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Abstract
We consider a family of variational problems on the equilibrium of a composite
Kirchhoff–Love plate containing two flat rectilinear rigid inclusions, which are
connected in a hinged manner. It is assumed that both inclusions are delaminated
from an elastic matrix, thus forming an interfacial crack between the inclusions and
the surrounding elastic media. Displacement boundary conditions of an inequality
type are set on the crack faces that ensure a mutual nonpenetration of opposite crack
faces. The problems of the family depend on a parameter specifying the coordinate of
a connection point of the inclusions. For the considered family of problems, we
formulate a new inverse problem of finding unknown coordinates of a hinge joint
point. The continuity of solutions of the problems on this parameter is proved. The
solvability of this inverse problem has been established. Using a passage to the limit,
a qualitative connection between the problems for plates with flat and bulk hinged
inclusions is shown.
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1 Introduction
The success of the modern industry is largely based on the widespread use of composite
materials. Mathematical modeling of the properties of composites, their behavior under
certain conditions provide opportunities for optimizing the parameters and characteris-
tics of composites. As a result, qualitatively new models as well as various complex math-
ematical approaches leading to new formulations of problems are being developed. Along
with the advantages of composite materials, the difference in the physical characteristics
of the components can lead to cracks and, as a result, to partial damages to structural
elements or destructions of entire composite structures. In some cases, in practice, it is
required to assess the possible consequences due to partial damage to some structural el-
ements. Since it is not always possible to find out damage characteristics of hidden struc-
tural elements directly, it is necessary to look for methods to determine them indirectly.
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For a loaded body, the presence of an inclusion or a crack means that there can be signif-
icant stress values in the vicinity of these inhomogeneities. For this reason, the choice of
one or another method for specifying the boundary conditions characterizing mechanical
processes near a crack can affect the physical adequacy of an entire mathematical model
as a whole.

In this work, we follow the nonlinear modeling that uses Signorini-type boundary condi-
tions on the crack faces which was developed in [1–13] and other works. These nonlinear
conditions need to use variational formulations. Within the variational approach, equilib-
rium problems for composite bodies with elastic or rigid inclusions have been successfully
formulated and investigated, see for example [14–28]. The other challenge of our work
concerns the variation of inclusion shapes. The shape and topological sensitivity analysis
of related variational problems was developed in [29–35] and other papers. In particular,
for a crack problem subject to nonpenetration, an optimal control problem concerning
minimization of the Griffith functional with respect to the shape and the location of a
small elastic inclusion was investigated in [36, 37]. Explicit formulae of derivatives of the
energy functionals with respect to the shape variation of rigid inclusions were obtained in
[19, 24]. Inverse problems for the nondestructive determination of elastic and rigid inclu-
sions embedded in Kirchhoff–Love bending elastic plates were investigated in [38–40]. We
refer the reader to convergence results for elliptic variational-hemivariational inequalities
[12] and for double phase obstacle problems with multivalued convection term [13].

Currently we are dealing with a nonlinear model describing a plate with two flat rigid
inclusions which are connected in a hinged manner. Namely, we suppose that both inclu-
sions have a common hinge fiber. In addition to this, we assume that both inclusions are
delaminated from an elastic media, thus forming an interfacial crack. A new inverse prob-
lem predicting the structural integrity of a composite plate is formulated. It is assumed that
we know that the plate has two hinged inclusions, but simultaneously we do not know the
location of a hinge fiber. Under the assumption that the sum of lengths of the inclusions
is constant, a solvability of this inverse problem is proved.

2 Family of equilibrium problems
Let � ⊂ R

2 be a bounded domain with a boundary � of class C1,1. Suppose that a recti-
linear curve γ = (–1, 1) × {0} lies strictly inside �, i.e., γ̄ ⊂ �. We assume that � consists
of two disjoint curves � = �0 ∪�1, where meas(�0) > 0 and meas(�1) > 0. We suppose that
the domain � can be split into two subdomains �1 and �2 with Lipschitz boundaries ∂�1

and ∂�2 such that γ ⊂ ∂�1 ∩ ∂�2, and meas(∂�i ∩ �0) > 0, i = 1, 2. The latter condition
is important for Korn’s inequality to hold in the non-Lipschitz domain �γ = �\γ̄ . For
simplicity, the plate is assumed to have a uniform thickness 2h = 2. Let us assign a three-
dimensional Cartesian space {x1, x2, z} with the set {�γ } × {0} ⊂ R3 corresponding to the
middle plane of the plate. The curve γ defines a crack (a cut) in the plate. This means that
the cylindrical surface of the through crack may be defined by the relations x = (x1, x2) ∈ γ ,
–1 ≤ z ≤ 1, where |z| is the distance to the middle plane. Depending on the direction of
the normal ν = (0, 1) to γ , we will keep in mind the positive face γ + and the negative face
γ – of the curve γ . The jump [q] of an arbitrary function q across the curve γ is found
by the formula [q] = q|γ + – q|γ – . We assume that the plate has two hinged flat inclusions
at the positive face of the curve γ . For a fixed parameter δ ∈ [– 1

2 , 1
2 ], the curve γ is split

into two rectilinear curves γ δ
1 = (–1, δ) × {0} and γ δ

2 = (δ, 1) × {0} corresponding to two
flat rigid inclusions (see Fig. 1).
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Figure 1 Objects on the middle plane of the plate

Thus, for the initial undeformed state of the plate, the flat rigid inclusions are specified
by the sets γ δ

i × [–1, 1], i = 1, 2, and a fiber of a hinge joint is given by the line segment
{δ} × {0} × [–1, 1]. The elastic part of the plate corresponds to the domain �γ .

Denote by χ = χ (x) = (W , w) the displacement vector of the mid-surface points (x ∈ �γ ),
by W = (w1, w2) the displacements in the plane {x1, x2}, and by w the displacements along
the axis z. The strain and integrated stress tensors are denoted by εij = εij(W ), σij = σij(W ),
respectively [1]:

εij(W ) =
1
2

(
∂wj

∂xi
+

∂wi

∂xj

)
, σij(W ) = aijklεkl(W ), i, j = 1, 2,

where {aijkl} is the given elasticity tensor, assumed to be symmetric and positive definite

aijkl = aklij = ajikl, i, j, k, l = 1, 2, aijkl ∈ L∞(�γ ),

aijklξijξkl ≥ c0|ξ |2, ∀ξ , ξij = ξji, i, j = 1, 2, c0 = const > 0.

A summation convention over repeated indices is used in the sequel. Next we denote the
bending moments by the formulas [1]

mij(w) = dijklw,kl , i, j = 1, 2
(

w,kl =
∂2w

∂xk∂xl

)
,

where the tensor {dijkl} has the same properties as the tensor {aijkl}. Let B(O, ·, ·) be a bi-
linear form defined by the equality

B(O,χ , χ̄ ) =
∫

O

{
σij(W )εij(W̄ ) + mij(w)w̄,ij

}
dx,

where χ = (W , w), χ̄ = (W̄ , w̄), and O is some measurable subset of �. The potential energy
functional of the plate has the following representation [1]:

�(χ ) =
1
2

B(�γ ,χ ,χ ) –
∫

�γ

Fχ dx, χ = (W , w),

where vector F = (f1, f2, f3) ∈ L2(�)3 describes given body forces [1]. Introduce the Sobolev
spaces

H1
�0 (�γ ) =

{
v ∈ H1(�γ ) | v = 0 on �0

}
,

H2
�0 (�γ ) =

{
v ∈ H2(�γ )

∣∣∣ v =
∂v
∂n

= 0 on �0

}
,
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H(�γ ) = H1
�0 (�γ )2 × H2

�0 (�γ ),

where n = (n1, n2) is the normal vector to �. Note that the following inequality

B(�γ ,χ ,χ ) ≥ c‖χ‖2 ∀χ ∈ H(�γ )
(‖χ‖ = ‖χ‖H(�γ )

)
(1)

with a constant c > 0 independent of χ holds for the bilinear form B(�γ , ·, ·) [1].

Remark 1 Inequality (1) yields the equivalence of the standard norm and the semi-norm
determined by the bilinear form B(�γ , ·, ·) in the space H(�γ ).

The condition of mutual nonpenetration of opposite faces of the crack is given by [1, 16]

[Wν] ≥
∣∣∣∣
[

∂w
∂ν

]∣∣∣∣ on γ (Wν = wiνi). (2)

Due to presence of flat rigid inclusions in the plate, restrictions of the functions describing
displacements χ to the corresponding curves γ δ

1 , γ δ
2 satisfy a special kind of relations. We

introduce the following space which allows us to characterize the properties of the flat
rigid inclusions:

R(S) =
{
ζ | ζ (x) =

(
bix2 + ci

1, –bix1 + ci
2, ai

0 + ai
1x1 + ai

2x2
)
; x ∈ S

}
,

where bi, ci
1, ci

2, ai
0, ai

1, ai
2 ∈R, i = 1, 2, and S is some subset of � (see [15, 16]). Suppose that

displacements on two flat rigid inclusions have the following properties [11]:

χ |γ δ+
i

= ζ i, (3)

∂w
∂x1

= –ai
1,

∂w
∂x2

= –ai
2 on γ δ+

i , (4)

where χ = (W , w), ζ i ∈ R(γ δ
i ), i = 1, 2. Since there is the hinge joint of inclusions, we assume

that the displacements and angles of rotation of the normal fibers of both inclusions are
equal at the corresponding point xδ = (δ, 0) of the middle plane of the plate

ζ 1(xδ
)

= ζ 2(xδ
)
, where χ |γ δ+

i
= ζ i, ζ i ∈ R

(
γ δ

i
)
, i = 1, 2, (5)

∂w
∂x1

= –a1
1 = –a2

1,
∂w
∂x2

= –a1
2 = –a2

2. (6)

The variational formulation describing the equilibrium state for the elastic plate with
the flat delaminated rigid inclusions can be formulated as follows:

�
(
ξ δ

)
= inf

η∈Kδ
�(η). (7)

For fixed δ ∈ [–1/2, 1/2], let K δ denote the set of admissible displacements

K δ =
{
χ ∈ H(�γ ) | χ satisfies (2), (3), (4)

}
.
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Remark 2 It should be noted that the conditions χ ∈ H(�γ ) and (3), (4) imply that equal-
ities (5), (6) hold.

Remark 3 We should note that the notions of flat inclusion and thin inclusions (see
[15, 16]) in the same way are specified with the help of cylindrical surfaces, but for flat
inclusions there are additional relations describing a connection of plate deflections w
and angles of rotation of the normal fibers ∂w

∂xi
, i = 1, 2, of an inclusion, see (4). Since bulk

(volume) rigid inclusions in Kirchhoff–Love plates are defined with the help of sets of the
following type O × [–1, 1], where O is some subdomain lying in the middle plane of the
plate [14]; then these relationships (4) for partial derivatives are naturally fulfilled for bulk
(volume) rigid inclusions in O.

One can check by simple reasonings that the set K δ is convex and closed. The coercivity
and weak semicontinuity of the energy functional together with (1) ensure that problem
(7) has a unique solution. Moreover, by the Gateaux differentiability of �, problem (7) is
equivalent to the following variational inequality (see [1]):

ξ δ ∈ K δ , B
(
�γ , ξ δ ,χ – ξ δ

) ≥
∫

�γ

F
(
χ – ξ δ

)
dx ∀χ ∈ K δ . (8)

3 Inverse problem for a hinge fiber
In this section we formulate a new inverse problem for the composite plate containing two
flat rigid inclusions. This problem is motivated by prediction of the structural integrity of
composite bodies. In order to formulate the inverse problem, we suppose that the pa-
rameter δ is assumed to be unknown. Let us introduce the cost functional describing the
deviation from some given observation χg ∈ L2(�1)3

J
(
ξ δ

)
=

∥∥ξ δ – χg
∥∥2

L2(�1)3 .

More generally, we consider an arbitrary weakly continuous functional of cost J(χ ) :
H(�γ ) �→R. As commonly adopted in optimal control theory, we should either minimize:
find p1 ∈ R such that

p1 = min
δ∈[–1/2,1/2]

J
(
ξ δ

)
, (9)

or maximize the cost: find p2 ∈ R such that

p2 = max
δ∈[–1/2,1/2]

J
(
ξ δ

)
. (10)

Then, for given intermediate p ∈ [p1, p2], we can formulate the inverse problem as follows.
Find a parameter δ ∈ [–1/2, 1/2] and a displacement field ξ δ of the body defined in �γ such
that

ξ δ ∈ K δ , B
(
�γ , ξ δ ,χ – ξ δ

) ≥
∫

�γ

F
(
χ – ξ δ

)
dx ∀χ ∈ K δ , (11)

p = J
(
ξ δ

)
. (12)

We prove a solution existence of problem (11), (12) fitting suitable values of p. The follow-
ing statement takes place.
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Theorem 1 There exist finite numbers p1 and p2 solving minimization (9) and maximiza-
tion (10) problems, with p1 ≤ p2, such that for any fixed p ∈ [p1, p2] the inverse problem
(11), (12) has a solution.

Proof Let us introduce the function h : [–1/2, 1/2] �→R

h(δ) = J
(
ξ δ

)
,

where ξ δ is the solution of the forward problem (8). Our first step is to prove that the
function h is continuous on the set [–1/2, 1/2]. For fixed δ ∈ [–1/2, 1/2], we can substitute
test functions χ = ξ δ , χ = 0 into (8). This gives

ξ δ ∈ K δ , B
(
�γ , ξ δ , ξ δ

)
=

∫
�γ

Fξ δ dx,

and as a consequence the uniform boundedness

∥∥ξ δ
∥∥ ≤ C, (13)

where C > 0 does not depend on δ. If we prove that for every fixed sequence {δn} ⊂
[–1/2, 1/2] converging to some δ ∈ [–1/2, 1/2] there exists a subsequence {δk} ⊂ {δn} such
that ξ δk → ξ δ strongly in H(�γ ), thus we establish the strong convergence ξ δn → ξ δ in
H(�γ ) for an arbitrary sequence {δn} converging to δ. Let an arbitrary sequence {δn} ⊂
[–1/2, 1/2] be given with δn → δ, δ ∈ [–1/2, 1/2]. In view of (13) we can extract a subse-
quence {δk} ⊂ {δn} such that

ξ δk → ξ̃ weakly in H(�γ ) as k → ∞. (14)

As the next step we reveal a suitable relationship between the sets of admissible dis-
placements. Namely, we show that for the agreed value δ ∈ [–1/2, 1/2], the sequence
{δk} ⊂ [–1/2, 1/2], and an arbitrary test function χ ∈ K δ , there exists a sequence {χk} of
functions χk ∈ K δk converging strongly in H(�γ ) to χ as k → ∞. Since x2 = 0 on γ δ

i ,
i = 1, 2, the following relations hold for χ = (W , w):

χ (x)|γ δ+
i

= ζ i(x) =
(
ci

1, –bix1 + ci
2, ai

0 + ai
1x1

)
, x = (x1, 0) ∈ γ δ

i , i = 1, 2, (15)

∂w
∂x1

= –a1
1 = –a2

1,
∂w
∂x2

= –a1
2 = –a2

2 on γ δ+
i , i = 1, 2, (16)

a1
0 = a2

0, c1
1 = c2

1, –b1δ + c1
2 = –b2δ + c2

2, (17)

[W ]ν ≥
∣∣∣∣
[

∂w
∂ν

]∣∣∣∣ on γ ,

where the former equation in (15) describes rigid properties of flat inclusions, and (16),
(17) reflect the hinged joint at the point (δ, 0).

Next, we construct a sequence {χk} of appropriate vector functions χk = (Wk , wk) with
Wk = (w1k , w2k), k = 1, 2, . . . . We define its two components in the following simplest way:

wk ≡ w, w1k ≡ w1, k ∈ N, (18)
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Figure 2 Example of rigid displacements w2 along hinged
flat inclusions

then we have

wk|
γ

δk +
i

= a1
0 + a1

1x1,
∂wk

∂x1
= –a1

1,
∂wk

∂x2
= –a1

2 on γ δ+
i , i = 1, 2,

w1k|
γ

δk +
i

= c1
1 = c2

1, i = 1, 2,

while a construction of the second components w2k of Wk needs more detailed reason-
ings. We start with constructing auxiliary functions μ1(x), μ2(x), μ1

k(x), μ2
k(x), k = 1, 2, . . . ,

defined by the relations (see Fig. 2):

μ1(x) = –b1x1 + c1
2, x = (x1, 0) ∈ γ δ

1,

μ2(x) = –b2x1 + c2
2, x = (x1, 0) ∈ γ δ

2,

μ1
k(x) = –b1x1 + c1

2 – b1(δ – δk) + b2(δ – δk), x = (x1, 0) ∈ γ
δk
1 ,

μ2
k(x) = –b2x1 + c2

2, x = (x1, 0) ∈ γ
δk
2 .

For functions μ̃, μ̃k defined on γ by relations

μ̃(x) =

⎧⎨
⎩

μ1, x ∈ γ δ
1,

μ2, x ∈ γ δ
2;

μ̃k(x) =

⎧⎨
⎩

μ1
k , x ∈ γ

δk
1 ,

μ2
k , x ∈ γ

δk
2 ;

the difference θk(x) = μ̃k – μ̃ is well defined for all x ∈ γ . We write out the following rep-
resentation for this function:

θk(x) = θk(x1, 0) =

⎧⎪⎪⎨
⎪⎪⎩

(–b2δk + c2
2) – (–b1δk + c1

2), x1 ∈ (–1, δk),

(–b2x1 + c2
2) – (–b1x1 + c1

2), x1 ∈ [δk , δ),

0, x1 ∈ [δ, 1),

for δk < δ; and

θk(x) = θk(x1, 0) =

⎧⎪⎪⎨
⎪⎪⎩

(–b2δk + c2
2) – (–b1δk + c1

2), x1 ∈ (–1, δ),

–b1(x1 – δk) + b2(x1 – δk), x1 ∈ [δ, δk),

0, x1 ∈ [δk , 1),



Lazarev Boundary Value Problems         (2021) 2021:88 Page 8 of 12

for cases when δk > δ. Note that in both expressions for θk(x), the following constant value
can be estimated with the help of (17):

(
–b2δk + c2

2
)

–
(
–b1δk + c1

2
)

=
(
–b2δ + c2

2
)

–
(
–b1δ + c1

2
)

+ b2(δ – δk) – b1(δ – δk)

= b2(δ – δk) – b1(δ – δk) ≤ (∣∣b1∣∣ +
∣∣b2∣∣)|δ – δk|, k ∈ N. (19)

It is evident that θk(x) ∈ H1(γ ) in both cases when δk < δ and δk > δ. Since θk(x) is a piece-
wise linear function, taking into account (19), we can easily obtain the following estimate:

∥∥θk(x)
∥∥

H1(γ ) ≤ C|δ – δk|, (20)

where C > 0 does not depend on k ∈ N.
Using the above construction, the following functions are well defined in the corre-

sponding Sobolev spaces:

w2|γ + + θk(x) ∈ H1/2(γ ), w2|γ – + θk(x) ∈ H1/2(γ ),

w2|γ + + θk(x) –
(
w2|γ – + θk(x)

)
= [w2] ∈ H1/2

00 (γ ), w2|� ∈ H1/2(�)

for all k ∈N. Applying the linear continuous lifting operator (the corresponding result for
lifting operators in the framework of domains with cuts can be found in [1], Lemma 1.12)

L : H1/2(γ ) × H1/2(γ ) × H1/2
00 (γ ) × H1/2(�) → H1(�γ ),

we can construct functions w̃2, w̃2k ∈ H1(�γ ), k = 1, 2, . . . , with the properties

w̃2k|γ + = w2|γ + + θk(x), w̃2k|γ – = w2|γ – + θk(x), w̃2k|� = ŵ2|� ,

w̃2|γ + = w2|γ + , w̃2|γ – = w2|γ – , w̃2|� = w2|� .

Due to continuity of the lifting operator and the uniform estimate (20), we have

‖w̃2k – w̃2‖H1(�γ ) → 0 as k → ∞.

Then, for the functions w2k = w̃2k – w̃2 + w2, it follows

‖w2k – w2‖H1(�γ ) = ‖w̃2k – w̃2 + w2 – w2‖H1(�γ ) → 0 as k → ∞. (21)

By construction, we have the equalities

w1k ≡ w1, [w2k] = [w2] on γ , w2k = μ1
k(x) on γ

δk
1 ,

w2k = μ2
k(x) on γ

δk
2 ,

which guarantee the inclusion χk ∈ K δk , k ∈ N. Relations (21) and (18) provide the con-
vergence

χk → χ strongly in H(�γ ), as k → ∞. (22)
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Keeping in mind the convergences (14), (22), we can pass to the limit as k → ∞ in inequal-
ities

B
(
�γ , ξ δk ,χk – ξ δk

) ≥
∫

�γ

F
(
χk – ξ δk

)
dx,

which gives the limit

B(�γ , ξ̃ ,χ – ξ̃ ) ≥
∫

�γ

F(χ – ξ̃ ) dx.

Therefore, by the arbitrariness of χ ∈ K δ , we reveal that ξ̃ = ξ δ . Due to the continuous
dependence of solutions ξ δ on δ, we can easily conclude that the function h(δ) attains
minimum and maximum values on the set [–1/2, 1/2]:

p1 = min
δ∈[–1/2,1/2]

h(δ), p2 = max
δ∈[–1/2,1/2]

h(δ).

Finally, as a consequence of the intermediate value theorem for continuous functions, any
p ∈ [p1, p2] can be fitted within the inverse problem (11), (12). The theorem is proved. �

Remark 4 As can be seen from the previous reasonings, the segment [– 1
2 , 1

2 ] can be re-
placed with an arbitrary closed segment lying in (–1, 1).

4 Limit procedure
In this section we show that a problem for an elastic plate with two bulk hinged inclusions
can be obtained by a limit passage from a family of problems for elastic plates with two flat
hinged inclusions. In addition to previous assumptions, we suppose that Lipschitz simply
connected subdomains ωδ

1 and ωδ
2 have the following properties:

a) ωδ
1 ⊂ �, ωδ

2 ⊂ �, ωδ
1 ∩ ωδ

1 = (δ, 0);
b) γ δ

1 ⊂ ∂ωδ
1, γ δ

2 ⊂ ∂ωδ
2.

We suppose that the given elasticity tensors additionally depend on λ ∈ (0,�) (where �

is a constant, 0 < � < +∞), as follows:

aλ
ijkl =

⎧⎨
⎩

aijkl in �\ωδ
1 ∪ ωδ

2,

λ–1aijkl in ωδ
1 ∪ ωδ

2,
dλ

ijkl =

⎧⎨
⎩

dijkl in �\ωδ
1 ∪ ωδ

2,

λ–1dijkl in ωδ
1 ∪ ωδ

2.

Let us define functions

σλ
ij (W ) = aλ

ijklεkl(W ), mλ
ij(w) = dλ

ijklw,kl , i, j = 1, 2,

and a bilinear form

Bλ(S,χ , χ̄ ) =
∫

S

{
σλ

ij (W )εij(W̄ ) + mλ
ij(w)w̄,ij

}
dx

corresponding to some measurable set S ⊂ �. For each fixed λ ∈ (0,�), we formulate a
corresponding variational problem

�λ
(
ξ δ,λ) = inf

η∈Kδ
�λ(η), (23)
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where

�λ(χ ) =
1
2

Bλ(�γ ,χ ,χ ) –
∫

�γ

Fχ dx, χ = (W , w).

According to the line of reasoning in [14], it can be shown that problem (23) has a unique
solution and is equivalent to the following variational inequality:

ξ δ,λ ∈ K δ , Bλ
(
�γ , ξ δ,λ,χ – ξ δ,λ) ≥

∫
�γ

F
(
χ – ξ δ,λ)dx ∀χ ∈ K δ . (24)

Now we justify a limit passage in (24) as λ tends to zero. Comparing two inequalities
that correspond to (24) with test functions χ = 2ξ δ,λ, χ = 0, we get

Bλ
(
�γ , ξ δ,λ, ξ δ,λ) =

∫
�γ

Fξ δ,λ dx.

Hence, applying inequalities (1), we obtain uniform estimates

∥∥ξ δ,λ∥∥ ≤ c,

1
λ

B
(
ωδ

i , ξ δ,λ, ξ δ,λ) ≤ c, i = 1, 2, (25)

where c > 0 does not depend on λ ∈ (0,�). Choosing, if necessary, a subsequence, we can
assume without loss of generality that there exists a weakly converging in H(�γ ) sequence
{ξ δ,λn}, ξ δ,λn → ξ̃ , ξ̃ = (Ũ , ũ) as λn → 0. In view of (25) we have

εij(Ũ) = 0, ũ,ij = 0 in ωδ
k , i, j, k = 1, 2.

The last relations imply that

Ũ =
(
bix2 + ci

1, –bix1 + ci
2
)
, ũ = ai

0 + ai
1x1 + ai

2x2, x ∈ ωδ
i ,

where bi, ci
1, ci

2, ai
0, ai

1, ai
2 ∈ R, i = 1, 2. As it was shown in [14], the function ξ̃ belongs to the

set

K δ
ω =

{
χ ∈ H(�γ )|χ satisfies (2),χ |ωδ

i
= ζ i, ζ i ∈ R

(
ωδ

i
)
, i = 1, 2

}
.

Here, we should note that due to properties of trace operators on H(�γ ) the conditions of
a hinged joint are fulfilled at the point xδ

ζ 1(xδ
)

= ζ 2(xδ
)
, where χ |ωδ

i
= ζ i, ζ i ∈ R

(
ωδ

i
)
, i = 1, 2,

∂w
∂x1

= –a1
1 = –a2

1,
∂w
∂x2

= –a1
2 = –a2

2,

where χ = (W , w), ζ i ∈ R(ωδ
i ), i = 1, 2. Now, performing a passage to the limit in (24) when

λ → 0 for an arbitrary test function χ ∈ K δ
ω , we obtain

ξ̃ ∈ K δ
ω, B(�γ , ξ̃ ,χ – ξ̃ ) ≥

∫
�γ

F(χ – ξ̃ ) dx ∀χ ∈ K δ
ω.
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The last variational inequality is equivalent to the following minimization problem:

�(ξω) = inf
η∈Kδ

ω

�(η), (26)

which describes an equilibrium of a Kirchhoff–Love plate with two hinged bulk inclu-
sions.

5 Conclusion
We have considered the inverse problem (11), (12), which is motivated by applications to
fracture mechanics. In this problem it is required to find the location of a hinge point fitting
the cost function J in the optimal way. The solvability of the inverse problem is proved
rigorously. We have shown that the problem for the plate with two bulk rigid inclusions
(26) is connected with the family of problems (23) for plates with flat inclusions in the
sense of the limit passage λ → 0. It should be noted that an analogous inverse problem for
bulk inclusions seems to be more complicated, and the author has no idea how to prove a
similar result to that established in Sect. 3 even for the simplest cases of bulk inclusions,
for example, for circular or rhombus rigid inclusions connected in a hinged manner. The
case of curvilinear flat inclusions represents another inverse problem subjected for further
investigations.
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