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Abstract
In this paper, we are concerned with the eigenvalue gap and eigenvalue ratio of the
Dirichlet conformable fractional Sturm–Liouville problems. We show that this kind of
differential equation satisfies the Sturm–Liouville property by the Prüfer substitution.
That is, the nth eigenfunction has n – 1 zero in (0,π ) for n ∈N. Then, using the
homotopy argument, we find the minimum of the first eigenvalue gap under the
class of single-well potential functions and the first eigenvalue ratio under the class of
single-barrier density functions. The result of the eigenvalue gap is different from the
classical Sturm–Liouville problem.

MSC: Primary 34A08; secondary 34B24; 26A33

Keywords: Conformable fractional derivatives; Sturm–Liouville problem; Eigenvalue
gap; Eigenvalue ratio

1 Introduction
Consider the Sturm–Liouville problem with conformable fractional derivatives of order
α, 0 < α ≤ 1,

–Dα
x Dα

x y + q(x)y = λρ(x)y, 0 < x < π ,

y(0) = y(π ) = 0.

Here, λ is the spectral parameter, ρ(x), q(x) ∈ L2
α(0,π ) are real, ρ(x) > 0 a.e., and Dα

x is the
conformable fractional derivative of order α, 0 < α ≤ 1. This type of fractional deriva-
tive was first studied by Khalil et al. in 2014 [17]. One can also see [1, 6] for some basic
properties and main results. The conformable fractional Sturm–Liouville problems (CF-
SLP) have been studied in various areas of science and in many fields in engineering, see
[4, 11, 13] and the references therein. In particular, Zhao and Luo [21] gave physical and
geometrical interpretations of the conformable derivative and generalized the definition
of conformable fractional derivative by means of linear extended Gâteaux derivative to
general conformable fractional derivative.
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In 2017, Al-Refai and Abdeljawad [3] showed that the eigenvalues of the CFSLP with
separated boundary conditions which include conformable fractional derivatives of order
α, 1/2 < α ≤ 1, are all real and simple. In particular, the eigenfunctions corresponding to
distinct eigenvalues are α-orthogonal with respect to the weight function ρ(x). They also
gave the fractional Rayleigh quotient to identify the eigenvalues. Recently, Mortazaasl and
Akbarfam [19] investigated the trace formula of the eigenvalues and studied the inverse
nodal problem of the CFSLP with conformable fractional boundary conditions of order
α, 0 < α ≤ 1. They showed that the eigenvalues of the CFSLP with separated boundary
conditions are all real and simple, and the nth eigenfunction has precisely n – 1 nodes
in the interval (0,π ) for sufficiently large n. They also solved the uniqueness problem of
the inverse nodal problem and gave a reconstruction formula by using the nodal data.
Meanwhile, Adalar and Ozkan [2] studied the inverse spectral problems of the CFSLP and
gave uniqueness theorems according to the Weyl function, two eigenvalues-sets, and the
sequences which consist of eigenvalues and norming constants.

For the classical Sturm–Liouville problem –y′′ + q(x)y = λρ(x)y, the optimal estimates of
eigenvalue gaps and eigenvalue ratios have attracted much attention for a long time, see
[5, 10, 14–16, 18]. What we call the dual problem here is the focus on the issue related to
the eigenvalue gap of the Schrödinger equation –y′′ + q(x)y = λy and the eigenvalue ratio of
the string equation –y′′ = λρ(x)y. It was showed that, for the Dirichlet Schrödinger equa-
tion, the constant potential function gives the minimal eigenvalue gaps λ2 – λ1 when the
potential function q is assumed to be convex [18], symmetric single-well [5], or single-well
[14]. On the restriction of the space E[h, H , M] ≡ {q : h ≤ q ≤ H ,

∫ π

0 q(x) dx = M}, the sym-
metric 1-step function gives the minimal eigenvalue gap [10]. On the other hand, for the
Dirichlet string equation, the constant density function gives the minimal eigenvalue ra-
tio λ2/λ1 when the density function ρ is assumed to be concave, symmetric single-barrier
[15], or single-barrier [14]. On the restriction of the space E[h, H , M], the symmetric 1-step
function gives the minimal eigenvalue ratio [16]. It shall be mentioned that Cheng et al. [9]
in 2014 investigated the dual eigenvalue problems of the Dirichlet Sturm–Liouville prob-
lem with the p-Laplacian operator and showed that λ2 – λ1 ≥ 2p – 1 for the Schrödinger
type equation with ρ(x) ≡ 1 and single-well potential functions, while λ2/λ1 ≥ 2p for the
string type equation with q(x) ≡ 0 and single-barrier density functions. In particular, the
equalities hold when the potential function and the density function are constant in each
case respectively.

In the present paper, we consider the first eigenvalue gap λ2 – λ1 and eigenvalue ratio
λ2/λ1 of the Dirichlet CFSLP. By the help of the Prüfer substitution, we show the nth eigen-
function has n – 1 zeros in (0,π ) for n ∈N. This generalizes one result of [19]. Then, using
the homotopy argument, we find the minimum of λ2 – λ1 and λ2/λ1.

Theorem 1.1 Consider the CFSLP with ρ(x) ≡ 1 and single-well potential functions with
a transition point at π/2. Then

λ2 – λ1 ≥ 3α2π2–2α

22–2α
.
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Theorem 1.2 Consider the CFSLP with q(x) ≡ 0 and single-barrier density functions with
a transition point at π/2. Then

λ2

λ1
≥ 4.

Equality holds if and only if ρ is constant.

Remark 1 By setting ρ(x) ≡ 1 and q(x) ≡ 0 for all x ∈ [0,π ], the first two eigenvalues are

√
λ1 = απ1–α ,

√
λ2 = 2απ1–α ,

and the corresponding normalized eigenfunctions are

y1(x, 0) =
√

2α

πα
sin

(
π1–αxα

)
, y2(x, 0) =

√
2α

πα
sin

(
2π1–αxα

)
.

We find that the eigenvalue gap is

λ2 – λ1 = 3α2π2–2α ,

while the eigenvalue ratio is

λ2

λ1
= 4.

This shows that the minimum of λ2 – λ1 does not occur at the constant potential. This
is not the same as the classical Sturm–Liouville problems. The constant potential is the
minimizer of λ2 – λ1 only if α = 1. However, the minimizer of the eigenvalue ratio is the
same as the classical Sturm–Liouville problems.

This paper is organized as follows. In Sect. 2, we give some basic definitions and prop-
erties of the conformable fractional calculus. We also give some lemmas that would help
us to prove the main theorems. Finally, we prove our main results, Theorems 1.1–1.2, in
Sect. 3.

2 Preliminaries
In this section, we first introduce basic definitions and properties of the conformable frac-
tional calculus theory that can be found in [1, 17].

Definition 2.1 Let f : [0,∞) →R be a given function and 0 < α ≤ 1.
(a) The conformation fractional derivative of f of order α is defined by

Dα
x f (x) ≡ lim

h→0

f (x + hx1–α) – f (x)
h

, Dα
x f (0) = lim

x→0+
Dα

x f (x)

for all x > 0.
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(b) The conformation fractional integral of f of order α is defined by

Iαf (x) ≡
∫ x

0
f (t) dαt =

∫ x

0
tα–1f (t) dt

for all x > 0. Here, the last integral is the usual Riemann improper integral.

Theorem 2.1 Let f , g be α-differentiable in x ∈ (0,∞).
(a) Dα

x (af + bg) = aDα
x f + bDα

x g for all a, b ∈R.
(b) Dα

x (xp) = αxp–α for p ∈R.
(c) Dα

x (c) = 0 for c ∈R.
(d) Dα

x (fg) = gDα
x f + fDα

x g .
(e) Dα

x (f /g) = gDα
x f –fDα

x g
g2 .

(f ) If f is differentiable, then Dα
x f (x) = x1–αf ′(x).

Next, we introduce two lemmas that will be used when we prove the main theorems.
In the proof of the main theorems, we transfer the problems of finding the eigenvalue
gap/ratio of the CFSLP to the problems of finding the zero gap/ratio of some trigonometric
equations. There is a p-Laplacian version in [9], and we set p = 2 in this paper.

Lemma 2.2 Define f (s) =
√

s cot( π
2
√

s) and let s1, s2 be the first two zeros of f (s) = –f (s – m)
for m > 0, respectively. Then

t2 – t1 ≥ 3.

Lemma 2.3 Define g(s) = 1
s tan(s) and let s1, s2 be the first two zeros of g(s) = –g(sm) for

m > 1, respectively. Then

s2

s1
≥ 2.

At the end of this section, we show that the CFSLP satisfies the Sturm–Liouville prop-
erty, i.e., the CFSLP has infinitely many eigenvalues {λn}n∈N satisfying

λ1 < λ2 < · · · < λn < · · · ,

and the corresponding eigenfunction y(x,λn) has n – 1 zeros in (0,π ). Define the modified
Prüfer substitution

y(x) = r(x) sin
(
θ (x)

)
, Dα

x y(x) = r(x) cos
(
θ (x)

)
.

Then

Dα
x y(x)
y(x)

=
cos(θ (x))
sin(θ (x))

.

We find

Dα
x

(
Dα

x y(x)
y(x)

)

=
y(x)Dα

x Dα
x y(x) – Dα

x y(x)Dα
x y(x)

y2(x)
=

(q(x) – λ)y2(x) – (Dα
x y(x))2

y2(x)
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and

Dα
x

(
cos(θ (x))
sin(θ (x))

)

=
–x1–αθ ′(x) sin2(θ (x)) – x1–αθ ′(x) cos2(θ (x))

sin2(θ (x))
= –

x1–αθ ′(x)
sin2(θ (x))

.

This implies that

θ ′(x) = –xα–1 sin2(θ (x)
) (q(x) – λρ(x))y2(x) – (Dα

x y(x))2

y2(x)

= xα–1[cos2(θ (x)
)

+
(
λρ(x) – q(x)

)
sin2(θ (x)

)]
.

It can be showed that F(x, t) ≡ xα–1[cos2(t) + (λρ(x) – q(x)) sin2(t)] is Lipschitz in t. In
particular, by analyzing the function θ ′, we can prove Lemma 2.4. The proof is similar to
[20, Lemma 2.3] so we omit it here. One can also refer to [7, 8, 12].

Lemma 2.4 Consider the CFSLP. We have the following results:
(a) The function θ (·,λ) satisfying θ (0,λ) = 0 is continuous and strictly increasing in λ;
(b) If θ (xn,λ) = nπ for n ∈N, then θ (x,λ) > nπ for all x > xn;
(c) For any a ∈ (0, 1],

lim
λ→∞ θ (a,λ) = ∞, lim

λ→–∞ θ (a,λ) = 0.

By Lemma 2.4, there exists a sequence of eigenvalues {λn}∞n=1 satisfying

λ1 < λ2 < · · · < λn < · · · → ∞

and the corresponding eigenfunction yn has n – 1 zeros in (0,π ), n ∈ N. In the rest of the
paper, we assume that {λn, yn(x)}n∈N are normalized eigenpairs, i.e.,

∫ π

0 ρ(t)|yn(t)|2 dαt = 1.
It can be showed that the first two eigenfunctions y1 and y2 intersect at most twice.

Lemma 2.5 The equation |y1(x)| = |y2(x)| has at most two solutions in (0,π ).

Proof Let x0 be the zero of y2(x) in (0,π ), and let φ1(x) = y2(x)/y1(x). Then, for x ∈ (0, x0),
we have

Dα
x

(
y2(x)
y1(x)

)

=
y1(x)Dα

x y2(x) – y2(x)Dα
x y1(x)

y2
1(x)

.

Let φ(x) = y1(x)Dα
x y2(x) – y2(x)Dα

x y1(x). Then

Dα
x φ(x) = y1(x)Dα

x
(
Dα

x y2(x)
)

– y2(x)Dα
x
(
Dα

x y1(x)
)

= (λ1 – λ2)ρ(x)y1(x)y2(x)

< 0

for x ∈ (0, x0). Since φ(0) = 0 and Dα
x φ(x) = x1–αφ′(x), we find that φ(x) is strictly decreas-

ing, and hence φ(x) < 0 on (0, x0). Furthermore, we obtain y2(x)
y1(x) is strictly decreasing on
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(0, x0). This implies that y1(x) and y2(x) have at most one intersection point in (0, x0). Sim-
ilarly, y1(x) and –y2(x) have at most one intersection point in (x0,π ). The proof is com-
plete. �

Lemma 2.6 Let q(x, s) and ρ(t, s) be one-parameter families of piecewise continuous func-
tions such that ∂

∂s q(x, s) and ∂
∂sρ(x, s) exist. Denote by {λn(s), yn(x, s)}n∈N the normalized

eigenpairs. Then we have

d
ds

λn(s) =
∫ π

0

∣
∣yn(t, s)

∣
∣2 ∂

∂s
q(t, s) dαt – λn(s)

∫ π

0

∣
∣yn(t, s)

∣
∣2 ∂

∂s
ρ(t, s) dαt.

Proof Consider the CFSLP with one-parameter family of piecewise functions q(x, s) and
ρ(x, s):

–Dα
x Dα

x yn(x, s) + q(x, s)yn(x, s) = λn(s)ρ(x, s)yn(x, s), 0 < x < π ,

yn(0, s) = yn(π , s) = 0.

Denote ḟ = ∂
∂s f . We applied the variation analysis on the homotopy of the CFSLP. One

can refer to [16]. Differentiating the above equations with respect to s, we can obtain the
variation equation

–Dα
x Dα

x ẏn(x, s) + q̇(x, s)yn(x, s) + q(x, s)ẏn(x, s)

= λ̇n(s)ρ(x, s)yn(x, s) + λn(s)ρ̇(x, s)yn(x, s) + λn(s)ρ(x, s)ẏn(x, s), 0 < x < π ,

and

ẏn(0, s) = ẏn(π , s) = 0.

Then we have

λ̇n(s)ρ(x, s)y2
n(x, s)

= ẏn(x, s)Dα
x Dα

x yn(x, s) – yn(x, s)Dα
x Dα

x ẏn(x, s) + q̇(x, s)y2
n(x, s) – λn(s)ρ̇(x, s)y2

n(x, s).

Hence, by the α-integration by parts,

λ̇n(s) =
∫ π

0
λ̇n(s)ρ(x, s)y2

n(x, s) dαt

=
∫ π

0

(
ẏn(x, s)Dα

x Dα
x yn(x, s) – yn(x, s)Dα

x Dα
x ẏn(x, s)

)
dαt

+
∫ π

0
q̇(x, s)y2

n(x, s) dαt –
∫ π

0
λn(s)ρ̇(x, s)y2

n(x, s) dαt

=
[
ẏn(x, s)Dα

x yn(x, s) – yn(x, s)Dα
x ẏn(x, s)

]π

0

+
∫ π

0

(
Dα

x ẏn(x, s)Dα
x yn(x, s) – Dα

x yn(x, s)Dα
x ẏn(x, s)

)
dαt

+
∫ π

0
q̇(x, s)y2

n(x, s) dαt – λn(s)
∫ π

0
ρ̇(x, s)y2

n(x, s) dαt
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=
∫ π

0
q̇(x, s)y2

n(x, s) dαt – λn(s)
∫ π

0
ρ̇(x, s)y2

n(x, s) dαt.

This completes the proof. �

Following from Lemma 2.6, we have, for ρ(x) ≡ 1,

d
ds

(
λ2(s) – λ1(s)

)
=

∫ π

0

(∣∣y2(t, s)
∣
∣2 –

∣
∣y1(t, s)

∣
∣2) ∂

∂s
q(t, s) dαt

and, for q(x) ≡ 0,

d
ds

(
λ2(s)
λ1(s)

)

=
λ2(s)
λ1(s)

∫ π

0

(∣
∣y2(t, s)

∣
∣2 –

∣
∣y1(t, s)

∣
∣2) ∂

∂s
ρ(t, s) dαt.

3 Proof of the main theorems

Proof of Theorem 1.1 For M > 0, we denote

QM ≡ {
0 ≤ q(x) ≤ M : q is single-well with a transition point at π/2

}
.

Then E[q] ≡ (λ2 –λ1)[q] is bounded on QM , and hence E[q] attains its minimum at some q0

in QM . Taking q(x) ∈ QM that will be assigned in the following, we define by q(x, s) ≡ sq(x)+
(1 – s)q0(x) a one-parameter family of potential functions where s ∈ [0, 1]. By Lemma 2.5,
there exist 0 ≤ x– < x0 < x+ ≤ π such that y2(x0, 0) = 0 and

∣
∣y2(x, 0)

∣
∣2 –

∣
∣y1(x, 0)

∣
∣2

⎧
⎨

⎩

> 0 on (0, x–) ∪ (x+,π ),

< 0 on (x–, x+).

In the following, we show that the case x– ≤ π/2 ≤ x+ is the only possibility.
(a) Assume x– ≤ π/2 ≤ x+. Let

q(x) =

⎧
⎨

⎩

q0(x–) on (0, π
2 ),

q0(x+) on ( π
2 ,π ).

By the optimality of q0, we find that

0 ≤ d
ds

(
λ2(s) – λ1(s)

)∣∣
s=0 =

∫ π

0

(
q(t) – q0(t)

)(∣∣y2(t, s)
∣
∣2 –

∣
∣y1(t, s)

∣
∣2)dαt < 0.

This implies that q0(x) = q(x) on (0,π ) is a one-step function.
(b) Assume x– > π/2 (the case for x+ < π/2 is similar). Without loss of generality, we

assume that q is of the form

q(x) =

⎧
⎨

⎩

0 on (0, x–),

M on (x–,π ).

Since yn(x, 0) is normalized, we find
∫ x–

0

(∣
∣y2(t, 0)

∣
∣2 –

∣
∣y1(t, 0)

∣
∣2)dαt > 0
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and

∫ π

x–

(∣
∣y2(t, 0)

∣
∣2 –

∣
∣y1(t, 0)

∣
∣2)dαt < 0.

By the optimality of q0, we find that

0 ≤ d
ds

(
λ2(s) – λ1(s)

)∣
∣
s=0

=
∫ π

0

(
q(t) – q0(t)

)(∣∣y2(t, 0)
∣
∣2 –

∣
∣y1(t, 0)

∣
∣2)dαt

≤ –q0

(
π

2

)∫ x–

0

(∣∣y2(t, 0)
∣
∣2 –

∣
∣y1(t, 0)

∣
∣2)dαt

+
(
M – q0(x+)

)
∫ π

x–

(∣
∣y2(t, 0)

∣
∣2 –

∣
∣y1(t, 0)

∣
∣2)dαt

≤ 0.

Hence, the only possibility is q0(x) = q(x) on (0,π ). Furthermore, in this case, the
second eigenfunction can be expressed by

y2(x) =

⎧
⎨

⎩

c sin(
√

λ2
α

xα) on (0, x–),

d sin(
√

λ2–M
α

(π – x)α) on (x–,π ).

Since π/2 < x– < x0, we find
√

λ2
α

(π/2)α < π <
√

λ2–M
α

(π/2)α , and then√
λ2 <

√
λ2 – M. But this is impossible and hence this case is refused.

By the above discussion, we may assume

q0(x) =

⎧
⎨

⎩

0 on (0, π
2 ),

m on ( π
2 ,π ),

for some m > 0. In this case, the eigenfunction corresponding to the eigenvalue λ can be
expressed by

y2(x) =

⎧
⎨

⎩

c sin(
√

λ
α

xα) on (0, π
2 ),

d sin(
√

λ–m
α

(π – x)α) on ( π
2 ,π ).

In particular, λ is an eigenvalue if λ is a solution of

Dα
x sin(

√
λ

α
xα)

sin(
√

λ
α

xα)

∣
∣
∣
∣
x= π

2

=
Dα

x sin(
√

λ–m
α

(π – x)α)

sin(
√

λ–m
α

(π – x)α)

∣
∣
∣
∣
x= π

2

or, equivalently, letting α̂ = ( π
2 )α/α,

√
λ cot(α̂

√
λ) = –

√
λ – m cot(α̂

√
λ – m).
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Here, α̂ ∈ [π/2,∞) is decreasing in α ∈ (0, 1]. In particular, let φ(λ) =
√

λ cot(α̂
√

λ), f (t) =√
t cot(π

√
t/2), λ = (π/(2α̂))2t, and m = (π/(2α̂))2θ . Then φ(λ) = –φ(λ – m) is equivalent

to f (t) = –f (t – θ ). By Lemma 2.2, we find t2 – t1 ≥ 3 or, equivalently,

λ2 – λ1 ≥ 3π2

4α̂2 =
3α2π2–2α

22–2α
.

The proof is complete. �

Proof of Theorem 1.2 For M > 1, define

	M =
{

1
M

≤ ρ(x) ≤ M : ρ is single-barrier with a transition point at π/2
}

.

Then R[ρ] ≡ ( λ2
λ1

)[ρ] is bounded on 	M , and hence R[ρ] attains its minimum at some
ρ0 in 	M . Now, for ρ(x) ∈ 	M , define ρ(x, s) = sρ(x) + (1 – s)ρ0(x) to be a one-parameter
family of density functions, where s ∈ [0, 1]. Using the similar argument as the proof of
Theorem 1.1, one can show that the optimal ρ0 must be of the form

ρ0(x) =

⎧
⎨

⎩

1 on (0, π
2 ),

L on ( π
2 ,π ),

or ρ0(x) =

⎧
⎨

⎩

L on (0, π
2 ),

1 on ( π
2 ,π ),

for some L ≥ 1. Without loss of generality, we assume that the first case holds. In this case,
the eigenfunction corresponding to the eigenvalue λ can be expressed as

y(x) =

⎧
⎨

⎩

c sin(
√

λ
α

xα) on (0, π
2 ),

d sin(
√

λL
α

(π – x)α) on ( π
2 ,π ).

In particular, λ is an eigenvalue if λ is a solution of

Dα
x sin(

√
λ

α
xα)

sin(
√

λ
α

xα)

∣
∣
∣
∣
x= π

2

=
Dα

x sin(
√

λL
α

(π – x)α)

sin(
√

λL
α

(π – x)α)

∣
∣
∣
∣
x= π

2

or, equivalently, for α̂ = ( π
2 )α/α,

√
L tan(α̂

√
λ) = – tan(α̂

√
λL).

Let m =
√

L and λ = s2/α̂2. Then we obtain m tan s = – tan(sm). By Lemma 2.3, we find
s2
s1

≥ 4 or equivalently

λ2

λ1
=

s2

s1
≥ 4.

In particular, for ρ(x) ≡ 1 and q(x) ≡ 0 for all x ∈ [0,π ], the first two eigenvalues are

√
λ1 = απ1–α ,

√
λ2 = 2απ1–α ,
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and we find

λ2

λ1
= 4.

This shows that the minimum of λ2/λ1 occurs at the constant density. �
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