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Abstract
In this paper, we consider the bifurcation curves and exact multiplicity of positive
solutions of the one-dimensional Minkowski-curvature equation

{
–( u′√

1–u′2 )
′ = λf (u), x ∈ (–L, L),

u(–L) = 0 = u(L),

where λ and L are positive parameters, f ∈ C[0,∞)∩ C2(0,∞), and f (u) > 0 for
0 < u < L. We give the precise description of the structure of the bifurcation curves
and obtain the exact number of positive solutions of the above problem when f
satisfies f ′′(u) > 0 and uf ′(u)≥ f (u) + 1

2u
2f ′′(u) for 0 < u < L. In two different cases, we

obtain that the above problem has zero, exactly one, or exactly two positive solutions
according to different ranges of λ. The arguments are based upon a detailed analysis
of the time map.
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1 Introduction
In this work, we study the bifurcation curves and exact multiplicity of positive solutions
of the quasilinear two-point boundary value problem

⎧⎨
⎩–( u′√

1–u′2 )′ = λf (u), –L < x < L,

u(–L) = 0 = u(L),
(1.1)

where λ and L are positive parameters, f ∈ C[0,∞) ∩ C2(0,∞), and f (u) > 0 for 0 < u <
L. As is known, problem (1.1) is one-dimensional version of the Minkowski-curvature
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equation with Dirichlet boundary value condition

⎧⎨
⎩

– div( ∇u√
1–|∇u|2 ) = λf (|x|, u), x ∈ �,

u = 0, x ∈ ∂�,
(1.2)

which plays a role in differential geometry and in the theory of relativity.
Recently, both (1.1) and (1.2), or even more general problems, have been widely inves-

tigated in order to assure the existence, as well as the multiplicity, of solutions (see, e.g.,
[1–7, 10, 11] and the references therein). In [3], the existence and multiplicity of positive
solutions for the one-dimensional Minkowski-curvature equation

⎧⎨
⎩–( u′√

1–u′2 )′ = λf (t, u), t ∈ (0, T),

u(0) = u(T) = 0

have been proved under the assumption that f is an Lp-Carathéodory function by using
variational or topological methods; here f is not required to be positive. Furthermore,
Coelho et al. [4] proved the existence and multiplicity of positive radial solutions of the
Dirichlet problem for the Minkowski-curvature equation in a ball.

Bereanu et al. [1] proved the existence of classical positive radial solutions of (1.2) by em-
ploying Leray–Schauder degree arguments, critical point theory, and lower semicontinu-
ous perturbations of C1-functionals, where � = {x ∈ R

N | |x| < R}, f ∈ C([0, R] × [0,α),R),
0 < α ≤ ∞, and f (r, s) > 0, (r, s) ∈ [0, R] × [0,α). In particular, if f (|x|, u) = μ(|x|)up, p > 1
and μ : [0,∞) → R is continuous, strictly positive on (0,∞), Bereanu et al. [2] obtained
that there exists � > 0 such that problem (1.2) has zero, at least one, or at least two positive
radial solutions according to λ ∈ (0,�), λ = �, or λ > �. The proof of this result is based
on the method of lower and upper solutions and Leray–Schauder degree arguments. By
applying the unilateral global bifurcation theory and some preliminary results on the su-
perior limit of a sequence of connected components, Ma et al. [11] and Dai [5] proved
the existence, nonexistence, and multiplicity of radial positive solution of problem (1.2)
corresponding to asymptotically linear, sublinear, and superlinear nonlinearities f at zero,
respectively, which generalized and improved the results in the literature [1, 2].

Nevertheless, it is worth noting that the above references mainly studied the existence
but not the exactness of positive solutions. Recently, the exact number of the positive so-
lutions have been considered by Zhang and Feng [12] and Huang [8, 9]. In [12], the authors
obtained the main results as follows:

Theorem A Assume that f satisfies the following conditions:
(1) f ∈ C([0,∞),R) and f (u) > 0 for every u > 0;
(2) f ∈ C1([0,∞),R) and f ′(u)u ≤ f (u) for every u > 0.
Then
(a) If f (0) > 0 or f (0) = 0 and there exists 0 < β < 1 such that 0 < limr→0

f (r)
rβ = A < +∞,

then, for any λ > 0, problem (1.1) has exactly one positive solution.
(b) If f (0) = 0 and 0 < limr→0

f (r)
r = A < +∞, then, for any λ > π2

4L2A , problem (1.1) has
exactly one positive solution.
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Theorem B Assume that f (u) = up (p > 1). Then there exists λ∗ > 0 such that problem (1.1)
has zero, exactly one, or exactly two positive solutions according to λ ∈ (0,λ∗), λ = λ∗, or
λ > λ∗.

Huang [8] discussed the exact number of positive solutions of problem (1.1), where f ∈
C[0,∞) ∩ C2(0,∞), f (u) > 0 for u > 0, and f ′′(u) is not sign-changing on (0,∞). Assume
the following condition holds:

(H) For any λ,α > 0, there exists ρ = ρ(α,λ) ∈R such that, for 0 < u < α,

Hλ,ρ(u,α) ≡ ρB5λ3 + 5ρB4λ2 + B
(
8B2ρ – 2AB – BC + 3A2 – ABρ

)
λ

+ 4ρB2 – 4AB – 2BC + 3A2 – 2ρAB > 0,

where A = A(u,α) ≡ αf (α) – uf (u), B = B(u,α) ≡ F(α) – F(u), C = C(u,α) ≡ α2f ′(α) –
u2f ′(u). When f ′′(u) ≤ 0, the bifurcation curve of (1.1) is monotone increasing. How-
ever, it is a complicated situation for f ′′(u) > 0. Obviously, condition (H) can ensure
T ′′

λ (α) + ρ(α,λ)
α

T ′
λ(α) > 0 but the exact value of ρ(α,λ) is unknown and difficult to get in

calculation. Moreover, in [9], Huang obtained the classification and evolution of bifurca-
tion curves of (1.1) under certain assumptions. We hope to give more direct conditions to
judge the graph of bifurcation curves.

Therefore, in this paper, we study the bifurcation curves and exact multiplicity of posi-
tive solutions of problem (1.1), where the nonlinearity f satisfies

(H1) f ∈ C([0,∞),R) and f (u) > 0 for 0 < u < L;
(H2) f ∈ C2((0,∞),R), f ′′(u) > 0, and uf ′(u) ≥ f (u) + 1

2 u2f ′′(u) for 0 < u < L.
We consider the following two cases:
(C1) limr→0+

f (r)
rβ = A ∈ (0, +∞), β > 1;

(C2) limr→0+
f (r)

r = A ∈ (0, +∞) and limr→0+ f ′′(u) ∈ (0,∞].
Our main results are as follows:

Theorem 1.1 Assume f satisfies (H1), (H2), and (C1). Then there exists λ∗ > 0 such that
(i) For 0 < λ < λ∗, problem (1.1) has no positive solution;
(ii) For λ = λ∗, problem (1.1) has exactly one positive solution;
(iii) For λ > λ∗, problem (1.1) has exactly two positive solutions (see Fig. 1(a)).

Theorem 1.2 Assume f satisfies (H1), (H2), and (C2). Then there exists 0 < λ∗ < λ∗ = π2

4L2A
such that

Figure 1 (a) Graph of bifurcation curve of Theorem 1.1; (b) graph of bifurcation curve of Theorem 1.2
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(i) For 0 < λ < λ∗, problem (1.1) has no positive solution;
(ii) For λ = λ∗ and λ ≥ λ∗, problem (1.1) has exactly one positive solution;
(iii) For λ∗ < λ < λ∗, problem (1.1) has exactly two positive solutions (see Fig. 1(b)).

Remark 1.1 Since condition (H2) implies uf ′(u) > f (u), Theorems 1.1 and 1.2 are new re-
sults which are completely different from Theorem A. However, on account of the restric-
tion of condition (H2), our results do not include the case of f (u) = up (p > 2).

Remark 1.2 Compared with [8], it is easy to obtain T ′′
λ (r) > 0 when the nonlinearity f sat-

isfies (H1) and (H2), but the condition (H2) is stronger than the hypothetical condition
(H).

Remark 1.3 It follows from limr→0+
f (r)
rβ = A ∈ (0, +∞), 0 < β < 1, that limr→0+

f (r)
r = +∞.

However, (H2) implies that f (u)
u is monotonically increasing on (0, L). Therefore, β ≥ 1 if

(H2) holds.

Remark 1.4 If f ∈ C3((0,∞),R), then limr→0+
f (r)

r = A ∈ (0, +∞), limr→0+ f ′′(u) = 0, and
condition (H2) imply that f ′′′(r) ≤ 0 for small positive numbers r. However, for small pos-
itive numbers r, it is easy to obtain that f ′′(r) ≤ 0 from limr→0+ f ′′(u) = 0 and f ′′′(r) ≤ 0,
which is a contradiction with f ′′(u) > 0 for 0 < u < L. Therefore, the case of limr→0+

f (r)
r =

A ∈ (0, +∞) and limr→0+ f ′′(u) = 0 may not occur if f satisfies (H2).

We organized the paper as follows. In Sect. 2, we introduce and give some properties of
the time map. Section 3 is devoted to proving the main results. Section 4 contains some
examples.

2 Time map
In this section, we shall make a detailed analysis of time maps for the one-dimensional
Minkowski-curvature equation (1.1) and give some properties.

Let u(x) be a solution of problem (1.1). It is well known that u(x) takes its maximum
at x = 0, u(x) is symmetric with respect to 0, u′(x) > 0 for –L ≤ x < 0, and u′(x) < 0 for
0 < x ≤ L. Therefore, problem (1.1) is equivalent to the following problem:

⎧⎨
⎩–( u′√

1–u′2 )′ = λf (u), 0 < x < L,

u′(0) = 0 = u(L).

Let v = u′√
1–u′2 , u(0) = r, then (u, v) is a solution of the following problem defined on [0, L]:

u′ =
v√

1 + v2
, v′ = –λf (u), u(0) = r, u(L) = 0, v(0) = 0.

Denote F(u) =
∫ u

0 f (s) ds.
The function H(x) = 1 –

√
1 + v2(x) – λF(u(x)) satisfies

dH(x)
dx

=
–v(x)√
1 + v2(x)

(
v′(x) + λf (u)

) ≡ 0,
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and H(0) = –λF(r), hence we obtain

λ
(
F(r) – F(u)

)
=

1√
1 – u′2

– 1.

Therefore,

–u′ =
√

[1 + λF(r) – λF(u)]2 – 1
1 + λF(r) – λF(u)

.

Then

–
1 + λF(r) – λF(u)√

[1 + λF(r) – λF(u)]2 – 1
du = dx. (2.1)

Integrating (2.1) from 0 to L leads to

Tλ(r) =
∫ r

0

1 + λF(r) – λF(u)√
[1 + λF(r) – λF(u)]2 – 1

du = L.

The function Tλ(r) is called the time map of f .
For the sake of simplicity [12], in what follows, we usually denote Tλ(r) by T(r), ∂T

∂r by
T ′, and ξ = λ(F(r) – F(rs)), ξ ′ = ∂ξ

∂r = λ(f (r) – sf (rs)), ξ ′′ = ∂2ξ

∂r2 = λ(f ′(r) – s2f ′(rs)), and then

T(r) = r
∫ 1

0

1 + ξ√
ξ (2 + ξ )

ds.

Lemma 2.1 ([12]) Assume f : [0, +∞) → [0, +∞) satisfies (H1), then the time map T(r)
has continuous derivatives up to the second order with respect to r, and

T ′(r) =
∫ 1

0

ξ (1 + ξ )(2 + ξ ) – rξ ′

(ξ (2 + ξ )) 3
2

ds,

T ′′(r) =
∫ 1

0

–2ξ ′ξ (2 + ξ ) – rξ ′′ξ (2 + ξ ) + 3rξ ′2(1 + ξ )

(ξ (2 + ξ )) 5
2

ds.

Lemma 2.2 ([12]) Assume that (H1) holds. Then for any r ∈ (0, L), the time map T is
strictly decreasing with respect to λ.

Lemma 2.3 ([12]) Assume (H1) holds.
(1) If f (0) > 0, then limr→0+ T(r) = 0.
(2) If f (0) = 0 and 0 < limr→0+

f (r)
rβ = A < +∞, then

(2a) If 0 < β < 1, then limr→0+ T(r) = 0;
(2b) If β = 1, then limr→0+ T(r) = π

2
√

λA
;

(2c) If β > 1, then limr→0+ T(r) = +∞.

Lemma 2.4 ([8]) Assume that η ≡ limr→0+ F(r)
r2 = limr→0+

f (r)
2r ∈ (0,∞), then for λ > 0,

lim
r→0+

T ′(r) =

⎧⎨
⎩

– 1

6
√

2η
3
2

√
λ

limr→0+ f ′′(r), if limr→0+ f ′′(r) exists,

–∞, if limr→0+ f ′′(r) = ∞.
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Lemma 2.5 Assume (H1) holds and 0 < limr→0+
f (r)
rβ = A < +∞, then

(1) If 0 < β < 1, then limr→0+ T ′(r) = +∞.
(2) If β > 1, then limr→0+ T ′(r) = –∞.

Proof Letting u = rτ , we get

F(r) – F(rs)
rβ+1 =

1
rβ+1

∫ r

rs
f (u) du =

∫ 1

s

f (rτ )
(rτ )β

τβ dτ → A(1 – sβ+1)
β + 1

as r → 0. (2.2)

Since limr→0+
f (r)
rβ = A, it follows that

lim
r→0+

f (r) – sf (rs)
rβ

= A
(
1 – sβ+1). (2.3)

It is easy to see that T ′(r) is continuous with respect to r by Lemma 2.1. Combining with
(2.2) and (2.3), we obtain

lim
r→0+

T ′(r) = lim
r→0+

r
–(β+1)

2

{∫ 1

0

1 + λ(F(r) – F(rs))√
{ λ(F(r)–F(rs))

rβ+1 (2 + λ(F(r) – F(rs)))}
ds

–
∫ 1

0

λ(f (r)–sf (rs))
rβ√

{ λ(F(r)–F(rs))
rβ+1 (2 + λ(F(r) – F(rs)))}3

ds
}

= lim
r→0+

r
–(β+1)

2

{∫ 1

0

√
β + 1

2λA(1 – sβ+1)
ds –

∫ 1

0

(
β + 1

2

) 3
2
√

1
λA(1 – sβ+1)

ds
}

= lim
r→0+

r
–(β+1)

2

∫ 1

0

1 – β

2

√
β + 1

2λA(1 – sβ+1)
ds.

It is easy to get

∫ 1

0

√
β + 1

2λA(1 – sβ+1)
ds ≥

√
β + 1
2λA

.

Therefore, limr→0+ T ′(r) = +∞ as 0 < β < 1 and limr→0+ T ′(r) = –∞ as β > 1. �

Lemma 2.6 Assume f satisfies (H1) and (H2), then, for any λ > 0,

T ′′(r) > 0, r ∈ (0, L).

Proof By Lemma 2.1,

T ′′(r) =
∫ 1

0

–2rξ ′ξ (2 + ξ ) – r2ξ ′′ξ (2 + ξ ) + 3r2ξ ′2(1 + ξ )

r(ξ (2 + ξ )) 5
2

ds, r ∈ (0, L).

It is easy to get that r(ξ (2 + ξ )) 5
2 > 0. As 1 + ξ > 2+ξ

2 , we obtain

–2rξ ′ξ (2 + ξ ) – r2ξ ′′ξ (2 + ξ ) + 3r2ξ ′2(1 + ξ ) > (2 + ξ )
[

3
2

rξ ′(rξ ′ – 2ξ
)

+ ξ
(
rξ ′ – r2ξ ′′)].
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Due to ξ = λ(F(r) – F(rs)), ξ ′ = λ(f (r) – sf (rs)), we have

rξ ′ – 2ξ = λ
[(

rf (r) – 2F(r)
)

–
(
rsf (rs) – 2F(rs)

)]
.

Let G1(r) = rf (r) – 2F(r), then rξ ′ – 2ξ = λ[G1(r) – G1(rs)]. It follows from (H2) that G′
1(r) =

rf ′(r) – f (r) > 0. Hence, for 0 < s < 1, we get

rξ ′ – 2ξ > 0, (2.4)

that is,

rξ ′ > 2ξ . (2.5)

From (2.4) and (2.5), we obtain

3
2

rξ ′(rξ ′ – 2ξ
)

+ ξ
(
rξ ′ – r2ξ ′′) > ξ

(
4rξ ′ – 6ξ – r2ξ ′′).

In fact,

4rξ ′ – 6ξ – r2ξ ′′ = λ
[(

4rf (r) – 6F(r) – r2f ′(r)
)

–
(
4rsf (rs) – 6F(rs) – r2s2f ′(rs)

)]
.

Let G2(r) = 4rf (r) – 6F(r) – r2f ′(r), then 4rξ ′ – 6ξ – r2ξ ′′ = λ[G2(r) – G2(rs)]. It follows
from (H2) that G′

2(r) = 2rf ′(r) – 2f (r) – r2f ′′(r) ≥ 0, which implies that 4rξ ′ – 6ξ – r2ξ ′′ ≥ 0.
Therefore, T ′′(r) > 0. �

3 Proof of the main results

Proof of Theorem 1.1 According to the definition of the time map, problem (1.1) is equiv-
alent to finding r ∈ (0, L) such that

T(r) = L. (3.1)

Therefore, the number of solutions of (1.1) is precisely the number of solutions of (3.1).
From Lemma 2.3 and Lemma 2.5, limr→0+ T(r) = +∞, limr→0+ T ′(r) = –∞. By calcula-

tion, for a given r0 > 0,

lim
λ→+∞ T(r0) = lim

λ→+∞ r0

∫ 1

0

1 + λ(F(r0) – F(r0s))√
λ(F(r0) – F(r0s))(2 + λ(F(r0) – F(r0s)))

ds = r0,

which implies that there exists r0 ∈ (0, L) such that limλ→+∞ T(r0) < L.
By Lemma 2.6, T(r) has exactly one critical point in the interval r ∈ (0, L) for λ ≥ λ∗.

Thus, combining with Lemma 2.2, we have obtained a precise description of the graph of
T(r) for λ ≥ λ∗, see Fig. 2.

There exists λ∗ > 0 such that problem (1.1) has zero, exactly one, or exactly two positive
solutions according to λ ∈ (0,λ∗), λ = λ∗, or λ ∈ (λ∗, +∞), respectively. �
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Figure 2 Graph of T (r) in Theorem 1.1

Figure 3 Graph of T (r) in Theorem 1.2

Proof of Theorem 1.2 According to the definition of the time map, problem (1.1) is equiv-
alent to finding r ∈ (0, L) such that

T(r) = L. (3.2)

Therefore, the number of solutions of (1.1) is precisely the number of solutions of (3.2).
As limr→0+

f (r)
r = A ∈ (0,∞), by Lemma 2.3, we know that limr→0+ T(r) = π

2
√

λA
. From

π

2
√

λA
= L, λ = π2

4L2A � λ∗. By calculation,

lim
r→L–

T(r) = lim
r→L–

r
∫ 1

0

1 + λ(F(r) – F(rs))√
λ(F(r) – F(rs))(2 + λ(F(r) – F(rs)))

ds = L as λ → ∞.

By Lemma 2.4, limr→0+ T ′(r) < 0. From Lemma 2.6, T(r) has exactly one critical point in
the interval r ∈ (0, L) for λ ≥ λ∗. Therefore, combining with Lemma 2.2, we have obtained
a precise description of the graph of T(r) for λ ≥ λ∗, see Fig. 3.

There exists 0 < λ∗ < λ∗ = π2

4L2A such that problem (1.1) has zero, exactly one, or ex-
actly two positive solutions according to λ ∈ (0,λ∗), λ = λ∗, or λ ≥ λ∗, λ ∈ (λ∗,λ∗), respec-
tively. �

4 Applications
Example 4.1 Consider f (u) = u ln(1 + u) for u > 0.

By calculation, f ′′(u) = 2+u
(1+u)2 > 0, uf ′(u) – f (u) – 1

2 u2f ′′(u) = u3

2(1+u)2 > 0 and limr→0+
f (r)
r2 =

limr→0+ rln(1+r)
r2 = 1, so f satisfies (H1), (H2), and (C1). Therefore, by Theorem 1.1, there

exists λ∗ > 0 such that problem (1.1) has zero, exactly one, or exactly two positive solutions
according to λ ∈ (0,λ∗), λ = λ∗, λ ∈ (λ∗, +∞), respectively.

Example 4.2 Consider f (u) = up (1 < p ≤ 2) for u > 0.
By calculation, f ′′(u) = p(p – 1)up–2 > 0, uf ′(u) – f (u) – 1

2 u2f ′′(u) = 1
2 up(p – 1)(2 – p) ≥ 0

and limr→0+
f (r)
rβ = limr→0+ rp

rβ = 1, (1 < β = p ≤ 2), so f satisfies (H1), (H2), and (C1). There-
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fore, by Theorem 1.1, there exists λ∗ > 0 such that problem (1.1) has zero, exactly one, or
exactly two positive solutions according to λ ∈ (0,λ∗), λ = λ∗, λ ∈ (λ∗, +∞), respectively.

Example 4.3 Consider f (u) = u + up (1 < p ≤ 2) for u > 0.
By calculation, f ′′(u) = p(p – 1)up–2 > 0 and uf ′(u) – f (u) – 1

2 u2f ′′(u) = 1
2 up(p – 1)(2 –

p) ≥ 0, so f satisfies (H1), (H2). From limr→0+
f (r)

r = limr→0+ r+rp

r = 1, limr→0+ f ′′(r) = +∞
as 1 < p < 2, and limr→0+ f ′′(r) = p(p – 1) ∈ (0,∞) as p = 2, it is easy to verify that f satisfies
(C2). Therefore, by Theorem 1.2, there exists 0 < λ∗ < λ∗ = π2

4L2 such that problem (1.1)
has zero, exactly one, or exactly two positive solutions according to λ ∈ (0,λ∗), λ = λ∗, or
λ ≥ λ∗, λ ∈ (λ∗,λ∗), respectively.

Example 4.4 Consider f (u) = u ln(a + u)(a > 1) for u > 0.
By calculation, f ′′(u) = 2a+u

(a+u)2 > 0, uf ′(u) – f (u) – 1
2 u2f ′′(u) = u3

2(a+u)2 > 0 and limr→0+
f (r)

r =
limr→0+ r ln(a+r)

r = ln a ∈ (0, +∞], so that (H1), (H2), and (C2) hold. Therefore, by Theo-
rem 1.2, there exists 0 < λ∗ < λ∗ = π2

4L2 ln a such that problem (1.1) has zero, exactly one,
or exactly two positive solutions according to λ ∈ (0,λ∗), λ = λ∗, or λ ≥ λ∗, λ ∈ (λ∗,λ∗),
respectively.
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