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Abstract
In this paper, we study the existence of positive solutions of a second-order delayed
differential system, in which the weight functions may change sign. To prove our
main results, we apply Krasnosel’skii’s fixed point theorems in cones.
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1 Introduction
This paper is mainly concerned with the existence of positive solutions of a second-order
two-delay differential system with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′
1(t) + h1(t)f1(x1(t – τ1), x2(t – τ2)) = 0, 0 < t < 1,

x′′
2(t) + h2(t)f2(x1(t – τ1), x2(t – τ2)) = 0, 0 < t < 1,

x1(t) = 0, –τ1 ≤ t ≤ 0, and x1(1) = 0,

x2(t) = 0, –τ2 ≤ t ≤ 0, and x2(1) = 0,

(1.1)

where 0 < τ1 < τ2 < 1
2 are constants, and the weight functions hi(t) may change sign (see

(H1)).
Many researchers have been attracted to study the theory, methodology and applica-

tion of functional differential equations with delays, which have often been put forward as
mathematical model to describe various natural phenomena [6, 9]. One of the important
aspects of research is that there are many papers devoted to studying nontrivial solutions
of boundary-value problems for functional differential equations with delays. For exam-
ple, J.W. Lee and D. O’Regan established the general existence principle of differential-
difference equations with delay type based on the nonlinear alternative (see [10, 11]). Since
then, T. Candan [4, 5] applied Krasnosel’skii’s fixed point theorem for the sum of a com-
pletely continuous and a contraction mapping to prove the existence of positive periodic
solutions for the first- (second-) order neutral differential equation. Y. Liu [12] applied
the Mönch fixed point theorem to study the existence and uniqueness of solutions for
the nonlinear functional differential equations on infinite interval. D. Bai and Y. Xu [1, 2]
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employed fixed-point theory to show how the parameters effect the number of positive
solution for a two-delay singular differential system (1.1). In addition, to the best of our
knowledge, many papers are concerned with the existence of positive solutions of differ-
ential equations with indefinite weight functions by using various methods, such as the
fixed point theorems, the Leray–Schauder degree theory, bifurcation and so on. We refer
the reader to [3, 7, 13, 14, 16–18].

Motivated by the related references, in this paper we mainly apply the Krasnosel’skii
fixed point theorems in cones to discuss the existence of positive solutions of problem
(1.1), if the functions hi(t) and fi(x1, x2) satisfy the following assumptions:

(H1) hi : [0, 1] → (–∞, +∞) are continuous, and there exists a ξ ∈ (0, 1 – τ2) such that

⎧
⎪⎪⎨

⎪⎪⎩

hi(t) ≥ 0, if t ∈ [0, ξ ],

hi(t) ≡ 0, if t ∈ [ξ , ξ + τ2],

hi(t) ≤ 0, if t ∈ [ξ + τ2, 1].

Furthermore, hi do not vanish identically on any subinterval of [0, ξ ] and [ξ + τ2, 1].
(H2) fi : R+2 →R

+ are continuous and there exists a θ ∈ (0, 1] such that

fi(u, v) ≥ θφi(u, v),

φi(u, v) = max{fi(x1, x2) : 0 ≤ x1 ≤ u, 0 ≤ x2 ≤ v}.
(H3) There exist positive constants ki, αi and continuous functions

Fi(x1, x2) : R+2 →R
+

satisfying
(i) Fi(x1, x2) are strictly increasing functions with respective to (x1, x2),

(ii) Fi(λx1,λx2) = λαi Fi(x1, x2),
such that

kiFi(x1, x2) ≤ fi(x1, x2) ≤ Fi(x1, x2), (x1, x2) ∈R
+2.

(H4) There exist σi satisfying τ2 < σi < ξ such that

θ2ki(σi – τ2)αi

∫ ξ

σi

G(t, s)h+
i (s) ds ≥ ξαi

∫ 1

ξ+τ2

G(t, s)h–
i (s) ds.

2 Preliminaries
Let

Ei =
{

xi ∈ C[–τi, 1] : xi(t) = 0,∀t ∈ [–τi, 0] and xi(1) = 0
}

(i = 1, 2)

be a Banach space with norm |xi(t)|i = max–τi≤t≤1 xi(t) = max0≤t≤1 xi(t). Then we can define
a Banach space E by E1 × E2 with norm ‖x‖ = max{|x1|1, |x2|2}, for x = (x1, x2) ∈ E. Also,
define a subcone K ⊂ E by

K =
{

x ∈ E : x(t) ≥ 0, xi is concave on [0, ξ ] and convex on [ξ , 1]
}

.
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For ∀x(t) ∈ K , it is obvious that

|xi|i = max
0≤t≤ξ

xi(t).

For any γ > 0, in the following paragraphs, we set

Kγ =
{

x ∈ K : ‖x‖ < γ
}

and

∂Kγ =
{

x ∈ K : ‖x‖ = γ
}

.

Define an operator T by Tx(t) = (T1x(t), T2x(t)), where

Tix(t) =

⎧
⎨

⎩

∫ 1
0 G(t, s)hi(s)fi(x1(s – τ1), x2(s – τ2)) ds, 0 < t ≤ 1,

0, –τi ≤ t ≤ 0,

where

G(t, s) =

⎧
⎨

⎩

(1 – t)s, 0 ≤ s ≤ t ≤ 1,

t(1 – s), 0 ≤ t ≤ s ≤ 1.

Now solutions of (1.1) can be rewritten as fixed points of T in Banach space E.

Lemma 2.1 Assume that (H1)–(H4) hold. Then the operator T is positive and T : K → K
is completely continuous.

Proof First of all, we show that the operator Ti is positive, namely, for any x(t) ∈ K , we
have

∫ 1

0
G(t, s)hi(s)fi

(
x1(s – τ1), x2(s – τ2)

)
ds ≥

∫ σi

0
G(t, s)h+

i (s)fi
(
x1(s – τ1), x2(s – τ2)

)
ds.

For any x(t) ∈ K , we can obtain

xi(t) ≥ q(t)xi(ξ ), t ∈ [0, ξ ] and xi(t) ≤ q(t)xi(ξ ), t ∈ [ξ , 1],

where q(t) : [0, 1] → [0, 1] defined by q(t) = min{ t
ξ

, 1–t
1–ξ

}. Hence, we have

min
s∈[σ1,ξ ]

q(s – τi) =
σ1 – τi

ξ
, max

s∈[ξ+τ2,1]
q(s – τi) =

1 – ξ – τ2 + τi

1 – ξ
.

Then, from (H1)–(H4), it follows that

∫ 1

0
G(t, s)h1(s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds –

∫ σ1

0
G(t, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

=
∫ ξ

σ1

G(t, s)h+
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds
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–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ θ

∫ ξ

σ1

G(t, s)h+
1 (s)φ1

(
x1(s – τ1), x2(s – τ2)

)
ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)φ1

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ θ

∫ ξ

σ1

G(t, s)h+
1 (s)φ1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)φ1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

≥ θ

∫ ξ

σ1

G(t, s)h+
1 (s)f1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

–
1
θ

∫ 1

ξ+τ2

G(t, s)h–
1 (s)f1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

=
1
θ

[

θ2
∫ ξ

σ1

G(t, s)h+
1 (s)f1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)f1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

]

≥ 1
θ

[

θ2
∫ ξ

σ1

G(t, s)h+
1 (s)k1F1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)F1

(
q(s – τ1)x1(ξ ), q(s – τ2)x2(ξ )

)
ds

]

≥ 1
θ

[

θ2
∫ ξ

σ1

G(t, s)h+
1 (s)k1F1

(
min
[σ1,ξ ]

q(s – τ1)x1(ξ ), min
[σ1,ξ ]

q(s – τ2)x2(ξ )
)

ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)F1

(
max

[ξ+τ2,1]
q(s – τ1)x1(ξ ), max

[ξ+τ2,1]
q(s – τ2)x2(ξ )

)
ds

]

=
1
θ

[

θ2
∫ ξ

σ1

G(t, s)h+
1 (s)

k1

ξα1
F1

(
(σ1 – τ1)x1(ξ ), (σ1 – τ2)x2(ξ )

)
ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)

1
(1 – ξ )α1

F1
(
(1 – ξ – τ2 + τ1)x1(ξ ), (1 – ξ )x2(ξ )

)
ds

]

≥ 1
θ

[

θ2
∫ ξ

σ1

G(t, s)h+
1 (s)

k1

ξα1
F1

(
(σ1 – τ2)x1(ξ ), (σ1 – τ2)x2(ξ )

)
ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)

1
(1 – ξ )α1

F1
(
(1 – ξ )x1(ξ ), (1 – ξ )x2(ξ )

)
ds

]

=
1
θ

[

θ2
∫ ξ

σ1

G(t, s)h+
1 (s)

k1

ξα1
(σ1 – τ2)α1 ds

–
∫ 1

ξ+τ2

G(t, s)h–
1 (s)

1
(1 – ξ )α1

(1 – ξ )α1 ds
]

· F1
(
x1(ξ ), x2(ξ )

)

≥ 0,

which implies that the operator T1 is positive.
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In the similar way, we also get

∫ 1

0
G(t, s)h2(s)f2

(
x1(s – τ1), x2(s – τ2)

)
ds ≥

∫ σ2

0
G(t, s)h+

2 (s)f2
(
x1(s – τ1), x2(s – τ2)

)
ds,

which implies that the operator T2 is positive.
Secondly, from the conditions (H1)–(H3), we can obtain

(Tix)′′(t) ≤ 0, t ∈ [0, ξ ] and (Tix)′′(t) ≥ 0, t ∈ [ξ , 1].

Ultimately, from the standard process, we can prove that T : K → K is completely con-
tinuous. �

The proofs of this paper are mainly based on the Krasnosel’skii fixed point theorems in
cones such as the following.

Lemma 2.2 ([8]) Let E be a Banach space, and K ⊂ E be a cone in E. Assume that �1, �2

are open subsets of E with 0 ∈ �1, �1 ⊂ �2, and let T : K ∩ (�2 \ �1) → K be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�2; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�2.

Then T has a fixed point in K ∩ (�2 \ �1).

Lemma 2.3 ([15]) Let (X, | · |) be a normal linear space; K1, K2 ⊂ X two cones; K : K1 × K2;
r, R ∈ R2

+ with 0 < ri < Ri for i = 1, 2, Kr,R := {u = (u1, u2) ∈ K : ri ≤ |ui| ≤ Ri, i = 1, 2}, and
let T = (T1, T2) be a compact map. Assume that, for each i ∈ {1, 2}, one of the following
conditions is satisfied in Kr,R:

(a) Ti(u) ≮ (≥)ui if |ui| = ri, and Ti(u) ≯ (≤)ui if |ui| = Ri;
(b) Ti(u) ≯ (≤)ui if |ui| = ri, and Ti(u) ≮ (≥)ui if |ui| = Ri.

Then T has a fixed point u in K with ri ≤ |ui| ≤ Ri.

3 Main results I
Define a function δ(t) by

δ(t) = min

{
t
ξ

,
ξ – t

ξ

}

, t ∈ [0, ξ ].

Then, for i = 1, 2, let

γi = min
{

min
σi+τ2

2 ≤s≤σi

δ(s – τ1), min
σi+τ2

2 ≤s≤σi

δ(s – τ2)
}

,

Ai = kiγ
αi
i max

t∈[0,ξ ]
G(t, t) ·

∫ σi

σi+τ2
2

G(s, s)h+
i (s) ds,

Bi =
∫ τ2

τ1

G(s, s)h+
i (s) ds, Ci =

∫ ξ

τ2

G(s, s)h+
i (s) ds.



Wang and Ding Boundary Value Problems         (2021) 2021:96 Page 6 of 17

Theorem 3.1 Assume that (H1)–(H4) hold. If there exist two positive constants r, R with
r < R, satisfying

min
{

A1F1(r, 0), A2F2(0, r)
} ≥ r,

max
{

B1F1(R, 0) + C1F1(R, R), B2F2(R, 0) + C2F2(R, R)
} ≤ R,

then problem (1.1) at least has a positive solution.

Proof On one hand, for any x ∈ ∂KR, we have 0 ≤ x1, x2 ≤ R. Then, by the assumptions,
we have

|T1x|1 ≤
∫ 1

0
G(s, s)h1(s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

=
∫ ξ

0
G(s, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

–
∫ 1

ξ

G(s, s)h–
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ ξ

0
G(s, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

=
(∫ τ2

τ1

+
∫ ξ

τ2

)

G(s, s)h+
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ τ2

τ1

G(s, s)h+
1 (s)f1

(
x1(s – τ1), 0

)
ds

+
∫ ξ

τ2

G(s, s)h+
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ τ2

τ1

G(s, s)h+
1 (s)F1

(
x1(s – τ1), 0

)
ds

+
∫ ξ

τ2

G(s, s)h+
1 (s)F1

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ τ2

τ1

G(s, s)h+
1 (s)F1(R, 0) ds

+
∫ ξ

τ2

G(s, s)h+
1 (s)F1(R, R) ds

≤ R.

In the similar way, we also have

|T2x|2 ≤
∫ 1

0
G(s, s)h2(s)f2

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ τ2

τ1

G(s, s)h+
2 (s)F2(R, 0) ds +

∫ ξ

τ2

G(s, s)h+
2 (s)F2(R, R) ds

≤ R.
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So, from the above discussions, we get

‖Tx‖ = max
{|T1x|1, |T2x|2

} ≤ R = ‖x‖, for x ∈ ∂KR. (3.1)

On the other hand, for any x(t) ∈ K , from the concave property of xi(t) it follows that

xi(t) ≥ δ(t)
∣
∣xi(t)

∣
∣
i, t ∈ [0, ξ ].

Then, for any x(t) ∈ ∂Kr , we have the following.
Case I: if |x1(t)|1 = r, then δ(t)r ≤ x1(t) ≤ r and 0 ≤ x2(t) ≤ r. By (H2), we have

max
t∈[0,ξ ]

T1x(t) = max
t∈[0,ξ ]

∫ 1

0
G(t, s)h1(s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ max
t∈[0,ξ ]

∫ σ1

0
G(t, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

≥ max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

0
G(s, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

≥ k1 max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ k1 max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(
δ(s – τ1)|x1|1, δ(s – τ2)|x2|2

)
ds

≥ k1 max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(
γ1|x1|1,γ1|x2|2

)
ds

= k1γ
α1
1 max

t∈[0,ξ ]
G(t, t) ·

∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(|x1|1, |x2|2
)

ds

≥ k1γ
α1
1 max

t∈[0,ξ ]
G(t, t) ·

∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1(r, 0) ds

= k1γ
α1
1 max

t∈[0,ξ ]
G(t, t) ·

∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s) ds · F1(r, 0)

≥ r.

Case II: if |x1(t)|1 < r, then 0 ≤ x1(t) < r and δ(t)r ≤ x2(t) ≤ r. By (H2), we have

max
t∈[0,ξ ]

T2x(t) = max
t∈[0,ξ ]

∫ 1

0
G(t, s)h2(s)f2

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ max
t∈[0,ξ ]

∫ σ2

0
G(t, s)h+

2 (s)f2
(
x1(s – τ1), x2(s – τ2)

)
ds

≥ max
t∈[0,ξ ]

G(t, t) ·
∫ σ2

0
G(s, s)h+

2 (s)f2
(
x1(s – τ1), x2(s – τ2)

)
ds

≥ k2 max
t∈[0,ξ ]

G(t, t) ·
∫ σ2

σ2+τ2
2

G(s, s)h+
2 (s)F2

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ k2 max
t∈[0,ξ ]

G(t, t) ·
∫ σ2

σ2+τ2
2

G(s, s)h+
1 (s)F2

(
δ(s – τ1)|x1|1, δ(s – τ2)|x2|2

)
ds

≥ k2 max
t∈[0,ξ ]

G(t, t) ·
∫ σ2

σ2+τ2
2

G(s, s)h+
1 (s)F2

(
γ2|x1|1,γ2|x2|2

)
ds
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= k2γ
α2
2 max

t∈[0,ξ ]
G(t, t) ·

∫ σ2

σ2+τ2
2

G(s, s)h+
2 (s)F2

(|x1|1, |x2|2
)

ds

≥ k2γ
α2
2 max

t∈[0,ξ ]
G(t, t) ·

∫ σ2

σ2+τ2
2

G(s, s)h+
2 (s)F2(0, r) ds

= k2γ
α2
2 max

t∈[0,ξ ]
G(t, t) ·

∫ σ2

σ2+τ2
2

G(s, s)h+
2 (s) ds · F2(0, r)

≥ r.

So, from the above discussions, we get

‖Tx‖ = max
{|T1x|1, |T2x|2

} ≥ r = ‖x‖, for x ∈ ∂Kr . (3.2)

Therefore, from (3.1) and (3.2) and Lemma 2.2, the operator T has a fixed point in K ∩
(�R \ �r). �

As by a similar proof to Theorem 3.1, we also get the following.

Theorem 3.2 Assume that (H1)–(H4) hold. If there exist two positive constants r, R with
r < R, satisfying

min
{

A1F1(R, 0), A2F2(0, R)
} ≥ R,

max
{

B1F1(r, 0) + C1F1(r, r), B2F2(r, 0) + C2F2(r, r)
} ≤ r,

then problem (1.1) at least has a positive solution.

4 Main results II
Theorem 4.1 Assume that (H1)–(H4) hold. If there exist four positive constants r1, r2, R1,
R2 with r1 < R1, r2 < R2, satisfying

A1F1(r1, r2) > r1, A2F2(r1, r2) > r2,

B1F1(R1, 0) + C1F1(R1, R2) < R1,

B2F2(R1, 0) + C2F2(R1, R2) < R2,

then problem (1.1) at least has a positive solution.

Proof of Theorem 4.1 Let

Kr,R :=
{

x = (x1, x2) ∈ K : ri ≤ |xi|i ≤ Ri
}

(i = 1, 2).

Then, for any x(t) ∈ Kr,R, we have

xi(t) ≥ δ(t)
∣
∣xi(t)

∣
∣
i, t ∈ [0, ξ ],

where δ(t) = min{ t
ξ

, ξ–t
ξ

}, t ∈ [0, ξ ].
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On the one hand, for any x(t) ∈ Kr,R, we show that T1(x) ≮ x1 if |x1|1 = r1 and r2 ≤ |x2|2 ≤
R2. On the contrary, if T1(x) < x1, then we have

r1 ≥ max
t∈[0,ξ ]

x1(t) ≥ max
t∈[0,ξ ]

T1x(t)

= max
t∈[0,ξ ]

∫ 1

0
G(t, s)h1(s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ max
t∈[0,ξ ]

∫ σ1

0
G(t, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

≥ max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

0
G(s, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

≥ k1 max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(
x1(s – τ1), x2(s – τ2)

)
ds

≥ k1 max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(
δ(s – τ1)|x1|1, δ(s – τ2)|x2|2

)
ds

≥ k1 max
t∈[0,ξ ]

G(t, t) ·
∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(
γ1|x1|1,γ1|x2|2

)
ds

= k1γ
α1
1 max

t∈[0,ξ ]
G(t, t) ·

∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1

(|x1|1, |x2|2
)

ds

≥ k1γ
α1
1 max

t∈[0,ξ ]
G(t, t) ·

∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s)F1(r1, r2) ds

= k1γ
α1
1 max

t∈[0,ξ ]
G(t, t) ·

∫ σ1

σ1+τ2
2

G(s, s)h+
1 (s) ds · F1(r1, r2)

> r1,

which implies a contradiction. In the similar way, for any x(t) ∈ Kr,R, we also can obtain
T2(x) ≮ x2 if |x2|2 = r2 and r1 ≤ |x1|1 ≤ R1.

On the one hand, for any x(t) ∈ Kr,R, we show that T1(x) ≯ x1 if |x1|1 = R1 and r2 ≤ |x2|2 ≤
R2. On the contrary, if T1(x) > x1, then we have

x1(t) < T1x(t) =
∫ 1

0
G(t, s)h1(s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

=
∫ ξ

0
G(t, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

–
∫ 1

ξ

G(t, s)h–
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ ξ

0
G(s, s)h+

1 (s)f1
(
x1(s – τ1), x2(s – τ2)

)
ds

=
(∫ τ1

0
+

∫ τ2

τ1

+
∫ ξ

τ2

)

G(s, s)h+
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds

=
∫ τ1

0
G(s, s)h+

1 (s)f1(0, 0) ds +
∫ τ2

τ1

G(s, s)h+
1 (s)f1

(
x1(s – τ1), 0

)
ds

+
∫ ξ

τ2

G(s, s)h+
1 (s)f1

(
x1(s – τ1), x2(s – τ2)

)
ds
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≤
∫ τ2

τ1

G(s, s)h+
1 (s)F1

(
x1(s – τ1), 0

)
ds

+
∫ ξ

τ2

G(s, s)h+
1 (s)F1

(
x1(s – τ1), x2(s – τ2)

)
ds

≤
∫ τ2

τ1

G(s, s)h+
1 (s)F1(R1, 0) ds +

∫ ξ

τ2

G(s, s)h+
1 (s)F1(R1, R2) ds

< R1,

which implies a contradiction. In the similar way, for any x(t) ∈ Kr,R, we also can obtain
T2(x) ≯ x2 if |x2|2 = R2 and r1 ≤ |x1|1 ≤ R1.

Therefore, from (a) of Lemma 2.3, the operator T has a fixed point x in K with ri ≤ |xi| ≤
Ri. �

As in a similar proof to Theorem 4.1, we also get the following.

Theorem 4.2 Assume that (H1)–(H4) hold. If there exist four positive constants r1, r2, R1,
R2 with r1 < R1, r2 < R2, satisfying

A1F1(R1, r2) > R1, A2F2(r1, R2) > R2,

B1F1(r1, 0) + C1F1(r1, R2) < r1,

B2F2(R1, 0) + C2F2(R1, r2) < r2,

then problem (1.1) at least has a positive solution.

5 Examples
Example 5.1 Now we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′
1(t) + h1(t)f1(x1(t – τ1), x2(t – τ2)), t > 0,

x′′
2(t) + h2(t)f2(x1(t – τ1), x2(t – τ2)), t > 0,

x1(t) = 0, –τ1 ≤ t ≤ 0, and x1(1) = 0,

x2(t) = 0, –τ2 ≤ t ≤ 0, and x2(1) = 0,

(5.1)

where τ1 = 1
10 , τ2 = 1

5 ,

h1(t) = h2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

400( 1
2 – t), t ∈ [0, 1

2 ],

0, t ∈ [ 1
2 , 7

10 ],

– 5
3 t + 7

6 , t ∈ [ 7
10 , 1],

f1 =
(x1 + x2) 1

2

3
2 + 1

4 sin2(x1 + x2)
,

f2 =
(x1 + x2) 1

3

4
3 + 1

3π
arctan(x2

1x4
2)

.
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It is obvious that (H1) and (H2) hold. Furthermore, we also have

1
2

F1(x1, x2) =
1
2

(x1 + x2)
1
2 ≤ f1 ≤ (x1 + x2)

1
2 = F1(x1, x2),

1
2

F2(x1, x2) =
1
2

(x1 + x2)
1
3 ≤ f2 ≤ (x1 + x2)

1
3 = F2(x1, x2),

which shows that (H3) holds. Now, we prove that (H4) holds.
Firstly, we show that there exist σi satisfying 1

10 < σi < 1
5 such that

θ2k1(σ1 – τ2)
1
2

∫ ξ

σ1

G(t, s)h+
1 (s) ds ≥ ξ

1
2

∫ 1

ξ+τ2

G(t, s)h–
1 (s) ds (5.2)

and

θ2k2(σ2 – τ2)
1
3

∫ ξ

σ2

G(t, s)h+
2 (s) ds ≥ ξ

1
3

∫ 1

ξ+τ2

G(t, s)h–
2 (s) ds. (5.3)

For fixed θ = 1
2 , σ1 = σ2 = 2

5 , we set

M(t) = θ2 1
2

(σ1 – τ2)
1
2

∫ ξ

σ1

G(t, s)h+
1 (s) ds =

50√
5

∫ 1
2

2
5

G(t, s)
(

1
2

– s
)

ds,

N(t) = ξ
1
2

∫ 1

ξ+τ2

G(t, s)h–
1 (s) ds =

1√
2

∫ 1

7
10

G(t, s)
(

5
3

s –
7
6

)

ds, t ∈ [0, 1].

For t ∈ [0, 2
5 ], we have

M(t) =
50t√

5

∫ 1
2

2
5

(1 – s)
(

1
2

– s
)

ds =
17

120
√

5
t,

N(t) =
t√
2

∫ 1

7
10

(1 – s)
(

5
3

s –
7
6

)

ds =
3

400
√

2
t.

It is obvious that M(t) ≥ N(t), ∀t ∈ [0, 2
5 ].

For t ∈ [ 2
5 , 1

2 ], we have

M(t) =
50√

5

[∫ t

2
5

(1 – t)s
(

1
2

– s
)

ds +
∫ 1

2

t
t(1 – s)

(
1
2

– s
)

ds
]

=
50√

5

(
1
6

t3 –
1
4

t2 +
737

6000
t –

7
375

)

,

N(t) =
t√
2

∫ 1

7
10

(1 – s)
(

5
3

s –
7
6

)

ds =
3

400
√

2
t.

Via some computations, we have

M(t)min = M
(

1
2

)

=
13

240
√

5
>

3
800

√
2

= N
(

1
2

)

= N(t)max,

which implies that M(t) > N(t), ∀t ∈ [ 2
5 , 1

2 ].
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For t ∈ [ 1
2 , 7

10 ], we have

M(t) =
50(1 – t)√

5

∫ 1
2

2
5

s
(

1
2

– s
)

ds =
13

120
√

5
(1 – t),

N(t) =
t√
2

∫ 1

7
10

(1 – s)
(

5
3

s –
7
6

)

ds =
3

400
√

2
t.

Via some computations, we have

M(t)min = M
(

7
10

)

=
13

400
√

5
>

21
4000

√
2

= N
(

7
10

)

= N(t)max,

which implies that M(t) > N(t), ∀t ∈ [ 1
2 , 7

10 ].
For t ∈ [ 7

10 , 1], we have

M(t) =
50(1 – t)√

5

∫ 1
2

2
5

s
(

1
2

– s
)

ds =
13

120
√

5
(1 – t),

N(t) =
1√
2

[∫ t

7
10

(1 – t)s
(

5
3

s –
7
6

)

ds +
∫ 1

t
t(1 – s)

(
5
3

s –
7
6

)

ds
]

=
1√
2

(

–
5

18
t3 +

7
12

t2 –
481

1200
t +

343
3600

)

.

Denote g(t) = M(t) – N(t) and g(1) = 0. Since

g ′(t) =
5

6
√

2
t2 –

7
6
√

2
t +

481
1200

√
2

–
13

120
√

5
< 0, t ∈

[
7

10
, 1

]

,

g(t) is strictly decreasing on [ 7
10 , 1]. Then g(t) ≥ 0, ∀t ∈ [ 7

10 , 1], which implies that M(t) ≥
N(t), ∀t ∈ [ 7

10 , 1].
So from these discussions, we have M(t) ≥ N(t), ∀t ∈ [0, 1], which means that (5.2) holds.

Hence, in the similar way, we also see that the inequality (5.3) is true.
Secondly, let

�(ρ) = min
{

A1F1(ρ, 0), A2F2(0,ρ)
}

= min
{

A1ρ
1
2 , A2ρ

1
3
}

,

�(ρ) = max
{

B1F1(ρ, 0) + C1F1(ρ,ρ), B2F2(ρ, 0) + C2F2(ρ,ρ)
}

= max
{

B1ρ
1
2 + C1(2ρ)

1
2 , B2ρ

1
3 + C2(2ρ)

1
3
}

.

It is obvious that there exist a sufficiently small constant r > 0 and a sufficiently large con-
stant R > 0 such that

min
{

A1r
1
2 , A2r

1
3
}

> r,

max
{

B1R
1
2 + C1(2R)

1
2 , B2R

1
3 + C2(2R)

1
3
}

< R.

Then, by Theorem 3.1, problem (5.1) has a positive solution.
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Example 5.2 Now we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′
1(t) + h1(t)f1(x1(t – τ1), x2(t – τ2)), t > 0,

x′′
2(t) + h2(t)f2(x1(t – τ1), x2(t – τ2)), t > 0,

x1(t) = 0, –τ1 ≤ t ≤ 0, and x1(1) = 0,

x2(t) = 0, –τ2 ≤ t ≤ 0, and x2(1) = 0,

(5.4)

where τ1 = 1
10 , τ2 = 1

5 ,

h1(t) = h2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 – t, t ∈ [0, 1

2 ],

0, t ∈ [ 1
2 , 7

10 ],

10–4(– 5
3 t + 7

6 ), t ∈ [ 7
10 , 1],

f1 =
(x1 + x2)2

1 + | sin(x1x2)| ,

f2 =
(x1 + x2)3

1 + | sin(x1x2)| .

It is obvious that (H1) and (H2) hold. Moreover, we have

1
2

F1(x1, x2) =
1
2

(x1 + x2)2 ≤ f1 ≤ (x1 + x2)2 = F1(x1, x2), k1 > 0,

1
2

F2(x1, x2) =
1
2

(x1 + x2)3 ≤ f2 ≤ (x1 + x2)3 = F2(x1, x2), k2 > 0,

which shows that (H3) holds. Now, we prove that (H4) holds.
Firstly, we show that there exist σi satisfying 1

10 < σi < 1
5 such that

θ2k1(σ1 – τ2)2
∫ ξ

σ1

G(t, s)h+
1 (s) ds ≥ ξ 2

∫ 1

ξ+τ2

G(t, s)h–
1 (s) ds (5.5)

and

θ2k2(σ2 – τ2)3
∫ ξ

σ2

G(t, s)h+
2 (s) ds ≥ ξ 3

∫ 1

ξ+τ2

G(t, s)h–
2 (s) ds. (5.6)

For fixed θ = 1
2 , σ1 = σ2 = 2

5 , we set

m(t) = θ2 1
2

(σ1 – τ2)2
∫ ξ

σ1

G(t, s)h+
1 (s) ds =

1
200

∫ 1
2

2
5

G(t, s)
(

1
2

– s
)

ds,

n(t) = ξ 2
∫ 1

ξ+τ2

G(t, s)h–
1 (s) ds =

1
4 × 104

∫ 1

7
10

G(t, s)
(

5
3

s –
7
6

)

ds, t ∈ [0, 1].

For t ∈ [0, 2
5 ], we have

m(t) =
t

200

∫ 1
2

2
5

(1 – s)
(

1
2

– s
)

ds =
17

12 × 105 t,
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n(t) =
t

4 × 104

∫ 1

7
10

(1 – s)
(

5
3

s –
7
6

)

ds =
3

16 × 106 t.

It is obvious that m(t) ≥ n(t), ∀t ∈ [0, 2
5 ].

For t ∈ [ 2
5 , 1

2 ], we have

m(t) =
1

200

[∫ t

2
5

(1 – t)s
(

1
2

– s
)

ds +
∫ 1

2

t
t(1 – s)

(
1
2

– s
)

ds
]

=
1

200

(
1
6

t3 –
1
4

t2 +
737

6000
t –

7
375

)

,

n(t) =
t

4 × 104

∫ 1

7
10

(1 – s)
(

5
3

s –
7
6

)

ds =
3

16 × 106 t.

Via some computations, we have

m(t)min = m
(

1
2

)

=
13

24 × 105 >
3

32 × 106 = n
(

1
2

)

= n(t)max,

which implies that m(t) > n(t), ∀t ∈ [ 2
5 , 1

2 ].
For t ∈ [ 1

2 , 7
10 ], we have

m(t) =
1 – t
200

∫ 1
2

2
5

s
(

1
2

– s
)

ds =
13

12 × 105 (1 – t),

n(t) =
t

4 × 104

∫ 1

7
10

(1 – s)
(

5
3

s –
7
6

)

ds =
3

16 × 106 t.

Via some computations, we have

m(t)min = m
(

7
10

)

=
13

4 × 106 >
21

16 × 107 = n
(

7
10

)

= n(t)max,

which implies that m(t) > n(t), ∀t ∈ [ 1
2 , 7

10 ].
For t ∈ [ 7

10 , 1], we have

m(t) =
1 – t
200

∫ 1
2

2
5

s
(

1
2

– s
)

ds =
13

12 × 105 (1 – t),

n(t) =
1

4 × 104

[∫ t

7
10

(1 – t)s
(

5
3

s –
7
6

)

ds +
∫ 1

t
t(1 – s)

(
5
3

s –
7
6

)

ds
]

=
1

4 × 104

(

–
5

18
t3 +

7
12

t2 –
481

1200
t +

343
3600

)

.

Let ω(t) = m(t) – n(t) satisfying ω(1) = 0. Since

ω′(t) =
5

24 × 104 t2 –
7

24 × 104 t –
13

16 × 106 < 0, t ∈
[

7
10

, 1
]

,

it means that ω(t) is strictly decreasing on [ 7
10 , 1]. Then ω(t) ≥ 0, ∀t ∈ [ 7

10 , 1], namely,
m(t) ≥ n(t), ∀t ∈ [ 7

10 , 1].
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So from these discussions, we have m(t) ≥ n(t), ∀t ∈ [0, 1], which means that (5.5) holds.
Hence, by a similar method, we also can see that the inequality (5.6) is true.

Secondly, let

�(ρ) = min
{

A1F1(ρ, 0), A2F2(0,ρ)
}

= min
{

A1ρ
2, A2ρ

3},

�(ρ) = max
{

B1F1(ρ, 0) + C1F1(ρ,ρ), B2F2(ρ, 0) + C2F2(ρ,ρ)
}

= max
{

B1ρ
2 + C1(2ρ)2, B2ρ

3 + C2(2ρ)3}.

It is obvious that there exist a sufficiently small constant r > 0 and a sufficiently large con-
stant R > 0 such that

min
{

A1R2, A2R3} > R,

max
{

B1r2 + C1(2r)2, B2r3 + C2(2r)3} < r.

Then, by Theorem 3.2, problem (5.4) has a positive solution.

Example 5.3 Now we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′
1(t) + h1(t)f1(x1(t – τ1), x2(t – τ2)), t > 0,

x′′
2(t) + h2(t)f2(x1(t – τ1), x2(t – τ2)), t > 0,

x1(t) = 0, –τ1 ≤ t ≤ 0, and x1(1) = 0,

x2(t) = 0, –τ2 ≤ t ≤ 0, and x2(1) = 0,

(5.7)

where τ1 = 1
10 , τ2 = 1

5 ,

h1(t) = h2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

400( 1
2 – t), t ∈ [0, 1

2 ],

0, t ∈ [ 1
2 , 7

10 ],

– 5
3 t + 7

6 , t ∈ [ 7
10 , 1],

f1 = (x1 + x2)
1
2 , f2 = (x1 + x2)

1
3 .

Choosing θ = 1
2 , k1 = k2 = 1

2 , σ1 = σ2 = 2
5 . Then, from Example 5.1, it is obvious that (H1)–

(H4) hold.
Now, we show that there exist 0 < ri < Ri such that

k1γ
1
2

1 max
t∈[0, 1

2 ]
G(t, t) ·

∫ σ1

σ1+ 1
5

2

G(s, s)h+
1 (s) ds · (r1 + r2)

1
2 > r1, (5.8)

k2γ
1
3

2 max
t∈[0, 1

2 ]
G(t, t) ·

∫ σ2

σ2+ 1
5

2

G(s, s)h+
2 (s) ds · (r1 + r2)

1
3 > r2, (5.9)

∫ 1
5

1
10

G(s, s)h+
1 (s) ds · R

1
2
1 +

∫ 1
2

1
5

G(s, s)h+
1 (s) ds · (R1 + R2)

1
2 < R1, (5.10)

∫ 1
5

1
10

G(s, s)h+
2 (s) ds · R

1
3
1 +

∫ 1
2

1
5

G(s, s)h+
2 (s) ds · (R1 + R2)

1
3 < R2. (5.11)
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Choosing r1 = 0.001, r2 = 0.01, R1 = 70, R2 = 140, we obtain

50√
5

∫ 2
5

3
10

s(1 – s)
(

1
2

– s
)

ds · (0.001 + 0.01)
1
2 =

0.16875√
5

√
0.011 > 0.001,

50
3√5

∫ 2
5

3
10

s(1 – s)
(

1
2

– s
)

ds · (0.001 + 0.01)
1
3 =

0.16875
3√5

3√0.011 > 0.01,

400
[∫ 1

5

1
10

s(1 – s)
(

1
2

– s
)

ds · 70
1
2 +

∫ 1
2

1
5

s(1 – s)
(

1
2

– s
)

ds · (70 + 140)
1
2

]

= 1.75
√

70 + 3.69
√

210 < 70,

400
[∫ 1

5

1
10

s(1 – s)
(

1
2

– s
)

ds · 70
1
3 +

∫ 1
2

1
5

s(1 – s)
(

1
2

– s
)

ds · (70 + 140)
1
3

]

= 1.75 3√70 + 3.69 3√210 < 140,

which implies that the inequalities (5.8)–(5.11) are true.
Therefore, from Theorem 4.1, one concludes that problem (5.7) has a positive solution.
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