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Abstract
In this article, we consider the following quasilinear Schrödinger–Poisson system

{
–�u + V(x)u – u�(u2) + K (x)φ(x)u = g(x,u), x ∈ R

3,

–�φ = K (x)u2, x ∈ R
3,

(0.1)

where V ,K :R3 →R and g :R3 ×R →R are continuous functions; g is of subcritical
growth and has some monotonicity properties. The purpose of this paper is to find
the ground state solution of (0.1), i.e., a nontrivial solution with the least possible
energy by taking advantage of the generalized Nehari manifold approach, which was
proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct
solutions are gained while g is odd in u.
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1 Introduction
In this article, we consider the following quasilinear Schrödinger–Poisson system:

⎧⎨
⎩–�u + V (x)u – u�(u2) + K(x)φ(x)u = g(x, u), x ∈R

3,

–�φ = K(x)u2, x ∈R
3,

(1.1)

where V , K : R3 →R and g : R3 ×R →R are continuous functions.
The quasilinear Schrödinger–Poisson system had been introduced in [4, 20], which is a

quantum mechanical model of extremely small devices in semiconductor nanostructures
taking into account the quantum structure and the longitudinal field oscillations during
the beam propagation.

The Schrödinger–Poisson system can be written as follows:

⎧⎨
⎩–�u + V (x)u + K(x)φ(x)u = g(x, u), x ∈R

3,

–�φ = K(x)u2, x ∈R
3.
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There were many different growth conditions on the nonlinearity g(x, u), such as subcrit-
ical growth [6, 21, 31, 33, 36], or the critical exponent growth [32, 34]. Moreover, many
meaningful results have been obtained. For example, radial solutions [8, 11, 22], ground
state solutions [2, 3], and also semiclassical solutions [12, 18, 19].

The quasilinear Schrödinger equation

–�u + V (x)u – u�
(
u2) = g(x, u), x ∈R

N ,

has been accepted as a model of several physical phenomena in [23], and for the results
about this quasilinear equation the reader can be referred to [1, 5, 9, 10, 15, 30].

At present, there are relatively few existing results about system (1.1), so it could be of
interest to pay close attention to our discussion. When K(x) = 1 in system (1.1), the authors
of [7] took into account the system together with a 4-Laplacian operator, hence the exis-
tence of sign-changing solution with precisely two nodal domains was derived by using the
approximation technique. When the system is considered with asymptotically linear f (t)
with respect to t at infinity, the existence and asymptotic behavior of the ground state were
studied in [13]. Figueiredo and Siciliano [16, 17] paid close attention to two different sys-
tems with parameter ε and critical growth, and obtained the existence of solutions for the
former system in R

3. They also proved asymptotic behavior of solutions whenever ε → 0.
Similar results were also achieved for the latter system in a bounded domain � in R

2. The
authors in [24] considered a system with radial potentials and discontinuous nonlinear-
ity, and then obtained the multiplicity results of radial solutions by nonsmooth critical
point theory. By utilizing Ekeland’s variational principle, the authors of [25] obtained the
existence of the ground state solution by seeking the solution of a new system, which is
equivalent to system (1.1). By applying the mountain pass theorem and the concentration–
compactness principle, the existence of a solution to problem (1.1) was established in [35]
when the asymptotic periodicity of potentials V , K and nonlinearity g were considered.
To the best of our knowledge, no one made use of the generalized manifold method to
show the existence of solutions of this quasilinear Schrödinger–Poisson system. On the
basis of the existing results, our aim is to study the existence of a ground state solution
and of infinitely many solutions.

Setting G(x, u) =
∫ u

0 g(x, s) ds, we suppose that V , K and g satisfy the following assump-
tions:

(V ) V is continuous, 1-periodic in xi, 1 ≤ i ≤ N , and V0 = infx∈R3 V (x) > 0;
(K) K ∈ L2(R3) ∩ L∞(R3), lim|x|→∞K(x) = 0, K(x) ≥ 0 for all x ∈R

3, K �≡ 0.
(g1) g ∈ C(R3 ×R,R) is 1-periodic in xi, 1 ≤ i ≤ N , |g(x, u)| ≤ a(1 + |u|p–1) for some a > 0

and 4 < p < 12;
(g2) g(x, u) = o(u) uniformly in x as u → 0;
(g3) u 
→ g(x,u)

u3 is positive for u �= 0, nonincreasing on (–∞, 0), and nondecreasing on
(0, +∞);

(g4) G(x,u)
u4 → ∞ uniformly in x as |u| → ∞.

Let ∗ denote the action of Z3 on H1(R3) given by

(k ∗ u) := u(x – k), k ∈ Z
3.
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We note that if u0 is a solution of (1.1), then so are all elements of the orbit of (u0,φ0) under
the action of Z3, and the so-called orbit of (u0,φ0) is denoted as

O(u0,φ0) :=
{

u0(· – k),φ0(· – k) : k ∈ Z
3}.

Two solutions (u1,φ1) and (u2,φ2) of (1.1) are said to be geometrically distinct if O(u1,φ1)
and O(u2,φ2) are disjoint.

Now we state our main results.

Theorem 1.1 Suppose (V ), (K), and (g1)–(g4) hold. Then the problem (1.1) has a ground
state solution.

Theorem 1.2 Suppose (V ), (K), and (g1)–(g4) hold, and g is odd in u. Then the problem
(1.1) admits infinitely many geometrically distinct solutions.

2 Preliminary results
In this section, we introduce the variational framework associated with problem (1.1). It
follows from (V ) that we can define a new norm

‖u‖ =
(∫

R3
|∇u|2 + V (x)u2

) 1
2

,

which is equivalent to the usual norm of H1(R3). The usual norm in the Lebesgue space
Lp(R3) is denoted by |u|p. Then there exists rp > 0 such |u|p ≤ rp‖u‖ for p ∈ [1, 6]. Also
‖u‖D1,2 =

∫
R3 (|∇u|2)1/2 denotes the norm of D1,2(R3). It is more convenient for our pur-

poses than the standard one and will be used henceforth. For a functional F , we put

Fb :=
{

u ∈ H1(
R

3) : F(u) ≤ b
}

, Fa :=
{

u ∈ H1(
R

3) : F(u) ≥ a
}

, Fb
a := Fa ∩ Fb.

As far as we know, system (1.1) can be easily transformed into a single nonlinear
Schrödinger equation with a nonlocal term. Briefly, the Poisson equation is solved by using
the Lax–Milgram theorem, so for all u ∈ H1(R3), a unique φu ∈ D1,2(R3) is gained, such
that –�φ = K(x)u2 and, when inserted into the first equation, it gives

–�u + V (x)u – u�
(
u2) + K(x)φuu = g(x, u).

Actually, for each u ∈ H1(R3), we define an operator Tu on D1,2(R3) by

Tu(v) =
∫
R3

K(x)u2v dx.

Hölder inequality and the fact K ∈ L2(R3) yield that there is a constant C > 0 such that for
every v ∈ D1,2(R3),

∣∣Tu(v)
∣∣ ≤ C|K |2‖u‖2‖v‖D1,2(R3).

Hence, by the Riesz representation theorem, there exists a unique φu ∈ D1,2(R3) such that
∫
R3

∇φu∇v dx =
∫
R3

K(x)u2v dx.
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Thus φu is a weak solution of –�φu = K(x)u2 and can be represented by

φu(x) =
1

4π

∫
R3

K(y)
|x – y|u2(y) dy.

Moreover, it is obvious that

‖φu‖D1,2(R3) = ‖Tu‖L(D1,2,R) ≤ C|K |2‖u‖2.

Also there is∫
R3

K(x)φu(x)u2 dx ≤ C|K |2‖u‖2‖φ‖D1,2(R3) ≤ C|K |22‖u‖4. (2.1)

Moreover,

∣∣φu(x)
∣∣ =

1
4π

∣∣∣∣
∫

B1(0)

K(y)
|x – y|u2(y) dy +

∫
Bc

1(0)

K(y)
|x – y|u2(y) dy

∣∣∣∣
≤ 1

4π

(
|K |∞

(∫
B1(0)

1
|x – y|2 dy

) 1
2 |u|24 + |K |4

(∫
Bc

1(0)

1
|x – y|4 dy

) 1
4 |u|24

)

< C(K)|u|24.

Then∫
R3

K(x)φuu2 dx ≤ |φu|∞|K |2|u|24 ≤ C(K)|K |2|u|44. (2.2)

Let us now define the operator � : H1(R3) → D1,2(R3) as

�[u] = φu,

then � has the following properties [11]:

Lemma 2.1
(1) � is continuous and maps bounded sets into bounded sets;
(2) �[u] ≥ 0;
(3) If un ⇀ u in H1(R3), then �[un] ⇀ �[u] in D1,2(R3);
(4) �[tu] = t2�[u] for all t ∈R.

We observe that (1.1) is formally the Euler–Lagrange equation associated with the en-
ergy functional

J(u) =
1
2

∫
R3

(
1 + 2u2)|∇u|2 dx +

1
2

∫
R3

V (x)u2 dx

+
1
4

∫
R3

K(x)φuu2 dx –
∫
R3

G(x, u) dx.

From the variational point of view, the first difficulty associated with the problem (1.1)
is finding an appropriate function space where the functional J is well defined. In order
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to avoid the difficulty which is caused by the quasilinear term, we take advantage of the
change of variable introduced by [23], that is, we consider v = f –1(u), where f is defined by

f ′(t) =
1

(1 + 2f 2(t)) 1
2

on [0, +∞),

f (t) = –f (–t) on (–∞, 0],

having the following properties, which have been proved in [9, 14].

Lemma 2.2 The function f satisfies the following properties:
(1) f is uniquely defined, C∞, and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈R;
(3) |f (t)| ≤ |t| for all t ∈ R;
(4) f (t)/t → 1 as t → 0;
(5) f (t)/

√
t → 21/4 as t → +∞;

(6) f (t)/2 ≤ tf ′(t) ≤ f (t) for all t ≥ 0;
(7) |f (t)| ≤ 21/4|t|1/2 for all t ∈R;
(8) f 2(t)/2 ≤ f (t)f ′(t)t ≤ f 2(t) for all t ∈R;
(9) There exists a positive constant C such that

∣∣f (t)
∣∣ ≥

⎧⎨
⎩C|t|, |t| ≤ 1,

C|t|1/2, |t| ≥ 1;

(10) |f (t)f ′(t)| ≤ 1/
√

2 for all t ∈R;
(11) The function f (t)f ′(t)t–1 is strictly decreasing for all t > 0;
(12) The function f p(t)f ′(t)t–1 is strictly increasing for all p ≥ 3 and t > 0.

So, after the change of variables, from J we obtain the following functional:

I(v) =
1
2

∫
R3

|∇v|2 dx +
1
2

∫
R3

V (x)f 2(v) dx

+
1
4

∫
R3

K(x)φf (v)f 2(v) dx –
∫
R3

G
(
x, f (v)

)
dx,

(2.3)

which is well defined in H1(R3) and belongs to C1 under the hypotheses (V ), (K), (g1), and
(g2). Moreover, the critical points of I are the weak solutions of the problem

–�v + V (x)f (v)f ′(v) + K(x)φf (v)f (v)f ′(v) = g
(
x, f (v)

)
f ′(v), v ∈ H1(

R
3),

that is,

〈
I ′(v), w

〉
=

∫
R3

(∇v∇w + V (x)f (v)f ′(v)w
)

dx

+
∫
R3

K(x)φf (v)f (v)f ′(v)w dx –
∫
R3

g
(
x, f (v)

)
f ′(v)w dx = 0,

for all v, w ∈ H1(R3). It has been shown in [9] that if v ∈ H1(R3) is a critical point of the
functional I , then u = f (v) ∈ H1(R3) and u is a solution of (1.1).
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We also observe that, in order to obtain a nonnegative solution for (1.1), we set g(x, s) =
0 for all x ∈ R

3, s < 0. Indeed, let v be a critical point of I . Taking w = –v–, where v– =
max{–v, 0}, we get

∫
R3

(∣∣∇v–∣∣2 + V (x)f (v)f ′(v)
(
–v–))

dx = 0.

Since f (v)(–v–) ≥ 0, we have

∫
R3

∣∣∇v–∣∣2 dx = 0 and
∫
R3

V (x)f (v)(–v–)√
1 + 2f 2(v)

dx = 0.

Hence we may conclude that v– = 0 almost everywhere in R
3 and, therefore, v = v+ ≥ 0.

As u = f (v), we conclude that u is a nonnegative solution for the problem (1.1).
Let

M =
{

v ∈ H1(
R

3) \ {0} :
〈
I ′(v), v

〉
= 0

}
.

Recall that M is called the Nehari manifold. We do not know whether M is of class C1

under our assumptions and therefore we cannot use the minimax theory directly on M.
To overcome this difficulty, we employ an argument developed in [27, 28].

3 Proof of the main results
We assume that (V ), (K), and (g1)–(g4) are satisfied from now on. Firstly, (g1) and (g2) imply
that for each ε > 0 there is Cε > 0 such that

∣∣g(x, u)
∣∣ ≤ ε|u| + Cε|u|p–1, for all u ∈R. (3.1)

By using (g2) and (g3), one can easily check that

G(x, u) ≥ 0 and g(x, u)u ≥ 4G(x, u) > 0 if u �= 0. (3.2)

For t > 0, let

h(t) = I(tu)

=
t2

2

∫
R3

|∇u|2 +
1
2

∫
R3

V (x)f 2(tu) +
1
4

∫
R3

K(x)φf (tu)f 2(tu) –
∫
R3

G
(
x, f (tu)

)
.

Lemma 3.1 For each u ∈ H1(R3) \ {0}, there exists a unique tu = t(u) > 0 such that m(u) :=
tuu ∈ M and I(m(u)) = maxt∈R+ I(tu).

Proof By (3.1) and Lemma 2.2(7), for ε sufficiently small,

h(t) ≥ t2

2

∫
R3

|∇u|2 +
1
2

∫
R3

V (x)f 2(tu) –
ε

2

∫
R3

f 2(tu) –
Cε

p

∫
R3

∣∣f (tu)
∣∣p

≥ t2

2

∫
R3

|∇u|2 – C1t
p
2

∫
R3

|u| p
2 ,

since p > 4 and u �= 0, so h(t) > 0 whenever t > 0 is small enough.
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Using Lemma 2.2, (3) and (7), and (2.2),

h(t) ≤ t2

2

∫
R3

|∇u|2 +
t2

2

∫
R3

V (x)u2 +
C(K)|K |2

4

∫
R3

∣∣f (tu)
∣∣4 –

∫
R3

G
(
x, f (tu)

)

≤ t2

2

∫
R3

|∇u|2 +
t2

2

∫
R3

V (x)u2 +
C(K)|K |2

2
t2

∫
R3

u2

– t2
∫
R3

G(x, f (tu))
f 4(tu)

· f 4(tu)
(tu)2 · u2,

then we can easily gain that h(t) → –∞ as t → ∞ according to (2.1), Lemma 2.2(5), (g4),
and Fatou’s lemma. Therefore, maxt>0 h(t) is achieved at some tu = t(u) > 0, so that h′(tu) =
0 and then tuu ∈ M.

It remains to show the uniqueness of tu. Suppose by contradiction that there exists a
t1 > 0 with tu �= t1 such that h′(t1) = I ′(t1u) = J ′(t1v) = 0, then we have

‖v‖2

(t1)2 + 4
∫
R3

v2|∇v|2 +
∫
R3

K(x)φvv2 =
∫
R3

g(x, t1v)
(t1v)3 v4,

where u = f –1(v). Together with

‖v‖2

(tu)2 + 4
∫
R3

v2|∇v|2 +
∫
R3

K(x)φvv2 =
∫
R3

g(x, tuv)
(tuv)3 v4,

this implies that

(
1

(t1)2 –
1

(tu)2

)
‖v‖2 =

(
g(x, t1v)
(t1v)3 –

g(x, tuv)
(tuv)3

)
v4,

contrary to (g3). �

Lemma 3.2
(1) There exists ρ > 0 such that c = infM I ≥ infSρ I > 0, where

Sρ = {u ∈ H1(R3) : ‖u‖ = ρ}.
(2) There exists α0 > 0 such that ‖u‖2 ≥ α0 for all u ∈ M.
(3) I is coercive on M, i.e., I(u) → ∞ as ‖u‖ → ∞, u ∈ M.

Proof (1) According to [15],
∫
R3 |∇u|2 +

∫
R3 V (x)f 2(u) ≥ C‖u‖2 whenever ‖u‖ ≤ ρ . By (3.1)

and Lemma 2.2, (3) and (7), we have

∫
R3

G
(
x, f (u)

) ≤ ε

2

∫
R3

f 2(u) +
Cε

p

∫
R3

∣∣f (u)
∣∣p

≤ ε

2

∫
R3

|u|2 +
C2Cε

p

∫
R3

|u| p
2 ≤ C3ε‖u‖2 + C4Cε‖u‖ p

2 ,

for sufficiently small ε,

I(u) ≥ C5‖u‖2 – C6‖u‖ p
2 ,
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and then infSρ I > 0 is obtained when ρ is small enough. The inequality infM I ≥ infSρ I is
a consequence of Lemma 3.1 since for every u ∈ M there is s > 0 such that su ∈ Sρ and
I(tuu) ≥ I(su).

(2) For u ∈ M, by Lemma 2.2(3) and (2.1), we have

0 < c ≤ I(u) =
1
2

∫
R3

|∇u|2 +
1
2

∫
R3

V (x)u2 + +
1
4

∫
R3

K(x)φuu2 –
∫
R3

G
(
x, f (u)

)

≤ 1
2

∫
R3

|∇u|2 +
1
2

∫
R3

V (x)u2 +
1
4

∫
R3

K(x)φuu2 ≤ 1
2
‖u‖2 + C|K |22‖u‖4,

which means that there exists α0 > 0 such that ‖u‖2 ≥ α0.
(3) Arguing indirectly, let (un) ⊂ M be a sequence such that ‖un‖ → ∞ and I(un) ≤ d for

some d. Set vn = un/‖un‖. Then ‖vn‖ = 1 and, passing to a subsequence, vn ⇀ v in H1(R3)
and vn → v a.e. in R

3. Suppose

lim
n→∞ max

y∈R3

∫
B1(y)

v2
n = 0, (3.3)

where B1(x) is the ball in R
3 with center x and radius 1, then it follows that vn → 0 in

Lr(R3) for 2 < r < 6 by Lions’ lemma (cf. [29, Lemma 1.21]). Using (3.1) and Lemma 2.2,
(3) and (7), we see that G(x, f (svn)) → 0 for all s ∈ R. Hence by Lemma 2.2(9),

d ≥ I(un) ≥ I(svn)

=
s2

2

∫
R3

|∇vn|2 +
1
2

∫
R3

V (x)f 2(svn) +
1
4

∫
R3

K(x)φf (svn)f 2(svn) –
∫
R3

G
(
x, f (svn)

)

≥ s2

2

∫
R3

|∇vn|2 +
C2s2

2

∫
|svn|≤1

V (x)v2
n –

∫
R3

G
(
x, f (svn)

)

=
s2

2

∫
R3

|∇vn|2 +
C2s2

2

∫
R3

V (x)v2
n –

C2

2

∫
|svn|≥1

V (x)(svn)2 –
∫
R3

G
(
x, f (svn)

)

≥ s2

2
min

{
1, C2} – C7

∫
R3

(svn)p/2 –
∫
R3

G
(
x, f (svn)

)

→ s2

2
min

{
1, C2}.

This yields a contradiction if we choose a sufficiently large s. Hence (3.3) is not true and,
since I and M are invariant under the action of Z3, after a suitable Z3 translation it follows
that vn → v �= 0 in L2

loc(Z3). Since |un(x)| → ∞ if v(x) �= 0, it follows from Lemma 2.2(5),
(g4), and Fatou’s lemma that

∫
R3

G(x, f (un))
‖un‖2 =

∫
R3

G(x, f (un))
f 4(un)

· f 4(un)
u2

n
· v2

n → ∞,

and also, by Lemma 2.2, (3) and (7), as well as (2.2),

0 ≤ I(un)
‖un‖2 ≤ 1

2
+

C(K)|K |2|un|22
2‖un‖2 –

∫
R3

G(x, f (un))
‖un‖2 → –∞,

thus the proof is completed. �
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Lemma 3.3 If V is a compact subset of H1(R3) \ {0}, then there exists R > 0 such that I ≤ 0
on R

+V \ BR(0).

Proof We may assume without loss of generality that V ⊂ S. Arguing by contradiction,
suppose there exist un ∈ V and wn = m(un) = tnun such that I(wn) ≥ 0 and tn → ∞ as
n → ∞. Passing to a subsequence, there is u ∈ H1(R3) with ‖u‖ = 1 such that un → u ∈ S.
Since |wn(x)| → ∞ if u(x) �= 0, then by (2.2) and Lemma 2.2(7) it follows that

∫
R3 K(x)φf (wn)f 2(wn)

‖wn‖2 ≤ C(K)|K |2|f (wn)|44
‖wn‖2 ≤ 2C(K)|K |2|wn|22

‖wn‖2 ,

so by (g4), Lemma 2.2(5), and Fatou’s lemma we get that

∫
R3

G(x, f (wn))
‖wn‖2 =

∫
R3

G(x, f (wn))u2
n

w2
n

=
∫
R3

G(x, f (wn))
f 4(wn)

· f 4(wn)
w2

n
· u2

n → ∞.

Therefore, by Lemma 2.2(3),

0 ≤ I(wn)
‖wn‖2 ≤ 1

2
+

C(K)|K |2|wn|22
2‖wn‖2 –

∫
R3

G(x, f (wn))
‖wn‖2 → –∞,

a contradiction. �

Recall that S is the unit sphere in H1(R3) and define the mapping m : S → M by setting

m(w) := tww,

where tw is as in Lemma 3.1. Note that ‖m(w)‖ = tw. Lemmas 3.4 and 3.5 below are taken
from [28] (see Proposition 8 and Corollary 10 there). That the hypotheses in [28] are sat-
isfied is a consequence of Lemmas 3.1, 3.2 and 3.3 above. Indeed, if h(t) = I(tw) and w ∈ S,
then h′(t) > 0 for 0 < t < tw and h′(t) < 0 for t > tw by Lemma 3.1, tw ≥ δ > 0 by Lemma 3.2,
and tw ≤ R for w ∈ V ⊂ S by Lemma 3.3.

Lemma 3.4 The mapping m is continuous. Moreover, the mapping m is a homeomorphism
between S and M, and the inverse of m is given by m–1(u) = u

‖u‖ .

We shall consider the functional � : S →R given by

�(w) = I
(
m(w)

)
.

Lemma 3.5
(1) � ∈ C1(S,R) and

〈
� ′(w), z

〉
=

∥∥m(w)
∥∥〈

I ′(m(w)
)
, z

〉
for all z ∈ Tw(S) =

{
v ∈ H1(

R
3), 〈v, w〉 = 0

}
.

(2) If (wn) is a Palais–Smale sequence for � , then (m(wn)) is a Palais–Smale sequence
for I . If (un) ⊂ M is a bounded Palais–Smale sequence for I , then (m–1(un)) is a
Palais–Smale sequence for � .
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(3) w is a critical point of � if and only if m(w) is a nontrivial critical point of I .
Moreover, the corresponding values of � and I coincide and infS � = infM I .

(4) If I is even, then so is � .

Lemma 3.6 If un ⇀ u in H1(R3), then
(1)

∫
R3 K(x)φf (un)f (un)f ′(un)un → ∫

R3 K(x)φf (u)f (u)f ′(u)u;
(2)

∫
R3 K(x)φf (un)f 2(un) → ∫

R3 K(x)φf (u)f 2(u).

Proof (1) Because

∫
R3

∣∣K(x)φf (un)f (un)f ′(un)un – K(x)φf (u)f (u)f ′(u)u
∣∣

≤ |K |∞
∫
R3

∣∣φf (un)f (un)f ′(un)un – φf (u)f (u)f ′(u)u
∣∣

≤ |K |∞
(∫

R3

∣∣(φf (un) – φf (u))f (un)f ′(un)un
∣∣

+
∫
R3

∣∣φf (u)
[
f (un)f ′(un)un – f (u)f ′(un)un

]∣∣
+

∫
R3

∣∣φf (u)
[
f (u)f ′(un)un – f (u)f ′(u)un

]∣∣ +
∫
R3

∣∣φf (u)
[
f (u)f ′(u)un – f (u)f ′(u)u

]∣∣)

= |K |∞(I1 + I2 + I3 + I4).

If un is bounded in H1(R3), then passing to a subsequence gives that un ⇀ u in H1(R3)
and un → u a.e. in R

3. Then by (2.1) it follows that φun is bounded in D1,2(R3), and also φun

is bounded in L6(R3). Then by Lemma 2.2(3) we obtain that φf (un) is bounded in L6(R3),
so that φf (un) – φf (un) is bounded in L6(R3). Suppose φf (un) – φf (un) ⇀ u0. Since un → u a.e.
in R

3 and due to the uniqueness of limit, we have φf (un) ⇀ φf (un) in L6(R3). Moreover, by
Lemma 2.2, (8) and (3),

∫
R3

∣∣f (un)f ′(un)un
∣∣ 6

5 ≤
∫
R3

|un| 12
5 ≤ C8‖un‖ 12

5 ,

so f (un)f ′(un)un ∈ L
6
5 (R3), and then I1 → 0. Moreover, I2 → 0, I3 → 0, and I4 → 0 can be

obtained in a similar way.
(2) Observe that

∫
R3

K(x)
∣∣φf (un)f 2(un) – φf (u)f 2(u)

∣∣
≤ |K |∞

∫
R3

∣∣φf (un)f 2(un) – φf (u)f 2(u)
∣∣

≤ |K |∞
(∫

R3
|φf (un) – φf (u)|f 2(un) +

∫
R3

∣∣φf (u)
(
f 2(un) – f 2(u)

)∣∣)

= |K |∞(I5 + I6).

We also can use the same method, which was used in (1) to prove I5 → 0 and I6 → 0. And
then the proof is completed. �
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Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 We take advantage of an argument in [27]. Let c = infM I . It follows
from Lemma 3.2(1) that c > 0. Moreover, if u0 ∈ M satisfies I(u0) = c, then m–1(u0) ∈ S is a
minimizer of � and therefore a critical point of � , thus, by Lemma 3.5(3), u0 is a critical
point of I . It remains to show that there exists a minimizer u of I|M . By Ekeland’s variational
principle [29], there exists a sequence (wn) ⊂ S with �(wn) → c and � ′(wn) → 0 as n → ∞.
Set un = m(wn), then, from Lemma 3.5(2), we conclude that I(un) → c and I ′(un) → 0 as
n → ∞. Obviously, (un) is bounded by Lemma 3.2(3). Therefore un ⇀ u after passing to a
subsequence. Suppose

lim
n→∞ sup

y∈R3

∫
B1(y)

u2
n dx = 0, (3.4)

then by P.L. Lion’s concentration compactness lemma (see [29, Lemma 1.21]) we get

un → 0 in Lr(
R

3) for 2 < r < 6. (3.5)

Furthermore, by Lemma 2.2, (6), (8) and (9),

o
(‖un‖

)
=

〈
I ′(un), un

〉
=

∫
R3

|∇un|2 +
∫
R3

V (x)f (un)f ′(un)un +
∫
R3

K(x)φf (un)f (un)f ′(un)un dx

–
∫
R3

g
(
x, f (un)

)
f ′(un)un

≥ 1
2

∫
R3

|∇un|2 +
1
2

∫
R3

V (x)f 2(un) +
1
2

∫
R3

K(x)φf (un)f 2(un)

–
∫
R3

g
(
x, f (un)

)
f (un)

≥ 1
2

∫
R3

|∇un|2 +
1
2

∫
|un|≤1

V (x)f 2(un) –
∫
R3

g
(
x, f (un)

)
f (un)

≥ 1
2

∫
R3

|∇un|2 +
C2

2

∫
|un|≤1

V (x)u2
n –

∫
R3

g
(
x, f (un)

)
f (un)

=
1
2

∫
R3

|∇un|2 +
C2

2

∫
R3

V (x)u2
n –

C2

2

∫
|un|≥1

V (x)u2
n –

∫
R3

g
(
x, f (un)

)
f (un)

≥ 1
2

min
{

1, C2}‖un‖2 –
C2

2

∫
|un|≥1

V (x)u2
n –

∫
R3

g
(
x, f (un)

)
f (un)

≥ 1
2

min
{

1, C2}‖un‖2 – C8

∫
R3

(un)p/2 –
∫
R3

g
(
x, f (un)

)
f (un).

According to (3.1) and using Lemma 2.2, (3) and (7), then

g
(
x, f (un)

)
f (un) ≤ ε

∣∣f (un)
∣∣2 + Cε

∣∣f (un)
∣∣p ≤ ε|un|2 + 2

p
4 Cε|un| p

2 ,

which means that
∫
R3 g(x, f (un))f (un) → 0. Moreover,

o
(‖un‖

)
=

〈
I ′(un), un

〉 ≥ 1
2

min
{

1, C2}‖un‖2 – o
(‖un‖

)
,
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which yields a contradiction, so that (3.4) cannot hold. Thus, after a suitable Z
3-

translation, up to a subsequence we have un ⇀ u �= 0 and it is well known that I ′(u) = 0.
Accordingly, u ∈ M, and also that I(u) ≥ c. In order to complete the proof, we only need
to show that I(u) ≤ c. Note that

c + o(1)

= I(un) –
1
2
〈
I ′(un), un

〉
=

1
2

∫
R3

|∇un|2 +
1
2

∫
R3

V (x)f 2(un) +
1
4

∫
R3

K(x)φf (un)f 2(un) –
∫
R3

G
(
x, f (un)

)

–
(

1
2

∫
R3

|∇un|2 +
1
2

∫
R3

V (x)f (un)f ′(un)un

+
1
2

∫
R3

K(x)φf (un)f (un)f ′(un)un –
1
2

∫
R3

g
(
x, f (un)

)
f ′(un)un

)

=
1
2

∫
R3

V (x)
(
f 2(un) – f (un)f ′(un)un

)

+
(

1
2

∫
R3

g
(
x, f (un)

)
f ′(un)un –

∫
R3

G
(
x, f (un)

))

+
(

1
4

∫
R3

K(x)φf (un)f 2(un) –
1
2

∫
R3

K(x)φf (un)f (un)f ′(un)un

)
.

From Lemma 2.2(8) and Fatou’s lemma, we have

lim
n→∞ inf

∫
R3

V (x)
(
f 2(un) – f (un)f ′(un)un

)

≥
∫
R3

lim
n→∞ inf V (x)

(
f 2(un) – f (un)f ′(un)un

)

=
∫
R3

V (x)
(
f 2(u) – f (u)f ′(u)u

)

and, by Lemma 2.2(6), (3.2), and Fatou’s lemma,

lim
n→∞ inf

(
1
2

∫
R3

g
(
x, f (un)

)
f ′(un)un –

∫
R3

G
(
x, f (un)

))

≥
∫
R3

lim
n→∞ inf

(
1
2

g
(
x, f (un)

)
f ′(un)un – G

(
x, f (un)

))

=
1
2

∫
R3

g
(
x, f (u)

)
f ′(u)u –

∫
R3

G
(
x, f (u)

)
.

Therefore, by Lemma 3.6, we have

c + o(1) = I(un) –
1
2
〈
I ′(un), un

〉 ≥ I(u) –
1
2
〈
I ′(u), u

〉
= I(u) + o(1),

which implies I(u) ≤ c, thus Theorem 1.1 is proved. �

In the following, we devote ourselves to the proof of the multiplicity result of Theo-
rem 1.2. In addition to the assumptions (V ), (K), and (g1)–(g4), we also suppose that g is
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odd in u. Hereafter we use the following notation:

H :=
{

w ∈ S : � ′(w) = 0
}

, Hd :=
{

w ∈ H : �(w) = d
}

.

Denote by F := H/Z the set consisting of arbitrarily chosen representatives of the orbit
of H . Since � is even, we may assume F = –F . As in Remark 2.12 of [27], since m, m–1

are equivariant and I , � are invariant with respect to the action of Z3, it follows from
Lemma 3.5(3) that the critical orbits O(u) ⊂ M of I are in one-to-one correspondence
with the critical orbits O(w) ⊂ S of � . Hence the proof of Theorem 1.2 will be completed
once we show that � has infinitely many critical orbits, i.e., the set F is infinite. Arguing
indirectly, from now on we assume that

F is a finite set. (3.6)

Lemma 3.7 The mapping m–1 defined in Lemma 3.4 is Lipschitz continuous.

Proof We use an argument from [27]. By Lemma 3.2(2), we have, for all u, v ∈ M,

∥∥m–1(u) – m–1(v)
∥∥ =

∥∥∥∥ u
‖u‖ –

v
‖v‖

∥∥∥∥
=

∥∥∥∥u – v
‖u‖ +

(‖v‖ – ‖u‖)v
‖u‖‖v‖

∥∥∥∥
≤ 2

‖u‖‖u – n‖ ≤ 2√
α0

‖u – n‖. �

According to [27], we shall show that Palais–Smale sequences have a certain discreteness
property which yields some perfect properties of the corresponding pseudogradient flow
(see Lemma 3.11 below). Firstly, we need some preparations involving H . The following
result has been proved in Lemma 2.13 of [27]:

Lemma 3.8 k := inf{‖v – w‖ : v, w ∈ H , v �= w} > 0.

Lemma 3.9 If {u1
n}, {u2

n} are bounded in H1(R3), then
(1) there exists C > 0, depending only on the bound on ‖u1

n‖ and ‖u2
n‖, such that

∫
R3

∣∣∇(
u1

n – u2
n
)∣∣2 +

∫
R3

V (x)
[
f ′(u1

n
)
f
(
u1

n
)

– f ′(u2
n
)
f
(
u2

n
)](

u1
n – u2

n
)

≥ C
∫
R3

∣∣∇(
u1

n – u2
n
)∣∣2 + V (x)

(
u1

n – u2
n
)2 ≡ C

∥∥u1
n – u2

n
∥∥2;

(2) for each ε > 0, there exists Cε > 0, depending only on the bound on ‖u1
n‖ and ‖u2

n‖,
such that∣∣∣∣

∫
R3

hn(x)
(
u1

n – u2
n
)∣∣∣∣ ≤ ε

∥∥u1
n – u2

n
∥∥ + Cε

∣∣u1
n – u2

n
∣∣ p

2
,

where

hn(x) := g
(
x, f

(
u1

n
))

f ′(u1
n
)

– g
(
x, f

(
u2

n
))

f ′(u2
n
)

= h1
n(x) – h2

n(x);
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(3) there exists C(K) > 0, depending only on the bound on ‖u1
n‖ and ‖u2

n‖, such that

∣∣∣∣
∫
R3

K(x)ζn(x)
(
u1

n – u2
n
)∣∣∣∣ ≤ C(K)

∣∣u1
n – u2

n
∣∣
3,

where

ζn(x) = φf (u1
n)f

(
u1

n
)
f ′(u1

n
)

– φf (u2
n)f

(
u2

n
)
f ′(u2

n
)
.

Proof The proof of (1) and (2) can be found in [15], so we only prove (3). According to
Lemma 2.2, (1) and (3),

∣∣∣∣
∫
R3

K(x)ζn(x)
(
u1

n – u2
n
)∣∣∣∣

≤ |K |∞
∣∣∣∣
∫
R3

(
φu1

n
u1

n + φu2
n
u2

n
)(

u1
n – u2

n
)∣∣∣∣

≤ |K |∞
(|φu1

n
|6

∣∣u1
n
∣∣
2

∣∣u1
n – u2

n
∣∣
3 + |φu2

n
|6

∣∣u2
n
∣∣
2

∣∣u1
n – u2

n
∣∣
3

)
≤ C(K)

∣∣u1
n – u2

n
∣∣
3. �

Lemma 3.10 Let d ≥ c. If (v1
n), (v2

n) ⊂ �d are two Palais–Smale sequences for � , then either
‖v1

n – v2
n‖ → 0 as n → ∞ or lim supn→∞ ‖v1

n – v2
n‖ ≥ ρ(d) > 0, where ρ(d) depends on d but

not on the particular choice of Palais–Smale sequences.

Proof Our argument is an adaptation of the proof of Lemma 2.14 in [27]. Let u1
n = m(v1

n)
and u2

n = m(v2
n) for n ∈ N. Then by Lemmas 3.5(2) and 3.2(3), both sequences (u1

n), (u2
n) ⊂

Id ∩M are bounded Palais–Smale sequences for I . We will consider two cases: either (u1
n –

u2
n) is vanishing, i.e., for each r > 0,

lim
n→∞ max

y∈R3

∫
Br (y)

∣∣u1
n – u2

n
∣∣2 = 0, (3.7)

or nonvanishing, i.e., for each r, δ > 0 and any sequence (yn) ⊂R
3, we have that

lim
n→∞

∫
Br (yn)

∣∣u1
n – u2

n
∣∣2 ≥ δ > 0. (3.8)

Case 1: (u1
n – u2

n) is vanishing. Then u1
n – u2

n → 0 in Lr(R3) for r ∈ (2, 6) by P.L. Lion’s lemma
(see [29, Lemma 1.21]). By Lemma 3.9,

C
∥∥u1

n – u2
n
∥∥2

≤
∫
R3

∣∣∇(
u1

n – u2
n
)∣∣2 +

∫
R3

V (x)
[
f ′(u1

n
)
f
(
u1

n
)

– f ′(u2
n
)
f
(
u2

n
)](

u1
n – u2

n
)

=
〈
I ′(u1

n
)
, u1

n – u2
n
〉
–

〈
I ′(u2

n
)
, u1

n – u2
n
〉

–
∫
R3

K(x)ζn(x)
(
u1

n – u2
n
)

+
∫
R3

hn(x)
(
u1

n – u2
n
)

≤ C(K)
∣∣u1

n – u2
n
∣∣
3 + 2ε

∥∥u1
n – u2

n
∥∥ + Cε

∣∣u1
n – u2

n
∣∣ p

2
,
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where C, C(K), Cε do not depend on the choice of ε. Therefore, lim supn→∞ ‖u1
n – u2

n‖2 ≤
lim supn→∞ 2ε‖u1

n – u2
n‖ for each ε > 0, and so that ‖u1

n – u2
n‖ → 0. As a consequence of

Lemma 3.7, m–1 is Lipschitz continuous so that ‖v1
n – v2

n‖ = ‖m–1(u1
n) – m–1(u2

n)‖ → 0 as
n → ∞.

Case 2: (u1
n – u2

n) is nonvanishing. Since m, m–1 and I ′, � ′ are all equivariant with respect
to translation of the form u 
→ u(· – k) with k ∈ Z

3, we may assume that the sequence (yn)
is bounded in R

3. Passing to a subsequence once more, there exist u1, u2 and α1, α2 such
that

u1
n ⇀ u1, u2

n ⇀ u2,
∥∥u1

n
∥∥ → α1,

∥∥u2
n
∥∥ → α2,

and I ′(u1) = I ′(u2) = 0. By (3.8) we have that u1 �= u2, and it follows from Lemma 3.2(2) that

√
α0 ≤ αi ≤ ν(d) := sup

{‖u‖ : u ∈ Id ∩ M
}

, i = 1, 2

(that ν(d) < ∞ is a consequence of Lemma 3.3(3)).
Suppose u1, u2 �= 0, then u1, u2 ∈ M. We put v1 := m–1(u1) and v2 := m–1(u2). Then

v1, v2 ∈ H and we have

lim inf
n→∞

∥∥v1 – v2∥∥ = lim inf
n→∞

∥∥∥∥ u1

‖u1‖ –
u2

‖u2‖
∥∥∥∥ ≥

∥∥∥∥ u1

α1 –
u2

α2

∥∥∥∥ =
∥∥β1v1 – β2v2∥∥,

where

β1 :=
‖u1‖
α1 ≥

√
α0

ν(d)
and β2 :=

‖u2‖
α2 ≥

√
α0

ν(d)
.

Since ‖|v1‖ = ‖|v2‖ = 1, it is easy to see from the inequalities above and Lemma 3.8 that

lim inf
n→∞

∥∥v1 – v2∥∥ ≥ ∥∥β1v1 – β2v2∥∥ ≥ min{β1,β2}
∥∥v1 – v2∥∥ ≥

√
α0k

ν(d)
.

It remains to consider the case where either u1 = 0 or u2 = 0. If u2 = 0, then u1 �= 0 and

lim inf
n→∞

∥∥v1 – v2∥∥ = lim inf
n→∞

∥∥∥∥ u1

‖u1‖ –
u2

‖u2‖
∥∥∥∥ ≥ u1

α1 ≥
√

α0

ν(d)
.

The case u1 = 0 can be treated similarly. The proof is completed. �

As in [27], it is well known that � admits a pseudogradient vector field Q : S \ H → TS
(see [26, Lemma II 3.9]). Let η : G → S \ H be the corresponding flow defined by

⎧⎨
⎩

d
dt η(t, w) = –Q(η(t, w)),

η(0, w) = w,

where

G :=
{

(t, w) : w ∈ S \ H , T–(w) < t < T+(w)
} ⊂R× (S \ H)
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and T–(w) < 0, T+(w) > 0 are the maximal existence times for the trajectory t → η(t, w) in
negative and positive direction. Note that η is odd in w because Q is, and t → �(η(t, w))
is strictly decreasing by the properties of a pseudogradient.

Let P ⊂ S, δ > 0, and define

Uδ(P) :=
{

w ∈ S : dist(w, P) < δ
}

.

Below we summarize the properties of � and η which will be needed in the proof of The-
orem 1.2.

Lemma 3.11 Let d ≥ c, then for every δ > 0 there exists ε = ε(δ) > 0 such that
(1) �d+ε

d–ε = Hd and
(2) limt→T+(w) �(η(t, w)) < d – ε for w ∈ �d+ε \ Uδ(Hd).

Proof The claim (1) is an immediate consequence of (3.6) for ε > 0 small enough. Claim
(2) has been proved in [27], see Lemmas 2.15 and 2.16 there. The argument is exactly the
same except that S+ should be replaced with S. �

We shall need the notion of genus (c.f. [26]). Set

� := {A ⊂ S : A is closed and A = –A}.

Let γ (A) denote the usual Krasnoselskii genus of A with the definition that the smallest
integer k such that there exists an odd continuous mapping σ : A →R

k \ {0}. If there is no
such mapping for any k, then γ (A) := +∞. Moreover, γ (∅) = 0.

Proof of Theorem 1.2 (Multiplicity) We consider the nondecreasing sequence of
Lusternik–Schinireman values for � defined by

ck := inf
{

d ∈R : γ
(
�d) ≥ k

}
, k ∈N.

As in [26], we claim that

Hck �= ∅ and ck < ck+1 for all k ∈N. (3.9)

If this is true, then it follows that there exists an infinite sequence (±wk) of pairs of geo-
metrically distinct critical points of � with �(wk) = ck , contrary to (3.6), and our proof is
completed.

To prove (3.9), let k ∈N and put d = ck . From Lemma 3.8, Hd is either empty or a discrete
set, hence γ (Kd) = 0 or 1. By the continuity property of the genus, there exists 0 < δ < k

2
such that γ (U) = γ (Kd), where U := Uδ(Kd). For such δ, choose ε > 0 such that the con-
clusions of Lemma 3.11 hold. Then for each w ∈ �d+ε \ U there exists t ∈ [0, T+(w)) with
�(η(t, w)) < d – ε, so we may denote the smallest time for which �(η(t, w)) ≤ d – ε by
e(w). Since d – ε is not a critical value of � by Lemma 3.11, it is easy to see by the im-
plicit function theorem that e is a continuous mapping and, since � is even, e(–w) = e(w)
(see Lemma 3.5(4)). As a consequence, the mapping h : �d+ε \ U → �d–ε satisfying
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h(w) = η(e(w), w) is odd and continuous, so it follows from the properties of the genus
and the definition of ck that γ (�d+ε \ U) ≤ γ (�d–ε) ≤ k – 1, which implies

γ
(
�d+ε

) ≤ γ (U) + k – 1 = γ (Kd) + k – 1. (3.10)

If γ (Kd) = 0, then from above we have γ (�d+ε) ≤ k – 1, contrary to the definition of ck .
Therefore, γ (Kd) = 1 and so Kd �= ∅. Suppose ck+1 = ck , then by (3.10), the definition of
d = ck and of ck+1 we deduce that γ (Kd) ≥ 2, contrary to the fact that γ (Kd) = 1. Hence
ck < ck+1 and so (3.9) is obtained. The proof is completed. �
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