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Abstract
We know that interpolation spaces in terms of analytic semigroup have a significant
role into the study of strict Hölder regularity of solutions of classical abstract Cauchy
problem (ACP). In this paper, we first construct interpolation spaces in terms of
solution operators in fractional calculus and characterize these spaces. Then we
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1 Introduction
Let (X,‖·‖) be a Banach space. First, we take into consideration of the following abstract
Cauchy problem:

⎧
⎨

⎩

dv
dt = Av(t) + F(t), 0 < t ≤ T ,

v(0) = v0,
(1.1)

where F : [0, T] → X, v0 ∈ X, and A : D(A) ⊂ X → X is densely defined operator satisfying
following conditions:

(i)
∑

θ := {μ ∈C : μ �= 0, | arg(μ)| < θ} ⊂ ρ(A),
(ii) ‖(μI – A)–1‖L(X) ≤ N

|μ| ,∀μ ∈ ∑
θ ,

for some θ ∈ ( π
2 ,π ), N > 0. The sets ρ(A), L(X) are denoted as resolvent set of A and the set

of all bounded linear operators on X, respectively. Such operator A, is known as sectorial
operator, and it generates the analytic semigroup {T(t)}t≥0 on X (cf. [1]). The study of
strict solution of (1.1) is very well known. For instance, we refer to [1, Chap. 4], [2] and
the references therein. In these cited papers, the authors proved strict Hölder regularity
of the mild solution of (1.1) under suitable space and time regularity of the initial datum.
More precisely, if F ∈ Cθ ([0, T]; X), where 0 < θ < 1, v0 ∈ D(A) with Av0 +F(0) ∈ DA(θ ,∞),
an interpolation space, then (1.1) has strict solution. The results have been obtained by
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using the advantage of representation of interpolation space DA(θ ,∞) in terms of analytic
semigroup. Here we are interested in the investigation of similar results for the following
fractional order ACP on X:

⎧
⎨

⎩

cDα
t v(t) = Av(t) + F(t), 0 < t ≤ T ,

v(0) = v0,
(1.2)

where cDα
t represents Caputo fractional differential operator of order α ∈ (0, 1).

Over the last few decades, the study in the area of fractional calculus has influenced the
researchers owing to its generous applicability in the branch of science and engineering.
Specifically, we refer the work [3] for some substantial applications of fractional differential
equations.

There have been intensive investigation on existence, uniqueness and regularity of solu-
tion for variety of generalized model of (1.2). For the enthusiastic reader, we refer to [4–6]
for linear autonomous case, [7, 8] for semilinear autonomous case, [9] and some work
cited therein for the non-autonomous case with delay. But the study of strict regularity
of the problem (1.2) is very rare for the case α ∈ (0, 1). Bazhlekova [10], in her precious
thesis, studied strict Lp- regularity by introducing the concept of solution operators and
using the resolvent representation of classical interpolation space DA(θ , p) for 1 < p < ∞.
The case p = ∞ (i.e., strict Hölder regularity case) has been studied first by Ph. Clément
et al. in their pioneer work [11]. Using some suitable transformation, the author split the
problem (1.2) into two abstract problems, one is having homogeneous force function (i.e.,
F = 0) but with inhomogeneous initial data, and another is having inhomogeneous force
function F(t) – F(0) but with homogeneous initial data. The author used method of sum
to investigate the regularity of the latter one, in which the problem is converted to an op-
erator equation of the form Bu + Cu = v on the space X̃ = {v ∈ C([0, T]; X) : v(0) = 0} and
applied a suitable theorem [11, Theorem 8]. Whereas, the regularity of the first one is
solved by exploiting resolvent representation of the interpolation space DA(θ ,∞). Finally,
combining the both results, the author obtained the strict Hölder regularity of the prob-
lem (1.2). Also, the work of Li liu et al. [12] is devoted to examining maximal regularity
property of the weighted Hölder space Cθ

0 ([0, T]; X) for the problem (1.2) by utilizing the
concept of α-times resolvent families introduced in [13], when v(0) = v0 ∈ D(A).

In contrast to this above-mentioned work, for the first time we are going to prove that the
classical real interpolation space DA(θ , p) can also be represented in terms of Sα(t), Tα(t),
named as “solution operators” of fractional ACP. Guswanto, in [14], explicitly introduced
these pair of operators on X, defined as follows:

Sα(t) =
1

2π i

∫

ϒ

eλtλα–1(λα – A
)–1 dλ, t > 0, (1.3)

Tα(t) =
1

2π i

∫

ϒ

eλt(λα – A
)–1 dλ, t > 0, (1.4)

where ϒ ⊂ ρ(A), an anticlockwise oriented path. He also demonstrated the topological
properties of these operators which are somewhat similar to those in classical case; see
[15]. These similarities create a great advantage to study the existence, uniqueness and
regularity properties of solution of (1.2) in the same fashion as of classical case. However,
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there are some disadvantages as these families do not satisfy semigroup properties and
the operator Tα(t) has singularity near t = 0.

On the other hand, the study of strict solutions come into effect when one wants to
get the differentiability of the solutions up to t = 0. In fact, it is known that the α- Ca-
puto derivative of classical solutions of (1.2) cannot be extended up to t = 0, even under
the conditions v0 ∈ D(A), F ∈ Cθ ([0, T]; X) (see, e.g., [16]). Thanks to interpolation spaces
which play crucial role to fill this gap between classical solutions and strict solutions. It
is evident that interpolation spaces can be expressed in terms of semigroup. However, no
such expression in terms of Sα(t), Tα(t) is available in the literature so far. Motivated by
this, we analyze the following points:

(I) constructing interpolation spaces in terms of solution operators Sα(t), Tα(t) of
fractional ACP and characterize these spaces,

(II) establishing the strict Hölder regularity (or maximal Hölder regularity) results for
the problem (1.2) utilizing this new representation of interpolation space.

It is worth to mention that this new finding creates not only a great opportunity to study
the strict regularity results of the problem (1.2) in the similar fashion as of classical case,
but also provide a new sight in the area of fractional calculus.

This paper is organised as follows. In Sect. 2, we present preliminary results on some
Hardy-type inequalities, a short introduction of real interpolation spaces and properties
of the solution operators. In Sect. 3, we construct interpolation spaces in terms of solution
operators and characterize these spaces, which is one of the goals of this paper. In the last
section, we establish the sufficient conditions to investigate the strict Hölder regularity of
mild solutions of (1.2), and provide an example to illustrate the results.

2 Some notations, preliminary results and interpolation spaces
Let I ⊂ R be an interval. Traditionally, for a compact interval I , C(I; X) represents the
space of X-valued continuous functions on I endowed with the usual supremum norm.
The Hölder space Cθ (I; X) is defined by

Cθ (I; X) :=
{

g ∈ C(I; X) : [g]θ = sup
s,t∈I,s �=t

‖g(t) – g(s)‖
|t – s|θ < ∞

}

,

assigned with the norm ‖g‖Cθ (I;X) = supt∈I‖g(t)‖ + [g]θ , where θ ∈ (0, 1).
The space Lp

∗(I) := Lp(I, dt
t ), equipped with norm

‖g‖Lp∗(I) =
(∫

I

∣
∣g(s)

∣
∣p ds

s

) 1
p

, if 1 ≤ p < ∞,

‖g‖L∞∗ (I) = ess sup
s∈I

∣
∣g(s)

∣
∣, if p = ∞.

Definition 2.1 Let f ∈ L1([a, b]; X). The operator defined by

(
Iαf

)
(t) =

1
�(α)

∫ t

a
(t – s)α–1f (s) ds, a.e t ∈ [a, b],

is known as Riemann–Liouville integral of order α ∈ (0, 1).
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For α > 0, we consider

gα(t) =

⎧
⎨

⎩

tα–1

�(α) , t > 0,

0, t ≤ 0.

The convolution between f : [0, T] → X and gα is defined by

(gα ∗ f )(t) =
1

�(α)

∫ t

0
(t – s)α–1f (s) ds, t ∈ (0, T].

One can verify that, for α,β ∈ (0, 1), gα+β = gα ∗ gβ .

Definition 2.2 Let f ∈ L1([a, b]; X) be such that I1–α(f (·) – f (a)) ∈ W 1,1([a, b]; X). Then the
Caputo derivative of order α ∈ (0, 1) is defined as

cDα
t f (t) =

d
dt

(
I1–α

(
f (·) – f (a)

))
(t)

=
1

�(1 – α)
d
dt

∫ t

a
(t – s)–α

(
f (s) – f (a)

)
ds a.e t ∈ [a, b].

Definition 2.3 Let F ∈ L1((0, T); X). By a mild solution of (1.2), we mean a function v ∈
C([0, T]; X) which satisfies the following integral equations:

v(t) = Sα(t)v0 +
∫ t

0
Tα(t – s)F(s) ds, t ∈ (0, T].

Definition 2.4 A function v ∈ C([0, T]; X) satisfying:
(i) v ∈ C((0, T]; D(A)),

(ii) t �→ g1–α ∗ (v(·) – v0)(t) ∈ C1((0, T]; X),
(iii) Eq. (1.2),

is called a classical solution of (1.2).

Definition 2.5 A function v ∈ C([0, T]; D(A)) satisfying:
(i) t �→ g1–α ∗ (v(·) – v0)(t) ∈ C1([0, T]; X),

(ii) Eq. (1.2),
is called a strict solution of (1.2).

Lemma 2.6 (Hardy-type inequalities involving Riemann Liouville integral [17]) Let 1 <
p ≤ q < ∞, 1

p + 1
p′ = 1, and u, v be non-negative weight functions. Then the boundedness of

the linear operator Iα : Lp((0,∞); v(t) dt) → Lq((0,∞); u(t) dt) holds if and only if for some
C > 0

(∫ ∞

2R
t(α–1)qu(t) dt

) 1
q
(∫ R

0

(
v(t)

)1–p′
dt

) 1
p′

≤ C for all R > 0

and Ĩα : Lp((0,∞); v(t) dt) → Lq((0,∞); u(t) dt) defined by Ĩαf (t) = 1
�(α)

∫ t
t
2

(t – s)α–1f (s) ds is
bounded.
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In particular, if p = q, u(t) = tη–1 and v(t) = tν–1, t > 0. Then boundedness of Iα :
Lp((0,∞); v(t) dt) → Lp((0,∞); u(t) dt) holds if and only if

ν < p, η < (1 – α)p and α +
η

p
=

ν

p
. (2.1)

Next, we give Hardy-type inequality involving Riemann–Liouville integral for the case
p = q = 1 (cf. [18, Theorem 2.3]).

Lemma 2.7 Let u, v be non-negative weight functions. If there exist β ∈ [0, 1], C > 0 such
that

(∫ ∞

r
(t – r)(α–1)βu(t) dt

)
(
sup ess

0<t<r
(r – t)(α–1)(1–β)[v(t)

]–1) ≤ C for all r > 0. (2.2)

Then there exists constant B > 0 such that
∫ ∞

0 |(Iαf )(t)|u(t) dt ≤ B
∫ ∞

0 |f (t)|v(t) dt.

Lemma 2.8 (Hardy–Young inequality [19, p. 245-246]) Let 0 < b ≤ ∞ and p ≥ 1. Then,
for any measurable function � : (0, b) →R

+ and γ > 0, the following inequality holds:

∫ b

0
t–γ p

(∫ t

0
�(s)

ds
s

)p dt
t

≤ 1
γ p

∫ b

0
s–γ p�(s)p ds

s
. (2.3)

Before constructing interpolation spaces in terms of Sα(t), Tα(t), we draft a base by re-
calling the classical real interpolation spaces. For Banach spaces X and Y , L(X; Y ) stands
for the set of all bounded linear operators from X to Y . For X = Y , L(X; X) is indicated as
L(X).

2.1 Real interpolation spaces
In this subsection, we recall interpolation space for the case Y ↪→ X, though for gen-
eral theory of interpolation spaces, we direct [20] for the interested reader. Let (X,‖·‖X),
(Y ,‖·‖Y ) be Banach spaces with Y ↪→ X. A Banach space E is called an intermediate space
if Y ↪→ E ↪→ X. An intermediate space E is said to be an interpolation space if for ev-
ery T ∈ L(X) such that T |Y ∈ L(Y ), we have T |E ∈ L(E). A classical method known as
K-method to produce a class of real interpolation spaces is recalled now.

For x ∈ X, t > 0, set

K(t, x; X, Y ) := inf
{‖x1‖X + t‖x2‖Y : x = x1 + x2, x1 ∈ X, x2 ∈ Y

}
.

Let 0 < θ < 1. For 1 ≤ p ≤ ∞, define the following spaces:

(X, Y )θ ,p =
{

x ∈ X : t �→ φ(t) = t–θ K(t, x; X, Y ) ∈ Lp
∗(0,∞)

}
,

with the norm ‖x‖(X,Y )θ ,p = ‖φ‖Lp∗(0,∞).
Then (X, Y )θ ,p are known as real interpolation spaces. One important thing is to note

that K(t, x; X, Y ) ≤ ‖x‖X as Y ↪→ X. Hence, to prove x ∈ (X, Y )θ ,p, it is adequate to prove
that t �→ φ(t) ∈ Lp

∗(0, a), and then ‖x‖(X,Y )θ ,p becomes equivalent to ‖x‖X + ‖φ‖Lp∗(0,a), for
any fixed a > 0.
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A well-known result is that interpolation space (X, D(A))θ ,p can also be represented in
terms of semigroup as follows:

(
X, D(A)

)

θ ,p =
{

x ∈ X : t �→ ψ(t) = t1–θ
∥
∥AT(t)x

∥
∥

X ∈ Lp
∗(0, 1)

}
:= DA(θ , p), (2.4)

with the equivalent norm ‖x‖θ ,p = ‖x‖X + ‖ψ‖Lp∗(0,1) (see, [1, p. 46]).

Definition 2.9 Let θ ∈ (0, 1). An intermediate space E is of Jθ class if ∃c > 0 s.t.

‖x‖E ≤ c‖x‖1–θ
X ‖x‖θ

Y for all x ∈ Y .

In such a case, it is written as E ∈ Jθ (X, Y ).

Definition 2.10 Let θ ∈ (0, 1). An intermediate space E is of Kθ class if ∃k > 0 s.t.

K(t, x; X, Y ) ≤ ktθ‖x‖E for all x ∈ E, t > 0.

In such case, it is written as E ∈ Kθ (X, Y ).
One can observe that (X, Y )θ ,p belong to the class Jθ (X, Y )∩Kθ (X, Y ) for every p ∈ [1,∞].

For any θ ∈ (0, 1), the domain of fractional power of the sectorial operator, D(Aθ ) is not
an interpolation space but belongs to the class Jθ (X, D(A)) ∩ Kθ (X, D(A)). However, in a
Hilbert space X, if A is densely defined positive self-adjoint operator, then D(Aθ ) is an
interpolation space (cf. [1]).

Now, we recall the properties of the solution operators Sα(t), Tα(t) in fractional calculus
in order to find the motivation behind constructing new interpolation spaces.

Lemma 2.11 ([14]) Let Sα(t) be defined as (1.3). Then the following results hold.
(i) Sα(t) ∈ L(X) and ∃B1 = B1(α) > 0 such that ‖Sα(t)‖L(X) ≤ B1, ∀t > 0.

(ii) For each t > 0, Sα(t) ∈ L(X; D(A)), and ASα(t)x = Sα(t)Ax if x ∈ D(A). Moreover,
∃B2 = B2(α) > 0 s.t. ‖ASα(t)‖L(X) ≤ B2t–α ,∀t > 0.

(iii) t �→ Sα(t) ∈ C∞((0,∞); L(X)) and ∃Mn = Mn(α) > 0 such that
‖S(n)

α (t)‖L(X) ≤ Mnt–n,∀t > 0. Moreover, Sα(t) can be continued analytically to the
sector ∑

θ– π
2

.
(iv) For each x ∈ X , limt→0‖Sα(t)x – x‖X = 0.
(v) 1

�(α)
∫ t

0 (t – s)α–1Sα(s)x ds ∈ D(A),∀x ∈ D(A), and

1
�(α)

∫ t

0
(t – s)α–1ASα(s)x ds = Sα(t)x – x. (2.5)

Remark 2.12 Since A is densely defined, closed operator, therefore (2.5) holds for all x ∈ X.
Thus, the operator equation (IαASα)(t) = Sα(t) – I is valid on X.

Lemma 2.13 ([14]) Let Tα(t) be defined as (1.4). Then the following results hold.
(i) Tα(t) ∈ L(X) and ∃C1 = C1(α) > 0 such that ‖Tα(t)‖L(X) ≤ C1tα–1,∀t > 0.

(ii) For each t > 0, Tα(t) ∈ L(X; D(A)), and ATα(t)x = Tα(t)Ax if x ∈ D(A). Moreover,
∃C2 = C2(α) > 0 such that ‖ATα(t)‖L(X) ≤ C2t–1,∀t > 0.



Alam et al. Boundary Value Problems         (2021) 2021:82 Page 7 of 18

(iii) t �→ Tα(t) ∈ C∞((0,∞); L(X)), and ∃Kn = Kn(α) > 0 such that
‖T (n)

α (t)‖L(X) ≤ Kntα–n–1,∀t > 0. Moreover, Tα(t) can be continued analytically to the
sector ∑

θ– π
2

.
(iv) S′

α(t)x = ATα(t)x for all x ∈ X , t > 0.
(v) Sα(t)x = (g1–α ∗ Tα)(t)x for all x ∈ X , t > 0.

Note that Sα(t) is bounded near zero. Hence, by defining Sα(0) = I , the identity operator
on X and taking note of the property given in Lemma 2.11(iv), we can say that the family of
bounded linear operators {Sα(t)}t≥0 is continuous for t ≥ 0 in the strong operator topology.

Lemma 2.14 Let A : D(A) ⊂ X → X be a densely defined sectorial operator and Sα(t), Tα(t)
be the fractional solutions operator defined as in (1.3), (1.4), respectively. Then the following
identity holds:

S′′
α(t)x = AT ′

α(t)x for all t > 0, x ∈ X.

Proof Consider the following representations of Sα(t), Tα(t) (see, [5, p. 213]):

Sα(t)x =
∫ ∞

0
Mα(s)T

(
stα

)
x ds,

Tα(t)x = tα–1
∫ ∞

0
αsMα(s)T

(
stα

)
x ds, t > 0, x ∈ X,

where Mα is a probability density function having the property
∫ ∞

0 srMα(s) ds = �(1+r)
�(1+αr) , r >

–1.
Since t �→ Tα(t) ∈ C∞((0,∞); L(X)), using the Lebesgue dominated convergence theo-

rem, we have the following integral representation of T ′
α(t):

T ′
α(t)x = (α – 1)t–1Tα(t)x + t2(α–1)

∫ ∞

0
α2s2Mα(s)T ′(stα

)
x ds.

Now, α2s2Mα(s)‖AT ′(stα)‖L(X) ≤ Ct–2αMα(s), which is integrable over s ∈ (0,∞). Hence,
by [20, Proposition A.5.], we conclude that T ′

α(t)x ∈ D(A) for all x ∈ X, t > 0.
Finally, using the identity T (n)(t) = AnT(t), t > 0, n ∈ N, analyticity of t �→ Sα(t) and the

Lebesgue dominated convergence theorem, we get

S′′
α(t)x = AT ′

α(t)x for all t > 0, x ∈ X. �

3 Construction and characterization of the interpolation spaces in terms of
Sα(t), Tα(t)

In this section, we introduce two classes of interpolation spaces in terms of solution op-
erators. We show that these interpolation spaces are identical with the classical real inter-
polation space.

Let 0 < θ < 1, 1 ≤ p ≤ ∞. We define the following classes:

Tα DA(θ , p) :=
{

y ∈ X : t �→ ψα(t) = t1–αθ
∥
∥ATα(t)y

∥
∥

X ∈ Lp
∗(0, 1)

}
, (3.1)
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equipped with the norm Tα‖y‖θ ,p = ‖y‖X + ‖ψα‖Lp∗(0,1).

Sα DA(θ , p) :=
{

y ∈ X : t �→ φα(t) = tα(1–θ )∥∥ASα(t)y
∥
∥

X ∈ Lp
∗(0, 1)

}
, (3.2)

equipped with the norm Sα‖y‖θ ,p = ‖y‖X + ‖φα‖Lp∗(0,1).

Remark 3.1 We observe that, for any 0 < a < b < ∞, the two maps t �→ ψα(t) and
t �→ φα(t) belong to Lp

∗(a, b). Indeed, ‖ψα‖Lp∗(a,b) ≤ C1(α, a, b, θ , p)‖y‖X and ‖φα‖Lp∗(a,b) ≤
C2(α, a, b, θ , p)‖y‖X for some C1, C2 > 0. Therefore, one can replace the interval (0, 1) by
any intervals of the form (0, T] and check that the corresponding norms will also be equiv-
alent to the norms mentioned in (3.1), (3.2), respectively.

From now onward, we will use C as a positive constant appeared in any estimation in-
stead of mentioning it precisely and the norm ‖·‖ in place of the norm ‖·‖X on X.

Theorem 3.2 Let θ ∈ (0, 1), p ∈ [1,∞]. Then

DA(θ , p) = Tα DA(θ , p) = Sα DA(θ , p),

and the respective norms defined on these spaces are equivalent.

Proof Let x ∈ DA(θ , p) := (X, D(A))θ ,p with x = x1 + x2, where x1 ∈ X and x2 ∈ D(A).
By the properties in Lemma 2.13, ‖ATα(t)x‖ ≤ ‖ATα(t)x1‖ + ‖ATα(t)x2‖ ≤ C(t–1‖x1‖ +
tα–1‖Ax2‖).

This implies that

ψα(t) = t1–αθ
∥
∥ATα(t)x

∥
∥ ≤ Ct–αθ

(‖x1‖ + tα‖x2‖D(A)
)

= Ct–αθ K
(
tα , x; X, D(A)

)
. (3.3)

By the change of variable t �→ tα , the R.H.S of (3.3) belongs to Lp
∗(0, 1), which concludes

that the map t �→ ψα(t) ∈ Lp
∗(0, 1), and Tα‖x‖θ ,p ≤ C‖x‖θ ,p.

Hence we proved that

DA(θ , p) ↪→ Tα DA(θ , p). (3.4)

Now, let x ∈ Tα DA(θ , p). By Lemma 2.13(v) and the closedness of A, we have

∥
∥ASα(t)x

∥
∥ ≤ 1

�(1 – α)

∫ t

0
(t – s)–α

∥
∥ATα(s)x

∥
∥ds

≤ 1
�(1 – α)

∫ t

0
(t – s)–αsαθ–1ψα(s) ds, for 0 < t < 1.

If p = ∞, then ‖ASα(t)x‖ ≤ 1
�(1–α) tα(θ–1)B(1 – α,αθ )‖ψα‖L∞(0,1), where B is the beta func-

tion defined as B(m, n) =
∫ 1

0 (1 – s)m–1sn–1 ds, m, n > 0.
Thus, the map t �→ φα(t) ∈ L∞∗ (0, 1), and Sα‖x‖θ ,∞ ≤ CTα‖x‖θ ,∞.
For 1 < p < ∞, one can easily check the validity of the inequality (2.1) with the functions

u(t) = tα(1–θ )p–1, v(t) = t(1–αθ )p–1. Thus, by Lemma 2.6 and noting Lemma 2.13(ii), (v) we
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get

∫ 1

0
tα(1–θ )p∥∥ASα(t)x

∥
∥p dt

t

≤
∫ ∞

0
tα(1–θ )p∥∥I1–α(ATα)(t)x

∥
∥p dt

t

≤ C
∫ ∞

0
t(1–αθ )p∥∥ATα(t)x

∥
∥p dt

t

≤ C
(∫ 1

0
t(1–αθ )p∥∥ATα(t)x

∥
∥p dt

t
+

∫ ∞

1
t(1–αθ )p–1t–p‖x‖p dt

)

≤ C
(∫ 1

0
t(1–αθ )p∥∥ATα(t)x

∥
∥p dt

t
+ ‖x‖p

)

= C
(‖ψα‖p

Lp∗(0,1)
+ ‖x‖p),

which resulted to Sα‖x‖θ ,p ≤ CTα‖x‖θ ,p. Hence, Tα DA(θ , p) ↪→ Sα DA(θ , p).
For the case p = 1, the inequality (2.2) holds for u(t) = tα(1–θ )–1, v(t) = t–αθ and β = 1.

Again, by a similar procedure to the last case, we can obtain Sα‖x‖θ ,1 ≤ CTα‖x‖θ ,1. Hence,
for all 1 ≤ p ≤ ∞,

Tα DA(θ , p) ↪→ Sα DA(θ , p). (3.5)

Again, let x ∈ Sα DA(θ , p). Then, by Lemma 2.11(v), we can write

x = –
(
Sα(t)x – x

)
+ Sα(t)x = –

1
�(α)

∫ t

0
(t – s)α–1ASα(s)x ds + Sα(t)x.

Therefore,

K
(
tα , x; X, D(A)

) ≤ 1
�(α)

∫ t

0
(t – s)α–1∥∥ASα(s)x

∥
∥ds + tα

∥
∥Sα(t)x

∥
∥

D(A), t > 0.

First, consider p = ∞:

K
(
tα , x; X, D(A)

) ≤ 1
�(α)

∫ t

0
(t – s)α–1∥∥ASα(s)x

∥
∥ds + tα

∥
∥Sα(t)x

∥
∥

D(A)

≤ 1
�(α)

∫ t

0
(t – s)α–1sα(θ–1)‖φα‖L∞∗ (0,1) ds + Ctα‖x‖

+ tα(θ–1)+α‖φα‖L∞∗ (0,1)

≤ Ctαθ‖φα‖L∞∗ (0,1) + Ctα‖x‖ + tαθ‖φα‖L∞∗ (0,1),

implying t–αθ K(tα , x; X, D(A)) ≤ Ctα–αθ Sα‖x‖θ ,∞.
Therefore, noting the change of variable t �→ tα , we obtain

‖x‖DA(θ ,∞) ≤ CSα‖x‖θ ,∞.
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Now, for the case 1 ≤ p < ∞, we first note that

∫ 1

0
t–αθpK

(
tα , x; X, D(A)

)p dt
t

≤
∫ 1

0
t–αθp∥∥

(
IαASα

)
(t)x

∥
∥p dt

t
+ C‖x‖p + ‖φα‖p

Lp∗(0,1)
.

Now, to prove ‖x‖DA(θ ,p) ≤ CSα‖x‖θ ,p, it suffices to show that

∫ 1

0
t–αθp∥∥

(
IαASα

)
(t)x

∥
∥p dt

t
≤ C

∫ 1

0
tα(1–θ )p∥∥ASα(t)x

∥
∥p dt

t
. (3.6)

This inequality immediately follows from Lemmas 2.6, 2.7 with u(t) = t–αθp–1, v(t) =
tα(1–θ )p–1, β = 1 and using the procedure same as in the proof of the second inclusion (in-
clusion number (3.5)). Hence for all 1 ≤ p ≤ ∞,

Sα DA(θ , p) ↪→ DA(θ , p). (3.7)

Therefore, the inclusions (3.4), (3.5) and (3.7) validate the theorem. �

Next we show the another formation of Sα DA(θ , p) in the next result.

Proposition 3.3 Let 0 < θ < 1 and 1 ≤ p ≤ ∞. Then the following holds:

Sα DA(θ , p) =
{

y ∈ X : t �→ ϕα(t) = t–αθ
∥
∥Sα(t)y – y

∥
∥ ∈ Lp

∗(0, 1)
}

,

and the norm y �→ Sα‖y‖θ ,p is equivalent to the norm y �→ ‖y‖ + ‖ϕα‖Lp∗(0,1).

Proof Let x ∈ Sα DA(θ , p), i.e., x ∈ X such that t �→ φα(t) = tα(1–θ )‖ASα(t)x‖ ∈ Lp
∗(0, 1).

For p = ∞. By Lemma 2.11(v), we get

∥
∥Sα(t)x – x

∥
∥ =

∥
∥
(
IαASα

)
(t)x

∥
∥

≤ 1
�(α)

∫ t

0
(t – s)α–1sα(θ–1)φα(s) ds

≤ Ctαθ‖φα‖L∞∗ (0,1) for all t ∈ (0, 1).

Then it is obvious that ϕα ∈ L∞∗ (0, 1) and ‖ϕα‖L∞∗ (0,1) ≤ C‖φα‖L∞∗ (0,1).
For 1 ≤ p < ∞, it is adequate to prove that ∃C > 0 such that

∫ 1

0
t–θαp∥∥

(
IαASα

)
(t)x

∥
∥p dt

t
≤ C

∫ 1

0
tα(1–θ )p∥∥ASα(t)x

∥
∥p dt

t
. (3.8)

This inequality appeared in the proof of the third inclusion of Theorem 3.2 and has been
proved by using Lemmas 2.6, 2.7 (see the inequality (3.6)).

Conversely, let y ∈ X such that t �→ ϕα(t) = t–αθ‖Sα(t)y – y‖ ∈ Lp
∗(0, 1).

Now one can check the validity of the following identity for all t > 0:

ASα(t)y = ASα(t)
α

tα

∫ t

0
(t – s)α–1(y – Sα(s)y

)
ds

+ ASα(t)
�(α + 1)

tα

1
�(α)

∫ t

0
(t – s)α–1Sα(s)y ds.
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By using Lemma 2.11(v), we get

ASα(t)y = ASα(t)
α

tα

∫ t

0
(t – s)α–1(y – Sα(s)y

)
ds + Sα(t)

�(α + 1)
tα

(
Sα(t)y – y

)
.

For the case p = ∞, we employ the properties in Lemma 2.11 and get

∥
∥ASα(t)y

∥
∥ ≤ Ct–2α

∫ t

0
(t – s)α–1sαθϕα(s) ds + Ctα(θ–1)ϕα(t)

≤ 2Ctα(θ–1)‖ϕα‖L∞∗ (0,1).

So t �→ φα(t) = tα(1–θ )‖ASα(t)y‖ belongs to L∞∗ (0, 1), and ‖φα‖L∞∗ (0,1) ≤ C‖ϕα‖L∞∗ (0,1).
For the case 1 ≤ p < ∞, first note that

tα(1–θ )∥∥ASα(t)y
∥
∥ ≤ C

(
t–α(1+θ )∥∥

(
Iα

(
y – Sα(·)y))(t)

∥
∥ + ϕα(t)

)
.

Hence, to prove ‖φα‖Lp∗(0,1) ≤ C‖ϕα‖Lp∗(0,1), it is enough to prove that

∫ 1

0
t–α(1+θ )p∥∥

(
Iα

(
y – Sα(·)y))(t)

∥
∥p dt

t
≤ C

∫ 1

0
t–αθp∥∥y – Sα(t)y

∥
∥p dt

t
. (3.9)

The above inequality is validated by the Lemmas 2.6, 2.7 for u(t) = t–α(1+θ )p–1, v(t) = t–αθp–1

and β = 1. Hence, the proposition is proved. �

4 Strict regularity of mild solutions
This section is devoted to establishing strict Hölder regularity (i.e., the p = ∞ case) results
using the interpolation space constructed in the last section. Before that we shall present
the necessary and sufficient condition for a mild solution to be a strict solution of the
problem (1.2) in the case 0 < α < 1. For the case 1 < α < 2, we refer to [21].

Proposition 4.1 Let F ∈ C([0, T]; X), v0 ∈ D(A), and v be a mild solution of (1.2) on [0, T].
Let us consider

w(t) =
∫ t

0
Tα(t – s)F(s) ds, t > 0.

Then the following are equivalent:
(i) v is strict solution of (1.2).

(ii) w(t) ∈ D(A),∀t ∈ [0, T], and w ∈ C([0, T]; D(A)).

Proof Let v be a strict solution. Then v ∈ C([0, T]; D(A)), I1–α(v(·) – v0)) ∈ C1([0, T]; X)
and v satisfies Eq. (1.2), and explicitly v(t) = Sα(t)v0 + w(t). Since by Lemma 2.11 Sα(t)v0 ∈
D(A),∀t ∈ [0, T], we have w(t) ∈ D(A) and

Aw(t) = Av(t) – ASα(t)v0 = Av(t) – Sα(t)Av0.

Hence, it follows that w ∈ C([0, T]; D(A)).
Now, we assume that w(t) ∈ D(A),∀t ∈ [0, T], and w ∈ C([0, T]; D(A)).
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Then we prove that v ∈ C([0, T]; D(A)), I1–α(v(·) – v0)) ∈ C1([0, T]; X) and v satisfies
Eq. (1.2).

Since v is mild solution of (1.2), v(t) = Sα(t)v0 + w(t). Obviously v ∈ C([0, T]; D(A)).
Now

(
g1–α ∗ (

v(·) – v0
))

(t) =
(
g1–α ∗ (

Sα(·)v0 – v0
))

(t) + (g1–α ∗ Tα ∗ F)(t)

=
(
g1–α ∗ gα ∗ ASα(·)v0

)
(t) + (Sα ∗ F)(t)

=
(
g1 ∗ ASα(·)v0

)
(t) + (Sα ∗ F)(t). (4.1)

Also, by Remark 2.12 we have

(Sα ∗ F)(t) = A(gα ∗ Sα ∗ F)(t) + (g1 ∗ F)(t)

= A(gα ∗ g1–α ∗ Tα ∗ F)(t) + (g1 ∗ F)(t)

= A(g1 ∗ Tα ∗ F)(t) + (g1 ∗ F)(t)

= (g1 ∗ Aw)(t) + (g1 ∗ F)(t). (4.2)

Since Aw ∈ C([0, T]; X) and F ∈ C([0, T]; X), it follows that t �→ (Sα ∗ F)(t) belongs to
C1([0, T]; X). Also ASα(·)v0 ∈ C([0, T]; X) as v0 ∈ D(A). So, t �→ (g1 ∗ASα(·)v0)(t) belongs to
C1([0, T]; X). Consequently, I1–α(v(·) – v0) = (g1–α ∗ (v(·) – v0)) ∈ C1([0, T]; X). Now using
(4.1), (4.2),

cDα
t v(t) =

d
dt

(
g1–α ∗ (

v(·) – v0
))

(t)

= ASα(t)v0 +
d
dt

(Sα ∗ F)(t)

= ASα(t)v0 + Aw(t) + F(t)

= Av(t) + F(t). �

Proposition 4.2 Consider the integral defined as

w(t) =
∫ t

0
Tα(t – s)F(s) ds, F ∈ C

(
[0, T]; X

)
.

Then w ∈ Cα([0, T]; X).

Proof By Lemma 2.13, ‖w(t)‖ ≤ C‖F‖C([0,T];X)
∫ t

0 (t – s)α–1 ds ≤ C‖F‖C([0,T];X)tα , for all t ∈
[0, T], with w(0) = 0.

For 0 ≤ s < t ≤ T ,

∥
∥w(t) – w(s)

∥
∥ ≤

∫ s

0

∥
∥
[
Tα(t – τ ) – Tα(s – τ )

]
F(τ )

∥
∥dτ +

∫ t

s

∥
∥Tα(t – τ )F(τ )

∥
∥dτ

≤
∫ s

0

∫ t–τ

s–τ

∥
∥T ′

α(σ )F(τ )
∥
∥dσ dτ + C‖F‖C([0,T];X)

∫ t

s
(t – τ )α–1 dτ

≤ C‖F‖C([0,T];X)

(∫ s

0

∫ t–τ

s–τ

σ α–2 dσ dτ +
∫ t

s
(t – τ )α–1 dτ

)
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≤ C‖F‖C([0,T];X)(t – s)α .

Hence, w ∈ Cα([0, T]; X) and [w]α ≤ C‖F‖C([0,T];X). �

Theorem 4.3 Let F ∈ Cθ ([0, T]; X), where θ ∈ (0, 1), and v be the mild solution of (1.2).
Also, we assume that v0 ∈ D(A) such that Av0 +F(0) ∈ Tα DA(θ ,∞). Then v is strict solution
on [0, T]. Indeed, v ∈ Cαθ ([0, T]; D(A)) and consequently cDα

t v ∈ Cαθ ([0, T]; X). Moreover,
there exists C > 0 such that

∥
∥cDα

t v
∥
∥

Cαθ ([0,T];X) + ‖Av‖Cαθ ([0,T];X)

≤ C
(‖F‖Cθ ([0,T];X) + ‖v0‖D(A) + Tα

∥
∥Av0 + F(0)

∥
∥

θ ,∞
)
. (4.3)

Proof We can write

v(t) = Sα(t)v0 +
∫ t

0
Tα(t – s)

(
F(s) – F(t)

)
ds +

∫ t

0
Tα(t – s)F(t) ds

= Sα(t)v0 + w1(t) + (g1 ∗ Tα)(t)F(t)

= Sα(t)v0 + w1(t) + (gα ∗ Sα)(t)F(t)

= w1(t) + w2(t),

where w1(t) =
∫ t

0 Tα(t – s)(F(s) – F(t)) ds, w2(t) = Sα(t)v0 + (gα ∗ Sα)(t)F(t).
Now, ‖ATα(t – s)(F(s) – F(t))‖ ≤ C[F]θ (t – s)θ–1, which is integrable on (0, t). By the

closedness of A, we have

∥
∥Aw1(t)

∥
∥ ≤ C[F]θ tθ for all t ∈ [0, T].

Hence, w1(t) ∈ D(A),∀t ∈ [0, T].
For 0 ≤ s < t ≤ T , we have

∥
∥Aw1(t) – Aw1(s)

∥
∥

≤
∫ s

0

∥
∥
(
ATα(t – σ ) – ATα(s – σ )

)(
F(σ ) – F(s)

)∥
∥dσ

+
∥
∥
∥
∥

∫ s

0
ATα(t – σ )

(
F(s) – F(t)

)
dσ

∥
∥
∥
∥ +

∫ t

s

∥
∥ATα(t – σ )

(
F(σ ) – F(t)

)∥
∥dσ

≤
∫ s

0

∫ t–σ

s–σ

∥
∥AT ′

α(τ )
∥
∥

L(X)

∥
∥F(σ ) – F(s)

∥
∥dτ dσ

+
∥
∥
∥
∥

∫ t

t–s
ATα(τ )

(
F(s) – F(t)

)
dτ

∥
∥
∥
∥ + C[F]θ

∫ t

s
(t – σ )θ–1 dσ

≤ [F]θ
∫ s

0
(s – σ )θ

∫ t–σ

s–σ

∥
∥S′′

α(τ )
∥
∥

L(X) dτ dσ +
∥
∥
∥
∥

∫ t

t–s
S′

α(τ )
(
F(s) – F(t)

)
dτ

∥
∥
∥
∥

+ C[F]θ (t – s)θ

≤ C[F]θ
∫ s

0

∫ t–σ

s–σ

τ θ–2 dτ dσ +
∥
∥
(
Sα(t) – Sα(t – s)

)(
F(s) – F(t)

)∥
∥
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+ C[F]θ (t – s)θ

≤ C[F]θ (t – s)θ + 2B1[F]θ (t – s)θ + C[F]θ (t – s)θ

≤ C[F]θ (t – s)θ ≤ CTθ (1–α)[F]θ (t – s)αθ . (4.4)

By Remark 2.12, we also note that

Aw2(t) = Sα(t)Av0 + (gα ∗ ASα)(t)F(t) = Sα(t)
(
Av0 + F(0)

)
+ Sα(t)

(
F(t) – F(0)

)
– F(t).

For 0 ≤ s < t ≤ T ,

∥
∥
(
Sα(t) – Sα(s)

)(
Av0 + F(0)

)∥
∥ ≤

∫ t

s

∥
∥S′

α(τ )
(
Av0 + F(0)

)∥
∥dτ

≤
∫ t

s

∥
∥ATα(τ )

(
Av0 + F(0)

)∥
∥dτ

≤
∫ t

s
ταθ–1Tα

∥
∥Av0 + F(0)

∥
∥

θ ,∞ dτ

≤ CTα
∥
∥Av0 + F(0)

∥
∥

θ ,∞(t – s)αθ (4.5)

and

∥
∥Sα(t)

(
F(t) – F(0)

)
– Sα(s)

(
F(s) – F(0)

)∥
∥

≤ ∥
∥
(
Sα(t) – Sα(s)

)(
F(s) – F(0)

)∥
∥ +

∥
∥Sα(t)

(
F(t) – F(s)

)∥
∥

≤ [F]θ
∫ t

s

∥
∥S′

α(τ )
∥
∥

L(X)s
θ dτ + C[F]θ (t – s)θ

≤ C[F]θ
∫ t

s
τ θ–1 dτ + C[F]θ (t – s)θ

≤ C[F]θ (t – s)θ ≤ C[F]θ Tθ (1–α)(t – s)αθ .

Hence, by (4.5), it is clear that Aw2 ∈ Cαθ ([0, T]; X) with [Aw2]αθ ≤ C([F]θ + Tα‖Av0 +
F(0)‖θ ,∞). Also, from (4.4), Aw1 ∈ Cαθ ([0, T]; X) with [Aw1]αθ ≤ C[F]θ .

Consequently, Av ∈ Cαθ ([0, T]; X).
By Proposition 4.2, it follows that v ∈ Cαθ ([0, T]; D(A)) and the estimation (4.3) follows

easily. �

We say B, set of all X-valued function on [0, T], satisfies maximal regularity property
for the problem (1.2) if for every F ∈ B, the solution v of (1.2) is such that both cDα

t v and
Av belong to B. Clearly, if 0 < θ < α, then by Theorem 4.3, B = Cθ ([0, T]; X) enjoys the
maximal regularity property for the problem (1.2) which is stated now as a corollary.

Corollary 4.4 Let F ∈ Cθ ([0, T]; X), θ ∈ (0,α). Assume that v0 ∈ D(A) such that Av0 +
F(0) ∈ Tα DA( θ

α
,∞). Then a mild solution, say v, of (1.2) is a strict solution. Indeed, v ∈

Cθ ([0, T]; D(A)) and consequently cDα
t v ∈ Cθ ([0, T]; X). Moreover, there exists C > 0 such
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that

∥
∥cDα

t v
∥
∥

Cθ ([0,T];X) + ‖Av‖Cθ ([0,T];X)

≤ C
(‖F‖Cθ ([0,T];X) + ‖v0‖D(A) + Tα

∥
∥Av0 + F(0)

∥
∥

θ
α ,∞

)
. (4.6)

Corollary 4.5 Let F ∈ Cθ ([0, T]; X), θ ∈ (0, 1). Assume that v0 ∈ D(A) such that Av0 +
F(0) = 0. Then a mild solution, say v, of (1.2) is a strict solution. Indeed, v ∈ Cθ ([0, T]; D(A))
and consequently cDα

t v ∈ Cθ ([0, T]; X). Moreover, there exists C > 0 such that

∥
∥cDα

t v
∥
∥

Cθ ([0,T];X) + ‖Av‖Cθ ([0,T];X) ≤ C
(‖F‖Cθ ([0,T];X) + ‖v0‖D(A)

)
. (4.7)

Remark 4.6 Now, one may question the establishment of the strict regularity of mild so-
lution of (1.2) in the interpolation space Tα DA(θ ,∞) using the method presented in this
paper. This is possible when Tα(t)y ∈ D(A2),∀t > 0, y ∈ X. However, till now it is an open
problem to find whether Tα(t)y ∈ D(A2),∀t > 0, y ∈ X.

In [16], we studied that the assumptions v0 ∈ D(A) and F ∈ Cθ ([0, T]; X) with F(0) �= 0
do not guarantee that the mild solution is strict. But, in the next theorem, we shall see that
the assumption F ∈ Cθ ([0, T]; Tα DA(θ ,∞)) ensures the strict Hölder regularity of a mild
solution of (1.2). We shall use the following constant:

M = sup
0<t≤T+1

t1–αθ
∥
∥ATα(t)

∥
∥

L(Tα DA(θ ,∞);X). (4.8)

Theorem 4.7 Let F ∈ Cθ ([0, T]; Tα DA(θ ,∞)), θ ∈ (0, 1), and v0 ∈ D(A). Then a mild solu-
tion, say v, of (1.2) is a strict solution. Additionally, if we assume that Av0 ∈ Tα DA(θ ,∞),
then v ∈ Cαθ ([0, T]; D(A)) and consequently cDα

t v ∈ Cαθ ([0, T]; X). Moreover, there exists
C > 0 such that

∥
∥cDα

t v
∥
∥

Cαθ ([0,T];X) + ‖Av‖Cαθ ([0,T];X)

≤ C
(‖F‖Cθ ([0,T];Tα DA(θ ,∞)) + ‖v0‖D(A) + Tα‖Av0‖θ ,∞

)
. (4.9)

Proof Let w(t) =
∫ t

0 Tα(t – s)F(s) ds, t > 0. Now, for s ∈ (0, t) we have,

∥
∥ATα(t – s)F(s)

∥
∥ ≤ ∥

∥ATα(t – s)
∥
∥

L(Tα DA(θ ,∞);X)

∥
∥F(s)

∥
∥

Tα DA(θ ,∞)

≤ M(t – s)αθ–1‖F‖Cθ ([0,T];Tα DA(θ ,∞)),

which is integrable on (0, t). Using the closedness of A, we get

∥
∥Aw(t)

∥
∥ ≤ M

αθ
tαθ‖F‖Cθ ([0,T];Tα DA(θ ,∞)) < ∞,∀t ∈ [0, T] with Aw(0) = 0.

Therefore, w(t) ∈ D(A) for all t ∈ [0, T]. Now let 0 < z < 1 be such that t, t + z ∈ [0, T]. Then

∥
∥Aw(t + z) – Aw(t)

∥
∥

=
∥
∥
∥
∥

∫ t+z

0
ATα(t + z – σ )F(σ ) dσ –

∫ t

0
ATα(t – σ )F(σ ) dσ

∥
∥
∥
∥
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=
∥
∥
∥
∥

∫ t

–z
ATα(t – σ )F(σ + z) dσ –

∫ t

0
ATα(t – σ )F(σ ) dσ

∥
∥
∥
∥

≤
∫ 0

–z

∥
∥ATα(t – σ )F(σ + z)

∥
∥dσ +

∫ t

0

∥
∥ATα(t – σ )

(
F(σ + z) – F(σ )

)∥
∥dσ

≤ M‖F‖Cθ ([0,T];Tα DA(θ ,∞))

(∫ 0

–z
(t – σ )αθ–1 dσ + zθ

∫ t

0
(t – σ )αθ–1 dσ

)

≤ C‖F‖Cθ ([0,T];Tα DA(θ ,∞))zαθ .

Therefore, Aw ∈ Cαθ ([0, T]; X) and by Proposition 4.2, w ∈ Cαθ ([0, T]; D(A)). Hence by
Proposition 4.1, it is concluded that v is a strict solution of (1.2).

Now, if Av0 ∈ Tα DA(θ ,∞), then by following the procedure to obtain (4.5) in Theo-
rem 4.3, we can prove that t �→ ASα(t)v0 ∈ Cαθ ([0, T]; X) with [ASα(·)v0]αθ ≤ Tα‖v0‖θ ,∞
and the estimation (4.9) follows easily. �

Example 4.8 Consider the following time-fractional diffusion equation:

cDα
t u(t, x) = �u(t, x) + f (t, x), t ∈ (0, T], x ∈ R

n,α ∈ (0, 1),

u(0, x) = u0(x), x ∈ R
n.

Consider the operator A : D(A) → X = Cb(Rn) defined by
⎧
⎨

⎩

D(A) = {u ∈ ⋂
1≤p<∞ W 2,p

loc (Rn) ∩ Cb(Rn) : �u ∈ Cb(Rn)}
Au = �u,

(4.10)

where Cb(Rn) is the space of all bounded continuous functions endowed with the usual
supremum norm. The operator A generates an analytic semigroup etA and D(A) =
BUC(Rn) := X0, the space of all bounded uniformly continuous functions (cf. [1, p. 81]).
Now, the part of A in X0 is defined by

D(A0) =
{

u ∈ D(A) : Au ∈ X0
}

, A0u := Au, u ∈ D(A0). (4.11)

Then A0 : D(A0) → X0 is densely defined sectorial operator which generates the bounded
analytic semigroup etA0 . In fact, etA0 = etA (cf. [1, Remark 2.1.5]). Now, using the setting
u(t, x) = u(t)(x) and f (t, x) = f (t)(x), the problem (4.10) can be written as the following
abstract Cauchy problem in the Banach space X0:

⎧
⎨

⎩

cDα
t u(t) = A0u(t) + f (t), t > 0,

u(0) = u0.
(4.12)

We denote Cθ
b (Rn) as the space of all bounded and Hölder continuous functions en-

dowed with the usual Hölder norm. We also define C2+θ
b (Rn) = {f : Dβ f exists, Dβ f ∈

Cb(Rn)∀multi-index β with |β| ≤ 2, and Dβ f ∈ Cθ
b (Rn) for |β| = 2}.

By Theorem 3.2, [1, p. 45] and [1, Theorem 3.1.12], we know that

Tα DA(θ ,∞) = Sα DA(θ ,∞) = DA(θ ,∞) = DA0 (θ ,∞) = C2θ
b

(
R

n).

Therefore, u0 ∈ C2+2θ
b (Rn) implies that u0 ∈ D(A0) and A0u0 ∈ Tα DA(θ ,∞).
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Now, if f : [0, T] ×R
n →R be bounded uniformly continuous function such that f is θ -

Hölder continuous with respect to time variables, uniformly in x, then f ∈ Cθ ([0, T]; X0).
Also f (0, ·) ∈ C2θ

b (Rn) implies f (0) ∈ Tα DA(θ ,∞). Therefore, applying Theorem 4.3, we
have the following result.

Theorem 4.9 Let θ ∈ (0, 1
2 ) and f : [0, T] × R

n → R be bounded uniformly continuous
function such that f is θ -Hölder continuous with respect to the time variables, uniformly
in x. Assume that u0 ∈ C2+2θ

b (Rn) and f (0, ·) ∈ C2θ
b (Rn). Then any mild solution, say u, of

(4.10) is a strict solution. Moreover, cDα
t u,�u ∈ Cαθ ([0, T]; BUC(Rn)).

Again, let f : [0, T] ×Rn →R be a bounded function such that

sup
s �=t,x �=y

|f (t, x) – f (s, y)|
|s – t|θ + |x – y|2θ

< ∞. (4.13)

Then f ∈ Cθ ([0, T]; Tα DA(θ ,∞)). Hence, by Theorem 4.7, we have the following result.

Theorem 4.10 Let θ ∈ (0, 1
2 ) and f : [0, T] ×R

n →R be a bounded function satisfying the
condition (4.13). Assume that u0 ∈ C2+2θ

b (Rn). Then any mild solution, say u, of (4.10) is a
strict solution. Moreover, cDα

t u,�u ∈ Cαθ ([0, T]; BUC(Rn)).

5 Conclusion
We constructed two classes of interpolation spaces in terms of solution operators of frac-
tional abstract Cauchy problem, and showed that these classes coincide with the real in-
terpolation space. Moreover, it is found that these newly formulated interpolation spaces
are useful to prove the strict Hölder regularity of a mild solution of a fractional ACP in the
semigroup fashion as of the classical case.
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