
Wang and Xing Boundary Value Problems         (2021) 2021:75 
https://doi.org/10.1186/s13661-021-01551-4

R E S E A R C H Open Access

Effect of the protection zone in a diffusive
ratio-dependent predator–prey model with
fear and Allee effect
Huan Wang1 and Hui Xing1*

*Correspondence:
xinghui210@163.com
1Department of Mathematics, Xi’an
Polytechnic University, Xi’an,
Shaanxi 710048, China

Abstract
In this paper, we study the influence of a protection zone for the prey on a diffusive
predator–prey model with fear factor and Allee effect. The prior estimate, global
existence, nonexistence of nonconstant positive solutions and bifurcation from
semitrivial solutions are well discussed. We show the existence of a critical patch value
λD
1 (�0) of the protection zone, described by the principal eigenvalue of the Laplacian

operator over�0 with Neumann boundary conditions. When the mortality rate of the
predator μ ≥ d2λD

1 (�0), we show that the semitrivial solutions (1, 0) and (θ , 0) are
unstable and there is no bifurcation occurring along respective semitrivial branches.

Keywords: Protection zone; Fear factor; Allee effect; Bifurcation; Ratio-dependent
predator–prey model

1 Introduction
The predator–prey model is one of the most basic models to study the interspecific re-
lationship, which is still being investigated widely [1, 2]. Because of the movement of the
prey and predator, the predator–prey model can be modified in the presence of a spatial
diffusion model. The interaction between predator and prey is described more accurately
by the diffusive system [3–5].

In 1931, Allee offered a new population growth rate which was called by his name the
Allee effect [6]. Allee effect is applied to populations with a too sparse species density,
hence the growth function of endangered species usually is recognized as exhibiting Allee
effect pattern [7]. In 2014, Cui and Shi [8] studied a diffusive predator–prey system with a
strong Allee effect. They analyzed the dynamics and steady state solutions of the system.
Their results show that the overexploitation phenomenon can be avoided if the Allee effect
threshold is low. The works [9, 10] also confirm that the Allee effect can better explain the
correlation between population size or density and the average individual fitness.

For surviving under the risk of predation, some species will form protection zones us-
ing herd behavior. In this case the predator hunt only prey herd at the boundary [11–15].
In addition, we can establish natural reserves in habitats to save endangered species. Du
et al. [16] first proposed a diffusive predator–prey model with protection zone in 2006.
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They confirmed that building a protection zone is an effective method to stabilize inter-
specific relations. The main assumption is to assume that prey species are free in habitat
and predator lives outside the protection zone. Hence prey can freely enter or leave the
protection zone but the predator species are kept out. Later on, some experts [17–19] also
studied the predator–prey model with a protection zone model.

In ecology, the fear effect reflects the fact that prey populations avoid predators for sur-
vival. Wang et al. [20] first proposed a predator–prey model incorporating the cost of the
fear effect into prey reproduction in 2016. Their mathematical results show that high lev-
els of fear can stabilize the predator–prey model by excluding the existence of periodic
solutions. Moreover, some researchers also confirmed that the fear of prey will reduce the
size of the prey population, and the influence level of fear even exceeds the direct killing
of predators in some circumstances. See, for example, the works [21–23].

Inspired by the above description, for the purpose of protecting endangered species, we
adopt a more appropriate Allee effect growth function with the fear effect. Meanwhile, a
nature reserve is built in the habitat of predators and prey. When the reserve is established,
the predator spends more time looking for prey, then predator growth rate is a function
of the ratio of prey to predator abundance. This case can be modeled as a ratio-dependent
function, which is more reasonable in the predator–prey model due to the absence of bio-
logical control paradox [18, 24]. To get close to reality, a homogeneous no-flux boundary
condition is adopted, when the predator and prey species live in a closed environment.
Therefore, a diffusive predator–prey model considering fear, Allee effect, and prey pro-
tection zone is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = d1�u + u(1 – u)( u
θ

– 1) 1
1+ηv – b(x)uv

mu+v for x ∈ �, t > 0,

vt = d2�v + c(x)uv
mu+v – μv for x ∈ �1, t > 0,

∂νu = 0 for x ∈ ∂�, t > 0, ∂νv = 0 for x ∈ ∂�1, t > 0,

u(x, 0) = u0(x) ≥ 0 for x ∈ �, v(x, 0) = v0(x) ≥ 0 for x ∈ �1,

(1.1)

where the model has been obtained with a nondimensionalization process as in [25]. In
this model, � is bounded in RN with a smooth boundary ∂�; �0 is a subdomain of � and
∂�0 is also smooth; the region �0 is a prey protection zone. It should be pointed out that
the effective living space for prey species is � and that for predators is �1 := �\�0; u(x, t)
and v(x, t) are the densities of prey and predators, and their diffusive coefficients are d1

and d2, respectively; the function u(1 – u)( u
θ

– 1) refers to the Allee effect growth rate of
prey; θ is called the Allee threshold value for the strong Allee effect so that 0 < θ < 1; weak
Allee effect means –1 < θ < 0; 1

1+ηv stands for the fear of prey; η is the level of fear; uv
mu+v

is a ratio-dependent response function; c(x) is the conversion rate of the prey captured by
predators; μ is the mortality rate of predators. The function b(x) stands for the loss of prey
because of the predation, b(x) = 0 for x ∈ �0, and b(x) ≥ c(x) for x ∈ �1.

The steady-state system corresponding to (1.1) is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = u(1 – u)( u
θ

– 1) 1
1+ηv – b(x)uv

mu+v for x ∈ �,

–d2�v = c(x)uv
mu+v – μv for x ∈ �1,

∂νu = 0 for x ∈ ∂�, ∂νv = 0 for x ∈ ∂�1.

(1.2)
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The organization of this paper is as follows. In Sect. 2, some useful dynamics are analyzed,
including the global existence, prior estimates, and the nonexistence of nonconstant pos-
itive solutions. In Sect. 3, the bifurcations from semitrivial solutions (1, 0) and (θ , 0) are
proved, and the existence of a critical patch size λD

1 (�0) is given.

2 Dynamical analysis
In this section, the global existence of solutions to (1.1) is proved, and a priori estimates
for (1.2) are established. Finally, the nonexistence of nonconstant positive steady state so-
lutions of (1.2) is proved.

To facilitate the discussion, we have the following conditions:
(H1) η, m,μ, d1, d2 > 0;
(H2) b(x) ≥ c(x) > 0, for b(x), c(x) ∈ C(�1),∀x ∈ �1;
(H3) b∗ = minx∈�1 b(x), b∗ = maxx∈�1 b(x), c∗ = minx∈�1 c(x), c∗ = maxx∈�1 c(x).

Theorem 2.1 Assume that (H1) holds and θ ∈ (0, 1).
(i) If u0(x) ≥ 0 for x ∈ �, and v0(x) ≥ 0 for x ∈ �1, then the unique solution (u(x, t), v(x, t))

of (1.1) satisfies u(x, t) > 0 for (x, t) ∈ � × (0, +∞), and v(x, t) > 0 for (x, t) ∈ �1 × (0, +∞);
(ii) If u0(x) ≤ θ and (u0(x), v0(x)) �≡ (θ , 0), then limt→∞ u(x, t) = 0 for x ∈ �,

limt→∞ v(x, t) = 0 for x ∈ �1.

Proof Denote

P(u, v) = u(1 – u)
(

u
θ

– 1
)

1
1 + ηv

–
b(x)uv
mu + v

, Q(u, v) =
c(x)uv
mu + v

– μv.

Let (u(x, t), v(x, t)) = (0, 0), (u(x, t), v(x, t)) = (u∗(t), v∗(t)), where (u∗(t), v∗(t)) is the unique
spatially homogeneous solution of

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = u(1 – u)( u

θ
– 1) 1

1+ηv ,
dv
dt = c(x)uv

mu+v – μv,

u(0) = u∗ > 0, v(0) = v∗ > 0,

(2.1)

where u∗ = supx∈� u0(x), v∗ = supx∈�1 v0(x). From the comparison principle, it is easy to get
that (u(x, t), v(x, t)) and (u(x, t), v(x, t)) are the lower and upper solutions to (1.1), respec-
tively. Since

ut – �u(x, t) ≥ P(u, v), ut – �u(x, t) ≤ P(u, v),

and

vt – �v(x, t) ≥ Q(u, v), vt – �v(x, t) ≤ Q(u, v),

the boundary conditions are satisfied. Therefore, the results for lower/upper-solutions in
Theorem 8.3.3 in [26] show that (1.1) has a unique globally defined solution which satisfies

0 ≤ u(x, t) ≤ u∗(t), 0 ≤ v(x, t) ≤ v∗(t).
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Meanwhile, by the strong maximum principle, we can get u(x, t) > 0 for (x, t) ∈ � ×
(0, +∞), and v(x, t) > 0 for (x, t) ∈ �1 × (0, +∞). This proves part (i).

Now we prove part (ii). We know u0(x) ≤ u∗ from part (i), therefore u0(x) ≤ u∗ < θ . If
(u0(x), v0(x)) �= (θ , 0) and θ < 1, then u∗(t) → 0, v∗(t) → 0 when t → ∞, obviously u(x, t) →
0 for x ∈ �, v(x, t) → 0 for x ∈ �1 as t → ∞. �

It follows from above that the existence, uniqueness, and asymptotic properties of so-
lutions have no direct connection with fear and prey protection zone. The asymptotic
properties of solutions only depend on the strong Allee effect.

Lemma 2.2 ([27]) Suppose g(x, w) ∈ C(� ×R
1). If w(x) ∈ C2(�) ∩ C1(�) satisfy

�w(x) + g
(
x, w(x)

) ≥ 0(≤ 0), x ∈ �,
∂w
∂n

≤ 0(≥ 0), x ∈ ∂�,

and w(x0) = max�̄ w(min�̄ w), then g(x0, w(x0)) ≥ 0(≤ 0).

Theorem 2.3 Assume that (H1)–(H2) hold, and (u(x), v(x)) is a nonnegative and nontrivial
solution of (1.2). Then

0 < u(x) ≤ 1 for x ∈ � and 0 < v(x) ≤ (1 – θ )2

4μθ
+

d1

d2
for x ∈ �1. (2.2)

Proof From Theorem 2.1, we know that u > 0, v > 0. Then, it is easy to see that 0 < u(x) ≤ 1,
by Lemma 2.2. Adding the two functions of system (1.1), we have

–(d1�u + d2�v) = u(1 – u)
(

u
θ

– 1
)

1
1 + ηv

+
(
c(x) – b(x)

) uv
mu + v

– μv

≤ u(1 – u)
(

u
θ

– 1
)

1
1 + ηv

– μv

≤ u
(1 – θ )2

4θ
– μv

≤
(

(1 – θ )2

4θ
+

μd1

d2

)

–
μ

d2
(d1u + d2v),

which leads to

�(d1u + d2v) +
(

(1 – θ )2

4θ
+

μd1

d2

)

–
μ

d2
(d1u + d2v) ≥ 0.

By Lemma 2.2, we obtain

d1u + d2v ≤ d2(1 – θ )2

4μθ
+ d1,

which implies

v(x) ≤ (1 – θ )2

4μθ
+

d1

d2
. �
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Theorem 2.4 Assume that (H1)–(H3) hold, and θ ∈ (0, 1). There exists a D∗ = D∗(m,μ,
b∗, c∗,�) such that if min{d1, d2} > D∗, then (1.2) has no nonconstant positive solution.

Proof Let (u, v) be a nonconstant positive steady state solution of (1.2), and denote

u =
1

|�|
∫

�

u dx, v =
1

|�|
∫

�

v dx, F(u, v) = u(1 – u)
(

u
θ

– 1
)

1
1 + ηv

.

From Theorem 2.3, we know that u ≤ 1. Adding the two equations of (1.2) and integrating
on �, we get

–
∫

�

(d1�u + d2�v) dx =
∫

�

(

F(u, v) +
(c(x) – b(x))uv

mu + v
– μv

)

dx.

Since b(x) ≥ c(x) for x ∈ �1, it is easy to obtain

μ

∫

�

v dx =
∫

�

(

F(u, v) +
(c(x) – b(x))uv

mu + v

)

dx ≤
∫

�1

F(u, v) dx ≤ (1 – θ )2

4θ
.

Thus

v =
1

|�|
∫

�

v dx ≤ (1 – θ )2

4μθ
.

Multiplying the first equation of (1.2) by (u – u), and integrating on �, it follows from the
Green formula and Young inequality that

d1

∫

�

∣
∣∇(u – u)

∣
∣2 dx

=
∫

�

F(u, v)(u – u) dx –
∫

�

b(x)uv
mu + v

(u – u) dx

=
∫

�

(
F(u, v) – F(u, v)

)
(u – u) dx –

∫

�

b(x)(u – u)(v – v)
mu + v

(u – u) dx

≤ 1 + θ

θ

∫

�

(u + u)(u – u)2

1 + ηv
dx + η

∫

�

u(1 – u)( u
θ

– 1)(u – u)(v – v)
(1 + ηv)(1 + ηv)

dx

+
∫

�

mb∗u(u – u)[v(u – u) + u(v – v)]
(mu + v)(mu + v)

dx

≤
(

2(θ + 1)
θ

+
b∗(1 – θ )2

4μθm

)∫

�

(u – u)2 dx +
(

η(1 – θ )2

4θ
+

b∗
m

)∫

�

(u – u)(v – v) dx

≤
(

2(θ + 1)
θ

+
η(1 – θ )2

8θ
+

b∗(1 – θ )2

4μθm
+

b∗
2m

)∫

�

(u – u)2 dx

+
(

η(1 – θ )2

8θ
+

b∗
2m

)∫

�

(v – v)2 dx. (2.3)

Similarly, multiplying the second equation of (1.2) by (v – v), and integrating on �, we get

d2

∫

�

∣
∣∇(v – v)

∣
∣2 dx
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=
∫

�

c(x)uv
mu + v

(v – v) dx –
∫

�

μv(v – v) dx

≤
∫

�

c∗u
mu + v

(v – v)2 dx +
∫

�

c∗uv
mu + v

(v – v) dx –
∫

�

μ(v – v + v)(v – v) dx

≤ c∗

m

∫

�

(v – v)2 dx +
∫

�

c∗v(v – v)
(mu + v)(mu + v)

[
v(u – u) + u(v – v)

]
dx – μ

∫

�

(v – v)2 dx

≤
(

c∗(1 – θ )4

32μ2θ2m2 +
c∗(1 – θ )2

4μθm2 +
c∗

m
– μ

)∫

�

(v – v)2 dx +
c∗(1 – θ )4

32μ2θ2m2

∫

�

(u – u)2. (2.4)

Therefore, by (2.3), (2.4), and Poincáre inequality, we obtain

d1

∫

�

∣
∣∇(u – u)

∣
∣2 dx + d2

∫

�

∣
∣∇(v – v)

∣
∣2 dx

≤ 1
λ1

(

	1

∫

�

∣
∣∇(u – u)

∣
∣2 dx + 	2

∫

�

∣
∣∇(v – v)

∣
∣2 dx

)

,

where

	1 =
2(θ + 1)

θ
+

η(1 – θ )2

8θ
+

b∗(1 – θ )2

4μθm
+

b∗
2m

+
c∗(1 – θ )4

32μ2θ2m2 ,

	2 =
η(1 – θ )2

8θ
+

b∗
2m

+
c∗(1 – θ )4

32μ2θ2m2 +
c∗(1 – θ )2

4μθm
+

c∗

m
– μ,

hence if

min{d1, d2} >
1
λ1

max{	1,	2} := D∗(m,μ, b∗, c∗,�
)
,

we have

∇(u – u) = ∇(v – v) = 0,

therefore (u, v) must be a constant solution. �

From the analysis above, we find that the fear effect, protection zone, and the Allee effect
on prey can make the prey–predator system (1.2) tend to a fixed stable state. Even if the
scale of the protection zone is small, it will promote stability among the two species.

3 Bifurcation from semitrivial solutions
The steady state system (1.2) has two nonnegative constant semitrivial solutions (1, 0) and
(θ , 0). We take μ as the bifurcation parameter and start analyzing bifurcation along fol-
lowing semitrivial branches:


u1 =
{

(μ; 1, 0) : –∞ < μ < +∞}
, 
u2 =

{
(μ; θ , 0) : –∞ < μ < +∞}

,

for p > 1, we denote

X1 =
{

u ∈ W 2,p(�) : ∂νu = 0 on ∂�
}

, Y1 = Lp(�),
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X2 =
{

v ∈ W 2,p(�1) : ∂νv = 0 on ∂�1
}

, Y2 = Lp(�1).

Now we discuss the bifurcations from the curve of semitrivial solutions 
u1 and 
u2 .

Lemma 3.1 ([28]) Let λD
1 (φ, O) and λN

1 (φ, O) represent the first eigenvalue of –� + φ with
Direchlet and Neumann boundary condition in the region O, respectively. The following
properties are satisfied:

(a) λD
1 (φ, O) > λN

1 (φ, O);
(b) λB

1 (φ1, O) > λB
1 (φ2, O) for φ1 > φ2 and φ1 �= φ2, where B = N or D;

(c) λD
1 (φ, O1) > λD

1 (φ, O2) for O1 ⊂ O2.

Theorem 3.2 Suppose η, m,μ, d1, d2 > 0. Then
(i) μ1 = –d2λ

N
1 (– c(x)

md2
,�1) is a bifurcation point for the positive solutions of (1.2) from

semitrivial branch 
u1 and 
u2 , and the bifurcation at μ1 is subcritical;
(ii) when μ < μ1, (1.2) has at least one positive solution, and (1.2) has no positive solution

if and only if μ ≥ μ1;
(iii) if μ ≥ d2λ

D
1 (�0), then (1, 0) and (θ , 0) are unstable, and there is no bifurcation oc-

curring along 
u1 and 
u2 .

Proof (i) Let w = 1 – u, and define H : R × X1 × X2 → Y1 × Y2 by

H(μ; w, v) =

(
d1�w – w(1 – w)( 1

θ
– w

θ
– 1) 1

1+ηv + b(x)(1–w)v
m(1–w)+v

d2�v + c(x)(1–w)v
m(1–w)+v – μv

)T

. (3.1)

Some valuable calculations involving (3.1) are as follows:

H(w,v)(μ; w, v)[φ,ψ] =

(
d1�φ – BEφ – b(x)v2A2φ + wηCDB2ψ + mb(x)A2C2ψ

d2�ψ – c(x)v2A2φ + mc(x)A2C2ψ – μψ

)T

,

Hμ(μ; w, v) = (0, –v), Hμ(w,v)(μ; w, v)[φ,ψ] = (0, –ψ),

H(w,v)(w,v)(μ; w, v)[φ,ψ]2 =

(
P(φ,ψ)
Q(φ,ψ)

)T

,

where

P(φ,ψ) = –2
(

B
θ

(3w – 2 + θ ) + mb(x)v2A3
)

φ2 – 2C
(
wDη2B3 + mb(x)CA3)ψ2

+ 2
(
ηEB2 – 2mb(x)vCA3)φψ ,

Q(φ,ψ) = –2mc(x)A3(v2φ2 + C2ψ2 + 2vCφψ

and

A =
1

m(1 – w) + v
, B =

1
1 + ηv

, C = 1 – w,

D =
1
θ

–
w
θ

– 1, E =
3
θ

w2 + 2
(

1 –
2
θ

)

w +
1
θ

– 1.
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By calculating H(w,v)(μ; 0, 0)[φ,ψ] = 0, we can get

⎧
⎪⎪⎨

⎪⎪⎩

–d1�φ = –( 1
θ

– 1)φ + b(x)
m ψ in �,

–d2�ψ = c(x)
m ψ – μψ in �1,

∂νφ = 0on∂�, ∂νψ = 0 on ∂�1,

(3.2)

which has a solution with ψ > 0 only when μ = μ1 = –d2λ
N
1 (– c(x)

md2
,�1). Thus μ1 is the

only bifurcation point along 
u1 . We set kernel N (H(w,v)(μ1; 0, 0)) = span (ϕ1,ϕ2), where
(ϕ1,ϕ2) �= (0, 0) is a solution of (3.2). Since μ1 = –d2λ

1
N (– c(x)

md2
,�1), we can choose ϕ2 = 1,

then

ϕ1 =
(

–� +
1
d1

(
1
θ

– 1
))–1 b(x)

md1
> 0.

The range of the operator is given by

R
(
H(w,v)(μ1; 0, 0)

)
=

{

(f , g) ∈ Y1 × Y2 :
∫

�1

g(x) dx = 0
}

.

It is clear that codimR(H(w,v)(μ1; 0, 0)) = 1. We know
∫

�1
1 dx > 0, thus

Hμ(w,v)(μ; w, v)[ϕ1,ϕ2] = (0, –1) /∈R
(
H(w,v)(μ1; 0, 0)

)
.

Now, by applying local bifurcation theorem, we can obtain the following smooth curve for
the set of positive solution to (1.2) near (μ; 1, 0):


u1 =
{(

μ1; 1 – u1(s), v1(s)
)

: s ∈ [0, δ)
}

,

such that μ1(0) = μ1, u1(s) = sϕ1(x) + o(|s|), v1(s) = s + o(|s|). Moreover, μ′
1(0) can be calcu-

lated

μ′
1(0) = –

〈H(w,v)(w,v)(μ; 0, 0)[φ,ψ]2, l1〉
2〈Hμ(w,v)(μ; 0, 0)[φ,ψ], l1〉 = –

c(x)
m2 < 0,

where l1 is the linear function on Y1 × Y2 defined by 〈[f , g], l1〉 =
∫

�1
g(x) dx. Therefore the

bifurcation at (μ1; 1, 0) is always subcritical.
Similarly, let p = θ – u, the linearized equation of system (1.2) at (μ; θ , 0) is

G(p,v)(μ; 0, 0)[φ,ψ] =

(
d1�φ + (1 – θ )φ + b(x)

m ψ

d2�ψ + c(x)
m ψ – μψ

)T

, (3.3)

apparently the solution of second equation for (3.3) is the same as in (3.2) when G(p,v)(μ;
0, 0)[φ,ψ] = 0, which implies that the bifurcation proof from (θ , 0) is similar to that from
(1, 0).

(ii) Assume (u, v) is a positive solution of (1.2). From (2.2), we obtain 0 < u ≤ 1 in �. It is
clear that

c(x)u
mu + v

≤ c(x)
m + v

≤ c(x)
m

.
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By Lemma 3.1, we also have

μ1 = –d2λ
N
1

(

–
c(x)
md2

,�1

)

> –d2λ
N
1

(

–
c(x)u

d2(mu + v)
,�1

)

= μ.

Therefore (1.2) has no positive solution if and only if μ ≥ μ1.
(iii) Define h(m) = –λN

1 (– c(x)
md2

,�), then function h(m) is monotonically decreasing from
the properties of (3.1). Now we prove h(m) → λD

1 (�0)(m → 0+). The variational charac-
terization of the eigenvalue shows that

–λN
1

(

–
c(x)
md2

,�
)

= inf
ψ∈H1(�)

–
∫

�
|∇ψ |2 dx +

∫

�

c(x)
md2

ψ2 dx
∫

�
ψ2 dx

≤ λD
1 (�0). (3.4)

Here ψ is the eigenfunction associated with λD
1 (�0) when ψ > 0 in x ∈ �0 and ψ = 0 when

x ∈ �1. Let ψn > 0 satisfy

�ψn +
c(x)

mnd2
ψn = –λN

1

(

–
c(x)

mnd2
,�

)

ψn in �, ∂νψn = 0 on ∂�, (3.5)

where {mn} is a natural sequence satisfying mn → 0+, and maxx∈� ψn(x) = 1. From (3.4)
and (3.5), we have �ψn ≤ λD

1 (�0)ψn, then

–
∫

�

|∇ψn|2 dx +
∫

�

ψ2
n dx ≤ [

λD
1 (�0) + 1

]
∫

�

ψ2
n dx ≤ [

λD
1 (�0) + 1

]|�|,

which implies that {ψn} converges to some ψ weakly in H1(�) and strongly in Lp(�) for
any p > 1. Multiply (3.5) by ψn and integrate over � to get

–
∫

�

|∇ψn|2 dx – λN
1

(

–
c(x)

mnd2
,�

)∫

�

ψ2
n dx = –

1
mnd2

∫

�1

c(x)ψ2
n dx.

Since 1
mnd2

→ ∞ when mn → 0+, we must have ψ ≡ 0 in �1. Obviously, ψ �= 0 in �0,
otherwise ψ = 0 in �, which contradicts with maxx∈� ψn(x) = 1. Hence limm→0+ h(m) =
λD

1 (�0).
Now if μ ≥ d2λ

D
1 (�0), then μ > –d2λ

N
1 (– c(x)

md2
,�) for any μ > 0. Therefore, there is no bi-

furcation of positive solutions occurring along 
u1 . This also implies that (1, 0) is unstable.
Similarly, (θ , 0) is an unstable steady state of (1.2), and there is no bifurcation occurring
along 
u2 . �

From Theorem 3.2, the prey and predator can coexist when the mortality rate of the
predator μ is less than the threshold value μ1. Otherwise, at least numerous among prey
and predator is ultimately extinct. The introduced protection zone plays an essential role
in maintaining the stability of the ecosystem.

4 Conclusions
The article discusses a diffusion predator–prey model (1.2) with the Allee effect, fear ef-
fect, and protection zone. We mainly show some dynamical behavior of the model (1.2).
Firstly, we discuss the global existence and a priori estimates of solutions, and ensure that
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predators and prey can coexist. The results further illustrate that the asymptotic property
of solutions only depends on the strong Allee effect. Furthermore, the nonexistence of
nonconstant positive solution is proved. The results show that the fear effect, protection
zone, and Allee effect on prey can make the prey–predator system (1.2) tend to a stable
state. Moreover, we also analyze the bifurcation from semitrivial solutions (1, 0) and (θ , 0).
We find that the bifurcation point from (1, 0) and (θ , 0) is the same, namely μ1. When the
death rate of predator species is less than μ1, predator and prey can coexist stably. We also
prove that there is a critical path size d2λ

D
1 (�0). When μ ≥ d2λ

D
1 (�0), the solutions (1, 0)

and (θ , 0) are unstable, and the bifurcation will not occur.
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