

� 1

h(x)q(x)y2(t)d�

 1

2(1…
 )
� �

�
|� u|m dx


 1
m(1…
 )


 C
� �

� 1

h(x)q(x)y2(t)d� +
� �

�
|� u|m dx


 2
m(1…2
 )

�


 C
� �

�
|� u|m dx + H(t) +

�

� 1

h(x)q(x)y2(t)d�



. (37)

From (34), (36), and (37), we get

L
1

1…
 (t) 
 C
�

H(t) +
�

�
|� u|m dx +

�

�
|ut|2 dx +

�

� 1

h(x)q(x)y2(t)d�



,

whereC is only related to
 , 
 , q0, � q� � , � h� � , andH(0).
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Taking 
 < min{ m…2
pl1

, m…�
pl1(� …1),

m…2
2m , 1}, by Inequalities (33) and (19) in Lemma2, it follows

that there exists a constant	 > 0 such that

L�(t) � 	 L
1

1…
 (t) (38)

for any t � 0. Integrating the above formula with respect tot on [0,t], we get

L



1…
 (t) �
1

L …

1…
 (0) …
	

1…
 t
(39)

for any t � 0. Hence there existsT � 
 1…



 	 L



1…
 (0)
such that limt	 T � L(t) = � , that means

the regular solutionu(x,t) must blow up in “nite time. �

Remark 3 Compared with the quasilinear viscoelastic wave equation in [8] and [9], we

not only prove the existence of global solutions of the equation, but also give the more

complex nonlinear terms.

4 Conclusion
When the wave equation has nonlinear source terms,m and� order Laplacian operators,

we discuss the initial boundary problem of the wave equation under acoustic boundary

conditions. We “rstly prove that the energy corresponding to any regular solutions is non-

increasing with respect tot. Combined with the theory of convergence, the existence of the

global solution is proved by using the approximate solutions constructed by the Faedo…

Galerkin method. On the other hand, we investigate the nonexistence of global solutions

and give the su�cient conditions of blow-up of any regular solutions in “nite time.
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