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Abstract
Three new and applicable approaches based on quasi-linearization technique,
wavelet-homotopy analysis method, spectral methods, and converting two-point
boundary value problem to Fredholm–Urysohn integral equation are proposed for
solving a special case of strongly nonlinear two-point boundary value problems,
namely Troesch problem. A quasi-linearization technique is utilized to reduce the
nonlinear boundary value problem to a sequence of linear equations in the first
method. Second method is devoted to applying generalized Coiflet scaling functions
based on the homotopy analysis method for approximating the numerical solution of
Troesch equation. In the third method we use an interesting technique to convert the
boundary value problem to Urysohn–Fredholm integral equation of the second kind;
afterwards generalized Coiflet scaling functions and Simpson quadrature are
employed for solving the obtained integral equation. Introduced methods are new
and computationally attractive, and applications are demonstrated through
illustrative examples. Comparing the results of the presented methods with the
results of some other existing methods for solving this kind of equations implies the
high accuracy and efficiency of the suggested schemes.

Keywords: Troesch problem; Quasi-linearization technique; Wavelet homotopy
analysis method; Generalized Coiflet scaling functions; Galerkin method; Urysohn
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1 Introduction
Troesch problem arises from a system of nonlinear ordinary differential equations which
occur in the theory of gas porous electrodes [1] and investigation of the confinement of
a plasma column by radiation pressure [2]. This problem is a special type of nonlinear
two-point boundary value problems, defined as follows:

ν ′′(x) – λ sinh
(
λν(x)

)
= 0, 0 ≤ x ≤ 1, (1)

subject to the following conditions:

ν(0) = 0, ν(1) = 1, (2)
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where the Troesch parameter λ is a positive constant. The existence of the solution of (1)–
(2) was proved in [3] for λ < 5. The closed form solution to this problem in terms of the
Jacobian elliptic function was given [4] as

ν(x) =
2
λ

sinh–1
(

ν ′(0)
2

sc
(

λx | 1 –
1
4
ν ′(0)2

))
,

where ν ′(0) = 2
√

1 – μ, and μ satisfies the transcendental equation

sc(λ | μ) =
sinh( λ

2 )√
1 – μ

,

where the Jacobian elliptic function sc(λ | μ) = tanα, and α and λ are related through the
following integral:

λ =
∫ α

0

1
cosh θ – μ

dθ .

It is clear that ν(x) has a singularity located at a pole of sc(λx|μ) or approximately at [5, 6]

xs =
1
λ

ln

(
8

ν ′(0)

)
,

which implies that, if ν ′(0) > 8e–λ, then the singularity lies within the integration range.
Because of difficulty in direct solving of the nonlinear boundary value problems, many
researchers have paid considerable attention to numerical solving of these problems. For
example, the numerical solution of one-dimensional Bratu’s problem is solved by an oper-
ational matrix of the derivative of Chebyshev wavelets in [7]. Authors of [8] used a manip-
ulation in the cubic splines to develop a collocation method and the generalized Newton
method for solving the nonlinear Troesch problem. Sinc–Galerkin approach is applied to
numerical solving of second-order nonlinear Dirichlet-type boundary value problems in
[9]. In [10] and [11] some approaches based on B-splines are presented for solving the
Troesch problem. The homotopy perturbation technique is presented in [4], and the re-
producing kernel Hilbert space method is introduced in [12]. Sinc–Galerkin method based
upon double exponential transformation is proposed to solve Troesch’s problem in [13].

Wavelet theory is a relatively new and emerging area in mathematical research. In recent
decades, wavelets have been extensively used in applied mathematics and a wide range of
engineering disciplines, because they permit accurate representation of a variety of func-
tions and operators. Wavelets were applied in numerically solving the integro-differential
and differential equations [14, 15]. Also the hybrid methods, combination of some analyt-
ical and numerical methods, were successfully employed to achieve the solutions of initial
and boundary value problems; for instance, see [16, 17, 26, 27]. In this paper we apply
three different methods based on a quasi-linearization technique, the homotopy analysis
method based Coiflet orthogonal scaling functions, and an efficient approach for trans-
forming the aforementioned equation to an integral equation.

The outline of the paper is as follows: Sect. 2 is devoted to the brief definition of Coiflet
scaling functions and function approximation by them. Suggested computational methods
for solving Troesch equation are discussed in Sect. 3. Indeed, in this section three different
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Figure 1 Generalized Coiflet scaling function for N = 6 and M1 = 7

methods are introduced based on quasi-linearization, operational matrices of derivative
and collocation and Galerkin methods and integral equation transform technique. Con-
vergence analysis is discussed in Sect. 4. To show the accuracy and performance of the
presented methods, some test problems are given in Sect. 5. The conclusion of the paper
is described in Sect. 6.

2 Generalized Coiflet orthogonal wavelets
The basic concepts and preliminaries of the wavelet theory and multi-resolution analy-
sis are given in literature [18, 19, 28–30]. Scaling function φ and wavelets of generalized
Coiflet-type orthogonal wavelet possess the following properties [20, 21]:

(i) ϕ(x) =
∑

l∈Z

pkϕ(2x – l),

(ii) ψ(x) =
∑

l∈Z

(–1)kρ1–kψ(2x – l),

(iii) Mn =
∫ ∞

∞
xnϕ(x) dx = Mn

1 , 0 ≤ n < N , (3)

(iv)
∫ ∞

–∞
xnψ(x) dx = 0, 0 ≤ n < N ,

(v)
∑

l∈Z

ρkϕ(2x – l) = 1,

pk are the low-pass filter coefficients [22], N is the number of vanishing moment, and Mn

is the nth-order moment of the scaling function. In this paper, we apply the generalized
Coiflet type with N = 6 and M1 = 7. The general difficulty for working with this family of
wavelets is having no analytical expression for them. So the values of these functions are
calculated [23]. Figure 1 shows the plot of Coiflet scaling function, and Table 1 represents
some values of Coiflet scaling function in k = 1, . . . , 16.
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Table 1 Some values of generalized Coiflet scaling function for N = 6 and M1 = 7

k ϕ(k)

1 –3.66444437281758× 10–8

2 1.53911669852067× 10–5

3 –1.20347428401018× 10–4

4 –6.01049457744450× 10–3

5 3.83279869108597× 10–2

6 –9.93321926649377× 10–2
7 1.13897129589829× 100

8 –1.13651812655013× 10–1

9 5.48926083610606× 10–2

10 –1.54279915381372× 10–2

11 2.61977141546123× 10–3

12 –2.65205890511625× 10–4

13 –1.79596295480327× 10–5

14 –1.01758785797000× 10–6

15 4.86512575426836× 10–9

16 –1.48885946646455× 10–12

By the definition of Coiflet scaling function, we can construct a multi-resolution analysis
for L2(R) with nested subspaces Vj as follows:

0 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R),

where Vj = span{ϕj,k := ϕ(2jx – k); j, k ∈ Z}. In this paper we introduce a classification for
generalized Coiflet scaling functions on [0, 1], which have not been addressed previously.
For this purpose we first define the following matrices:

A =

⎛

⎜⎜
⎜
⎝

1 0 0 0
– 11

6 3 – 3
2

1
3

2 –5 4 –1
–1 3 –3 1

⎞

⎟⎟
⎟
⎠

, B =

⎛

⎜⎜
⎜
⎝

1 0 0 0
11
6 –3 3

2 – 1
3

2 –5 4 –1
1 –3 3 –1

⎞

⎟⎟
⎟
⎠

(4)

and

θ0,k =
3∑

i=0

Ai,k

i!
(
2jx

)i, θ1,k =
3∑

i=0

Bi,k

i!
(
2j(x – 1)

)i.

Now we define left and right and interior scaling functions.
Boundary scaling adaptation
• Left boundary Coiflet scaling functions

We define the boundary near functions at the left boundary for k = 0, . . . , 3 by

ϕj,k(x) =
–1∑

i=2–3N+M1

θ0,k

(
i
2j

)
ϕ
(
2jx – i + 7

)
+ ϕ

(
2jx – k + 7

)
. (5)

• Right boundary Coiflet scaling functions
At the right end of the interval, for k = 2j – 3, . . . , 2j, we have

ϕj,k(x) =
2j–1+M1∑

i=2j+1

θ1,2j–k

(
i
2j

)
ϕ
(
2jx – i + 7

)
+ ϕ

(
2jx – k + 7

)
. (6)
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Figure 2 Family of generalized Coiflet scaling functions for N = 6 and M1 = 7 at j = 5

Interior scalings
For interior Coiflet scaling functions, we have

ϕj,k(x) = ϕ
(
2jx – k + 7

)
, k = 4, . . . 2j – 4. (7)

Figure 2 shows the family of Coiflet scaling functions for j = 5.

2.1 Function approximation
A function f (x) ∈ L2[0, 1] can be approximated in the subspace Vj as [24]

f (x) � Pjf (x) =
2j∑

k=0

fkϕj,k(x) = 	F
j(x), (8)

where 	F and 
j are row and column vectors defined by

	F =
[

f
(

k
2j

)]2j

k=0
, 
j =

[
ϕj,k(x)

]2j

k=0.

It should be noted that by using the orthogonality property of Coiflet, the approximation
coefficients could be obtained as follows:

fk =
1

ξj,k

〈
f (x),ϕj,k(x)

〉
,

where ξj,k = 〈ϕj,k(x),ϕj,k(x)〉. For example, the function sin(x) is approximated by Coiflet in
V4 and V5, and the plots of absolute error of approximation are shown in Fig. 3.
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Figure 3 Absolute error plots of approximated sin(x) in V4 and V5

Also the n-th derivative of function f (x) can be approximated by the n-th derivatives of
Coiflet scaling functions as follows:

f (n)(x) � dn[Pjf (x)]
dxn =

2j∑

k=0

f
(

k
2j

)
ϕ

(n)
j,k (x). (9)

Theorem 2.1 If f (x) ∈ (L2[0, 1] ∩ CN [0, 1]) is approximated by generalized Coiflet scaling
functions in subspace Vj, then

∥
∥f (x) – Pjf (x)

∥
∥

L2 ≤ C2–jN , (10)

where C is a positive constant that depends only on the function f (x) and low-pass filter
coefficients ρk .

Proof By using the Taylor expansion of f at x, we get

f (y) =
N–1∑

n=0

f (n)(x)
n!

(y – x)n +
f (N)(ξ )

N !
(y – x)N . (11)

Putting y = k
2j in equation (11) and substituting it in equation (8), we have

Pjf (x) =
2j∑

k=0

[N–1∑

n=0

f (n)(x)
n!

(
k
2j – x

)n

+
f (N)(ξk)

N !

(
k
2j – x

)N
]

ϕ
(
2jx – k

)

=
2j∑

k=0

[N–1∑

n=1

f (n)(x)
n!

(
k
2j – x

)n

+
f (N)(ξk)

N !

(
k
2j – x

)N

+ f (x)

]

ϕ
(
2jx – k

)
,

we know that ϕ has N vanishing moments, that is,

2j∑

k=0

(
k – 2jx

)n
ϕ
(
2jx – k

)
= 0, n = 1, 2, . . . , N – 1,

and
∑2j

k=0 ϕ(2jx – k) = 1, so we get

Pjf (x) = f (x) +
2j∑

k=0

f (N)(ξk)
2NjN !

(
k – 2jx

)N
ϕ
(
2jx – k

)
. (12)
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Suppose Supportf = [a, b], then 2jb ≤ k ≤ 2ja and define

�k(x) =
f (N)(ξk)

N !
(
k – 2jx

)N
ϕ
(
2jx – k

)
.

We know Supportϕ = [0, 3N – 1], thus Support�k = [k, k + 3N – 1], that is, �k has compact
support. So there exists a positive constant C such that

∥
∥∥∥
∥

2j∑

k=0

�k(x)

∥
∥∥∥
∥

L2

< C,

therefore ‖f (x) – Pjf (x)‖L2 < C2–Nn. �

Theorem 2.2 For f (x) ∈ (L2[0, 1] ∩ CN [0, 1]), the accuracy of derivative approximation
can be estimated by

∥
∥∥
∥f (n)(x) –

dnPjf (x)
dxn

∥
∥∥
∥

L2
≤ C2–j(N–n).

Proof It is sufficient to put f (n)(x) = g(x) and repeat the above proof. �

3 Methods
In this section we introduce three computational methods for numerically solving a
strongly nonlinear two-point boundary value problem, namely Troesch problem. In the
first method, some quasi-linearization technique is applied to reduce nonlinear bound-
ary value problem (1)–(2) to a sequence of linear equations. Generalized Coiflet scaling
functions via HAM and Galerkin method are used to reduce the nonlinear equation to
some algebraic system in the second approach. Utilizing an interesting technique, the
third approach is divided to transform the given nonlinear boundary value problem to
some Urysohn–Fredholm integral equation of the second kind, and the obtained integral
equation is solved applying Coiflet scaling functions and the Simpson quadrature rule.

3.1 Approach I: quasi-linearization technique
Consider boundary value problem (1)–(2), in this method we use a quasi-linearization
technique based on Taylor expansion for reducing the main nonlinear problem to a se-
quence of linear algebraic equations. For this purpose, we choose a reasonable initial ap-
proximation for the function u(x), call it u0, and we develop ω(x,ν) = sinh(λν(x)) by the
Taylor expansion around ν0, so we get

ω(x,ν1) =
∞∑

k=0

(
∂kω(x,ν)

∂νk

)

ν0

(ν1 – ν0)k

k!
,

or in a general form we can rewrite the current equation for n = 0, 1, 2, . . . (n = iteration
index)

ω(x,νn+1) =
∞∑

k=0

(
∂kω(x,ν)

∂νk

)

νn

(νn+1 – νn)k

k!
. (13)
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By truncating the infinite series in equation (13) for arbitrary M, we get

ω(x,νn+1) =
M∑

k=0

(
∂kω(x,ν)

∂νk

)

νn

(νn+1 – νn)k

k!
+

∂M+1ω(x,η)
∂νM+1 (νn+1 – νn)M+1, (14)

where η ∈ [α,β], α = min0≤x≤1{νn(x),νn+1(x)}, and β = max0≤x≤1{νn(x),νn+1(x)}. Substitut-
ing equation (14) in equation (1), we have

ν ′′
n+1 + �1(λνn)νn+1 + �2(λνn)ν2

n+1 + · · · = �∞(νn).

By truncating the obtained equation for arbitrary M, we get

ν ′′
n+1 + �1(λνn)νn+1 + �2(λνn)ν2

n+1 + · · · + �M+1(νn)νM+1
n+1 = �M(νn), (15)

where

�1(λνn) =
M∑

j=1

(–1)j sinh(j)(λνn)
(j – 1)!

λjν j–1
n +

(–1)M+1 sinh(M+1)(λξ1)
M!

λM+1ξM
1 ,

�2(λνn) =
M∑

j=2

(–1)j–1 sinh(j–2)(λνn)
2 × (j – 2)!

λj+2ν j–2
n +

(–1)M sinh(M–1)(λξ2)
2 × (M – 1)!

λM+3ξM–1
2 ,

...

�M+1(λνn) =
(–1) sinh(M)(λνn)

M!
λM,

�M(λνn) =
M∑

j=0

(–λνn)j sinh(j)(λνn)
j!

+
(–λξ )M+1 sinh(M+1)(λξ )

(M + 1)!
,

where ξ1, ξ2, . . . and ξ are determined similarly to η. According to current equations, non-
linear boundary value problem (1) converts to equations (15), a sequence of semilinear
differential equations. It is interesting to point out that for suitable choices of ν0 equations
(15) may be reduced to linear differential equations. The obtained system of semilinear
differential equations with boundary conditions (2) can be solved directly or numerically.

3.2 Approach II: wavelet homotopy analysis method
In this approach we use HAM based on generalized Coiflet scaling functions for solving
equation (1). In order to simplify the calculation, we put u(x) = eλυ(x), then strongly non-
linear problem (1)–(2) can be written as

2
(
uu′′ – u′2) – λ2(u2 – u

)
= 0, (16)

u(0) = 1, u(1) = eλ. (17)

The basic idea of HAM is constructing a continuous variation between the known initial
guess u0 and the unknown solution u. Let q ∈ [0, 1] denote the embedding parameter of
homotopy, c0 the convergence-control parameter, L the auxiliary linear and N the non-
linear operators of HAM, respectively. Then a continuous variation (with respect to the
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embedding parameter q from the initial guess u0(x) to the solution u(x)) can be built by
means of the so-called zeroth-order deformation equation as

(1 – q)L0
[
α(x; q) – V0(x)

]
= c0qN

[
α(x; q)

]
, (18)

with α(0; q) = 1,α(1; q) = eλ, and

α(x; 0) = u0(x), α(x; 1) = u(x). (19)

Now we write Maclaurin series of α(x; q) with respect to q, so

α(x; q) = u0(x) +
∞∑

j=1

uj(x)qj,

where uj(x) = Dj[α(x; q)] := 1
j!

∂ jα(x;q)
∂qj |q=0, and Dj is the jth homotopy derivative operator.

By this assumption that the convergence control parameter c0 and the auxiliary linear
operator L are chosen that guarantee the convergence of series (19) at q = 1, we get

U(x) = u0(x) +
∞∑

j=1

uj(x). (20)

If we truncate the infinite series (20) in suitable m, we obtain the mth-order approximation
as

Um(x) = u0(x) +
m∑

j=1

uj(x). (21)

Taking the operator Dm on both sides of the zeroth-order deformation equation (18) and
its boundary conditions, we have

L
[
Um(x) – χmUm–1(x)

]
= c0Rm(x), (22)

and Um(0) = 0, Um(1) = 0, where

Rm(x) = Dm
(
N

[
α(x; q)

])
=

m–1∑

j=0

(
U ′′

j (x)Um–1–j(x) – U ′
j (x)U ′

m–1–j(x)
)

–
λ2

2

m–1∑

j=0

(
Uj(x)Um–1–j(x) – Uj(x)

)
,

and χ0 = χ1 = 0 and χj = 1, j > 1. Therefore nonlinear problem (1)–(2) reduces to a system
of recursive equations. For solving this system, we utilize the Galerkin method with gen-
eralized Coiflet scaling functions as test and weight functions. For this purpose, first Um

and Rm are written in generalized Coiflet scaling functions terms in scale j as equation (8)

Um(x) =
2j∑

l=0

Um

(
l
2j

)
ϕj,l(x), Rm(x) =

2j∑

l=0

Rm

(
l
2j

)
ϕj,l(x).
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Figure 4 Gray scale plot of 	� for j = 4, 5

Substituting these approximations in equation (22), we get

2j∑

l=0

(
Um

(
l
2j

)
– χmUm–1

(
l
2j

))
L
(
ϕj,l(x)

)
= c0

2j∑

l=0

Rm

(
l
2j

)
ϕj,l(x). (23)

Now we utilize the Galerkin method to solve the obtained system. By multiplying the both
sides of equation (23) in ϕj,i, i = 0, 1, . . . , 2j, and integrating in the interval [0, 1], we get

2j∑

l=0

(
Um

(
l
2j

)
– χmUm–1

(
l
2j

))
�i,l = c0

2j∑

l=0

Rm

(
l
2j

)
�i,l, (24)

where �i,l =
∫ 1

0 L(ϕj,l(x))ϕj,i(x) dx,�i,l =
∫ 1

0 ϕj,l(x)ϕj,i(x) dx. The matrix form of system (24)
is as

	�( 	Um – χm 	Um–1) = c0 	�	Rm, (25)

where

	Uk =
[

Uk

(
l
2j

)]2j

l=0
, 	Rk =

[
Rk

(
l
2j

)]2j

l=0
, 	� = [�i,l]2j

i,l=0, 	� = [�i,l]2j
i,l=0.

From the boundary conditions it is clear that Uk(0) = Uk(1) = 0. It should be noticed that
because of orthogonality and having compact support of generalized Coiflet scaling func-
tions, the matrices 	� and 	� are so sparse. Figure 4 shows the gray scale plots of matrix
	� for j = 4, 5. By solving the system of equations (25) for m = 1, 2, 3, . . . step by step and
substituting obtained Um in equation (21), we attain the approximate solution for u(x).
Finally, in order to gain the solution of problem (1)–(2), we put ν(x) = 1

λ
Ln(u(x)).

3.3 Approach III: converting to integral equation
In this method, using an interesting technique, nonlinear boundary value problem (1)–(2)
is converted to a second kind nonlinear Fredholm integral equation of Urysohn type. For
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this purpose, we integrate equation (1) two times, so we get

ν(x) = xν ′(0) +
∫ x

0

∫ x

0
sinh

(
λν(t)

)
dt dt.

Reducing the double integral to a single integral, we have

ν(x) = xν ′(0) +
∫ x

0
(x – t) sinh

(
λν(t)

)
dt. (26)

For evaluation ν ′(0) in equation (26), we put x = 1 and get

ν ′(0) = 1 –
∫ 1

0
(1 – t) sinh

(
λν(t)

)
dt.

By partitioning the integration interval to [0, x] and [x, 1] and substituting the result in
equation (26), we have

ν(x) = x +
∫ 1

0
�

(
x, t,ν(t)

)
dt, (27)

where

�
(
x, t,ν(t)

)
= sinh

(
λν(t)

)
⎧
⎨

⎩
t(x – 1) 0 ≤ t < x,

x(t – 1) x ≤ t < 1.

Equation (27) is a nonlinear second-order Fredholm integral equation of the Urysohn type.
For solving this equation, we apply generalized Coiflet scaling functions. Using equation
(8), we approximate the unknown function as ν(x) = 	ν
j(x) and substitute it in equation
(27). Now we utilize the collocation method with mesh points τi = i

2j , i = 0, 1, . . . , 2j, so we
have

	ν
j(τi) = τi +
∫ 1

0
�

(
τi, t, 	ν
j(t)

)
dt. (28)

The integral term in equation (28) can be found by applying some quadrature rule. We
use the Simpson integration rule for evaluating the mentioned term. For this purpose, we
consider the following partition for integration interval [0, 1]:

P = {0 = γ0,γ1, . . . ,γ2N = 1}, γk =
k

2N
,

so we can write

∫ 1

0
�

(
τi, t, 	ν
j(t)

)
dt

� 1
6N

[
�

(
τi,γ0, 	ν
j(γ0)

)
+ �

(
τ ,γ2N , 	ν
j(γ2N )

)]

+
2

3N

N∑

k=1

�
(
τ ,γ2k–1, 	ν
j(γ2k–1)

)
+

1
3N

N∑

k=1

�
(
τ ,γ2k , 	ν
j(γ2k)

)
.



Nosrati Sahlan and Afshari Boundary Value Problems         (2021) 2021:60 Page 12 of 21

Therefore nonlinear boundary value problem (1)–(2) converts to some linear or nonlinear
algebraic system. In this paper the obtained system is solved using Wolframe Mathematica
Programming 10.

4 Convergence analysis
In this section, by using Theorem 2.1, we present a theorem for error bound of approxi-
mate solution obtained by approach III.

Theorem 4.1 Suppose ν ∈ (L2[0, 1]∩CN [0, 1]). If ν and ν∗ are the exact and approximated
solutions of equation (27) obtained by approach III, respectively, then

∥∥ν(x) – ν∗(x)
∥∥

L2 ≤ α2–jN , (29)

where α is constant and depends on the function ν , and j is the resolution scale of generalized
Coiflet scaling functions.

Proof Substituting ν∗ in equation (27) and subtracting two relations, we get

∥
∥ν(x) – ν∗(x)

∥
∥

L2 =
∥
∥(

�
(
x, t,ν(t)

)
– �

(
x, t, Pjν(t)

))∥∥
L2 .

By considering the definition of �, we prove the theorem for two following cases.
• Suppose t ∈ [0, x], then

∥∥ν(x) – ν∗(x)
∥∥

L2 ≤ (x – 1)2
∫ x

0

∥∥t2(sinh
(
λν(t)

)
– sinh

(
λPjν(t)(t)

))∥∥
L2 dt.

By the mean value theorem we can write

∥
∥sinh

(
λν(t)

)
– sinh

(
λPjν(t)

)∥∥
L2 ≤ A

∥
∥ν(t) – Pjν(t)(t)

∥
∥

L2 ,

where A = sup{|λν ′(t) cosh(λν ′(t))|; 0 ≤ t ≤ 1}, so we have

∥
∥ν(x) – ν∗(x)

∥
∥

L2 ≤ A(x – 1)2
∫ x

0

∥
∥t2∥∥

L2

∥
∥ν(t) – Pjν(t)

∥
∥

L2 dt.

Considering Theorem 2.1, we can write

∥
∥ν(x) – ν∗(x)

∥
∥

L2 ≤ AC2–jN (x – 1)2 x3

3
.

It is clear that

∥
∥ν(x) – ν∗(x)

∥
∥

L2 ≤ AC
3

2–jN . (30)

• Suppose t ∈ [x, 1], then

∥∥ν(x) – ν∗(x)
∥∥

L2 ≤ (x – 1)2
∫ 1

x

∥∥t2(sinh
(
λν(t)

)
– sinh

(
λPjν(t)(t)

))∥∥
L2 dt.
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Similar to the proof of the pervious case, we can write

∥∥ν(x) – ν∗(x)
∥∥

L2 ≤ A(x – 1)2
∫ 1

x

∥∥t2∥∥
L2

∥∥ν(t) – Pjν(t)
∥∥

L2 dt.

Again considering Theorem 2.1, we can write

∥
∥ν(x) – ν∗(x)

∥
∥

L2 ≤ AC2–jN (x – 1)2 (1 – x3)
3

.

It is clear that

∥
∥ν(x) – ν∗(x)

∥
∥

L2 ≤ AC
3

2–jN . (31)

Therefore, by putting α = AC
3 , the proof is complete. �

5 Test problem
In this section, to show the accuracy and efficiency of the described methods, we ob-
tain the numerical solution of the Troesch problem for different values of λ, initial so-
lution ν0, iteration index m, and Coiflet scale j and compare the results with the result of
some other methods for solving this class of equations. All of the results are gained us-
ing the same desktop, Asus DESKTOP-M0F5LBS, Intel(R) Core(TM) i7-6700HQ CPU@
2.60 GHz, 16GB memory.

5.1 Case 1. Approach I for ν0 = 0
Numerical solutions of equation (1) for different values of λ, initial solution ν0 = 0, and
iteration index n are evaluated by approach I and are shown in Figs. 5–10. Results for
λ ≤ 1 are so close together that it is impossible to detect them by plot. Thus in Fig. 5 we
show the error plot of numerical solutions for some arbitrary λ ≤ 1. Suppose that νλi (x) is
a relevant solution of equation (1) for the Troesch parameter λi, then

ελi ,λj (x) = νλi (x) – νλj (x).

Figure 6 shows the numerical solutions of equation (1) obtained by approach I for the
Troesch parameter 1 ≤ λ ≤ 5. For 5 ≤ λ ≤ 10, numerical results are so close together in the
interval [0, 0.5] that their diagnosis in the plot is very hard. So in order to have geometric
understanding of relevant numerical solutions for the Troesch parameter 5 ≤ λ ≤ 10, we
show the approximated solution in two intervals [0, 0.5] and [0.5, 1] by Figs. 7 and 8. Also,
for 10 ≤ λ ≤ 50, numerical results are so close together that variation of solutions is visible
only in the interval [0.85, 1] in Fig. 9. Therefore, for these values of the Troesch parameter,
we show the error plot: ε10,20(x), ε20,30(x), ε30,40(x), and ε40,50(x) in Fig. 10.

5.2 Case 2. Approach I for ν0 = 1
Numerical solutions of equation (1) for different values of λ, initial solution ν0 = 1, and
iteration index n is evaluated by approach I, and results are given in Figs. 11–13. As the
pervious case results for λ ≤ 1 are so close together that it is impossible detect them by
plot, thus in Fig. 11 we show the error plot of ε0.1,0.25(x), ε0.25,0.5(x), ε0.5,0.75(x) and ε0.75,1(x)
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Figure 5 a: ε0.1,0.25(x),b : ε0.25,0.5(x), c : ε0.5,0.75(x), and d : ε0.75,1(x) for iteration index n = 1 and ν0 = 0

Figure 6 Plot of numerical solution of approach I for ν0 = 0, λ = 1, . . . , 5, and n = 1

for iteration index n = 1. In Fig. 12 the numerical solutions of equation (1) obtained by
approach I are shown for the Troesch parameter λ = 1, 2, 3, 4, 5. Figure 13 is useful for
geometric understanding of the numerical solutions for λ = 6, . . . , 20. As we can see in this
plot for 5 ≤ λ, almost approximated solutions have a linear form and are close together.
Also it is considerable that the solutions function ν(x) is increasing with respect to the
Troesch parameter λ.

5.3 Numerical results of approach II
The performance of this approach is analyzed for the auxiliary linear operator L(α(x; q)) =
∂2α(x;q)

∂2x , the resolution level j = 3, 4, 5, the iteration index m = 4, 5, and the convergence-
control parameter c0 = –0.5. The attained results of approach II for λ = 0.5 are given in
Table 2 and are compared with the solutions of decomposition method (DM) of [4] and
the spline collocation method (SCM) of [8]. Table 3 contains the numerical solutions for
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Figure 7 Plot of a numerical solution of approach I for ν0 = 0, λ = 5, . . . , 10, and n = 1 in [0, 0.5]

Figure 8 Plot of a numerical solution of approach I for ν0 = 0, λ = 5, . . . , 10, and n = 1 in [0.5, 1]

scales m = 4, 5 and the Troesch parameter λ = 1 and also the results of variational iteration
method (VIM) of [4] and the coupled Laplace transform and modified decomposition
method (LT-MDM) of [11]. In Table 4 numerical solutions of problem (1)–(2) for λ = 5
are given in some arbitrary points and compared with the results of Fortran code (FD)
[25] and B-spline collocation method (B-SCM) [25]. Also the effect of resolution scale j
and iteration index m for λ = 1 are presented in Tables 5–6 by means averaged square
error E(m, j), defined as follows:

E(m, j) :=
1

2j + 1

2j∑

k=0

(
ν

(
k
2j

)
– νm,j

(
k
2j

))2

,

where ν is the exact and νm,j is the approximated solution obtained by approach II at scale
j for iteration index m. As we can see by choosing higher scale j, the relevant E(m, j) is de-
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Figure 9 Plot of numerical solutions of approach I for ν0 = 0, λ = 10, . . . , 50 and n = 1 in [0.85, 1]

Figure 10 a : ε10,20(x),b : ε20,30(x), c : ε30,40(x) and d : ε40,50(x) for ν0 = 0, λ = 10, . . . , 50 and n = 1 in [0.85, 1]

creasing exponentially, while the required CPU time is increasing linearly. Also the results
of Table 6 show that, for different values of m, the CPU time is nearly fixed. It is interesting
that the required CPU time for j = 5 and m = 10 is only 1.2 seconds. Of course this result
was predictable because of sparsity of operational connection coefficients matrices.

5.4 Numerical results of approach III
Using approach III, we solve nonlinear boundary value problem (1)–(2) in scale j = 5 for
different values of the Troesch parameter λ and compare our findings with the results
of some other existing methods. The absolute errors of numerical results evaluated by
approach III are shown in Tables 7–8 for different values of the Troesch parameter. In
Table 7 absolute errors relevant to approach III for m = 4, 5, the modified homotopy per-
turbation technique (MHPT) [4], and the Laplace transform and a modified decomposi-
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Figure 11 a : ε0.1,0.25(x),b : ε0.25,0.5(x), c : ε0.5,0.75(x), and d : ε0.75,1(x) for n = 1 and ν0 = 1

Figure 12 Plot of numerical solutions of approach I for ν0 = 1, λ = 1, . . . , 5, and n = 1

tion technique (LT-MDM) [11] are reported for Troesch parameters λ = 0.5 and 1. Table 8
contains absolute errors of numerical solutions evaluated by approach III, sinc-Galerkin
method based upon double exponential transformation (DESG) [13], and B-SCM [25] for
λ = 5. For having a comparison between the results of presented methods, L2-errors of
numerical solutions are given in Table 9, where L2-error is defined as follows. Suppose
that ν and ν∗ are the exact and numerical solutions of problem (1), respectively, we put

εj = ν(xj) – ν∗(xj), j = 0, 1, . . . , N , xj =
j

10
,

so

‖ε‖L2 =

√√
√√

N∑

j=1

ε2
j .
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Figure 13 Plot of numerical solutions of approach I for ν0 = 1, λ = 6, 7, 8, 9, 20, and n = 1

Table 2 Approximated solutions utilizing approach II for λ = 0.5

x m = 4 m = 5 DM [4] SCM [8] Exact

0.1 0.0979671 0.092398 0.0959477 0.095944 0.0951769
0.2 0.196057 0.186122 0.1921352 0.192128 0.1906339
0.3 0.294391 0.281305 0.2888034 0.288793 0.2866534
0.4 0.393094 0.378081 0.3861955 0.386183 0.3835229
0.5 0.492288 0.476585 0.4845585 0.484546 0.4815374
0.6 0.592097 0.576957 0.5841442 0.584132 0.5810020
0.7 0.692647 0.679339 0.6852105 0.685200 0.6822351
0.8 0.794063 0.783875 0.7880234 0.788015 0.7855718
0.9 0.896471 0.890712 0.8928578 0.892853 0.8913670
1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Table 3 Approximated solutions utilizing approach II for λ = 1

x m = 4 m = 5 VIM [4] LT-MDM [11] Exact

0.1 0.0930076 0.0852337 0.1001668 0.0846631 0.0817969
0.2 0.1837690 0.1713204 0.2101338 0.1701750 0.1645308
0.3 0.2736864 0.2591218 0.3045410 0.2573995 0.2491673
0.4 0.3641402 0.3495170 0.4108413 0.3472304 0.3367322
0.5 0.4565536 0.4434094 0.5213734 0.4406094 0.4283471
0.6 0.5523283 0.5417400 0.6373663 0.5385460 0.5252740
0.7 0.6529541 0.6454926 0.7601789 0.6421421 0.6289711
0.8 0.7599845 0.7557054 0.8913449 0.7526227 0.7411683
0.9 0.8750744 0.8734816 1.0326302 0.8713749 0.8639700
1.0 1.0000000 1.0000000 1.1861098 1.0000512 1.0000000

6 Conclusion
In this paper three new and applicable methods are implemented on a class of strongly
nonlinear differential equations. The proposed methods are based on some simple quasi-
linearization technique, the generalized Coiflet scaling functions based homotopy analysis
method, and Galerkin and also some interesting approach for converting a boundary value
problem to an integral equation. A common property of the presented method was reduc-
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Table 4 Approximated solutions utilizing approach II for λ = 5

x m = 4 m = 5 FD [25] B-SCM [25]

0.1 0.0076520 0.0095523 – –
0.2 0.0110199 0.0109043 0.01075342 0.01002027
0.3 0.0213986 0.0250004 – –
0.4 0.0314220 0.0328037 0.0332005 0.0309979
0.5 0.0537343 0.0720751 – –
0.6 0.0114229 0.9600047 – –
0.7 0.1349407 0.1579514 – –
0.8 0.2496878 0.2600308 0.2582166 0.2417049
0.9 0.4369226 0.4544960 0.4550603 0.4246183
1.0 1.0000000 1.0000000 1.0000000 1.0000000

Table 5 Averaged square error of numerical solution and the required CPU time of approach II for
λ = 1 andm = 5

j E(5, j) CPU time (second)

3 1.016551× 10–7 0.337402
4 2.345741× 10–9 0.620151
5 1.889065× 10–12 0.981400

Table 6 Averaged square error of numerical solution and the required CPU time of approach II for
λ = 1 and j = 4

m E(m, 4) CPU time (second)

5 2.345741× 10–9 1.085459
10 6.081362× 10–11 1.119225
15 9.106281× 10–13 1.153337
20 3.042266× 10–14 1.198106

Table 7 Comparison of absolute errors of approximated solutions utilizing approach III for λ = 0.5
and λ = 1

x M = 4 M = 5 MHPT [4] LT-MDM [11]

λ = 0.5
0.1 3.7× 10–9 4.4× 10–13 8.2× 10–4 7.7× 10–4

0.2 2.2× 10–8 5.8× 10–12 1.6× 10–3 1.5× 10–3

0.3 1.9× 10–8 1.6× 10–12 2.3× 10–3 2.1× 10–3

0.4 4.1× 10–8 8.8× 10–12 2.9× 10–3 2.7× 10–3

0.5 9.6× 10–7 7.0× 10–12 3.2× 10–3 3.0× 10–3

0.6 7.5× 10–7 6.1× 10–12 3.4× 10–3 3.1× 10–3

0.7 3.9× 10–8 4.5× 10–12 3.2× 10–3 3.0× 10–3

0.8 6.4× 10–8 3.7× 10–12 2.7× 10–3 2.4× 10–3

0.9 3.0× 10–8 2.9× 10–13 1.6× 10–3 1.5× 10–3

λ = 1
0.1 1.2× 10–8 1.4× 10–12 3.6× 10–3 2.9× 10–3

0.2 5.3× 10–86 8.3× 10–11 7.1× 10–2 5.9× 10–3

0.3 1.8× 10–9 2.9× 10–11 1.0× 10–2 8.2× 10–3

0.4 9.7× 10–8 5.0× 10–11 1.3× 10–2 1.0× 10–2

0.5 4.0× 10–8 5.7× 10–11 1.6× 10–2 1.2× 10–2

0.6 2.6× 10–8 3.3× 10–11 1.7× 10–2 1.3× 10–2

0.7 8.5× 10–7 6.1× 10–11 1.7× 10–2 1.3× 10–2

0.8 7.7× 10–7 4.3× 10–12 1.5× 10–2 1.1× 10–2

0.9 1.3× 10–8 7.4× 10–12 9.7× 10–3 7.4× 10–3

ing the nonlinear equation to a system of algebraic equations. Comparison between our
results and the findings of some other existing methods for solving this kind of problems
shows high accuracy and efficiency of the methods. It is considerable that the results of
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Table 8 Comparison of absolute errors of approximated solutions utilizing approach III for λ = 5

x m = 4 m = 5 B-SCM [25] DESG [13]

0.1 3.6× 10–8 6.1× 10–11 – –
0.2 1.4× 10–8 8.3× 10–11 7.3× 10–3 2.0× 10–9

0.3 1.6× 10–7 2.7× 10–11 – –
0.4 2.7× 10–7 2.1× 10–11 2.2× 10–3 2.0× 10–9

0.5 3.5× 10–8 6.5× 10–11 – –
0.6 6.6× 10–8 7.4× 10–11 – –
0.7 1.1× 10–7 2.8× 10–11 – –
0.8 5.9× 10–7 1.7× 10–11 1.4× 10–2 1.6× 10–7

Table 9 ‖ε‖L2 attained by proposed approaches

λ = 0.5 λ = 1 λ = 5

Approach I 1.52× 10–9 2.39× 10–9 6.18× 10–8

Approach II m = 4 4.24× 10–12 1.99× 10–11 6.76× 10–11

m = 5 4.05× 10–15 3.61× 10–14 5.48× 10–14

Approach III m = 4 2.26× 10–12 3.09× 10–11 7.11× 10–11

m = 5 2.66× 10–14 1.92× 10–13 6.66× 10–12

approach I for iteration index n = 1 are as accurate as some methods for large iteration in-
dex. Also because of some significant properties of generalized Coiflet scaling functions,
such as orthogonality, having compact support, and vanishing moments, the operational
matrices in approaches II and III are so sparse, and consequently relevant required com-
putational time and memory is so low.

7 Future remarks
The presented methods in this study are attractive and can be extended for similar high-
order nonlinear differential equations. Also, they could applied on the fractional-order
differential and integro-differential equations with little additional work. Also the men-
tioned approaches could be implemented for solving nonlinear dynamic systems, includ-
ing differential equations. Further research along these lines is under progress and will be
reported in due time.
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