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Abstract
This paper is mainly concerned with the following semi-linear system involving the
fractional Laplacian:

⎧
⎪⎨

⎪⎩

(–�)
α
2 u(x) = ( 1

|·|σ ∗ vp1 )vp2 (x), x ∈R
n,

(–�)
α
2 v(x) = ( 1

|·|σ ∗ uq1 )uq2 (x), x ∈R
n,

u(x) ≥ 0, v(x) ≥ 0, x ∈ R
n,

where 0 < α ≤ 2, n ≥ 2, 0 < σ < n, and 0 < p1,q1 ≤ 2n–σ
n–α , 0 < p2,q2 ≤ n+α–σ

n–α . Applying
a variant (for nonlocal nonlinearity) of the direct method of moving spheres for
fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct.
Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution (u, v)
in the critical case and nonexistence of positive solutions in the subcritical cases.
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1 Introduction
In this paper, we consider the following semi-linear system involving the fractional Lapla-
cian:

⎧
⎪⎪⎨

⎪⎪⎩

(–�) α
2 u(x) = ( 1

|·|σ ∗ vp1 )vp2 (x), x ∈R
n,

(–�) α
2 v(x) = ( 1

|·|σ ∗ uq1 )uq2 (x), x ∈R
n,

u(x) ≥ 0, v(x) ≥ 0, x ∈R
n,

(1.1)

where 0 < α ≤ 2, n ≥ 2, 0 < σ < n, and 0 < p1, q1 ≤ 2n–σ
n–α

, 0 < p2, q2 ≤ n+α–σ
n–α

.
We assume u, v ∈ C1,1

loc ∩Lα(Rn) if 0 < α < 2 and u, v ∈ C2(Rn) if α = 2, where

Lα

(
R

n) :=
{

u : Rn →R

∣
∣
∣

∫

Rn

|u(y)|
1 + |y|n+α

dy < ∞
}

. (1.2)
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The nonlocal fractional Laplacians (–�) α
2 with 0 < α < 2 are defined by (see [9, 15, 19, 43,

47])

(–�)
α
2 u(x) = Cα,n P.V .

∫

Rn

u(x) – u(y)
|x – y|n+α

dy := Cα,n lim
ε→0

∫

|y–x|≥ε

u(x) – u(y)
|x – y|n+α

dy, (1.3)

for functions u, v ∈ C1,1
loc ∩ Lα(Rn), where Cα,n = (

∫

Rn
1–cos(2πζ1)

|ζ |n+α dζ )–1 is the normalization
constant. The fractional Laplacians (–�) α

2 can also be defined equivalently (see [18]) by
Caffarelli and Silvestre’s extension method (see [5]) for u, v ∈ C1.1

loc ∩Lα(Rn).
The fractional Laplacian can be seen as the infinitesimal generator of a stable Lévy pro-

cess and has several applications in probability, optimization, and finance (see [1, 3]). It has
also been widely used to model diverse physical phenomena, such as anomalous diffusion
and quasi-geostrophic flows, turbulence and water waves, molecular dynamics and rela-
tivistic quantum mechanics of stars. However, the nonlocal feature of the fractional Lapla-
cians makes them difficult to study. In order to overcome this difficulty, Chen, Li, and Ou
[17] developed the method of moving planes in integral forms. Subsequently, Caffarelli
and Silvestre [5] introduced an extension method to overcome this difficulty, which re-
duced this nonlocal problem into a local one in higher dimensions. This extension method
provides a powerful tool and leads to very active studies in equations involving the frac-
tional Laplacians, and a series of fruitful results have been obtained (see [2, 20] and the
references therein).

In [15], Chen, Li, and Li developed a direct method of moving planes for the fractional
Laplacians (see also [22]). Instead of using the extension method of Caffarelli and Silvestre
[5], they worked directly on the nonlocal operator to establish strong maximum principles
for anti-symmetric functions and narrow region principles, and then obtained classifica-
tion and Liouville type results for nonnegative solutions. The direct method of moving
planes introduced in [15] has been applied to study more general nonlocal operators with
general nonlinearities (see [14, 22]). The method of moving planes was initially invented
by Alexanderoff in the early 1950s. Later, it was further developed by Serrin [43], Gidas,
Ni, and Nirenberg [28, 30], Caffarelli, Gidas, and Spruck [4], Chen and Li [10], Li and Zhu
[33], Lin [34], Chen, Li, and Ou [17], Chen, Li, and Li [15], and many others. For more
literature works on the classification of solutions and Liouville type theorems for vari-
ous PDE and IE problems via the methods of moving planes or spheres, please refer to
[6, 8, 9, 13, 19, 21, 24, 26, 27, 29, 35–40, 45] and the references therein.

Chen, Li, and Zhang introduced in [19] another direct method i.e. the method of moving
spheres on the fractional Laplacians, which is more convenient than the method of moving
planes. The method of moving spheres was initially used by Padilla [42], Chen and Li [11],
and Li and Zhu [33]. It can be applied to capture the explicit form of solutions directly
rather than going through the procedure of deriving radial symmetry of solutions and
then classifying radial solutions.

There are lots of literature works on the qualitative properties of solutions to Hartree and
Choquard equations of fractional or higher order, please see e.g. Cao and Dai [6], Chen and
Li [12], Dai, Fang et al. [21], Dai and Qin [26], Dai and Liu [23], Lei [31], Liu [36], Moroz and
Schaftingen [41], Ma and Zhao [40], Xu and Lei [46], and the references therein. Liu proved
in [36] the classification results for positive solutions to (1.1) with α = 2, σ = 4 ∈ (0, n),
p1 = q1 = 2, p2 = q2 = 1, u = v by using the idea of considering the equivalent systems
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of integral equations instead, which was initially used by Ma and Zhao [40]. In [6], Cao
and Dai considered the differential equations directly and classified all the positive C4

solutions to the Ḣ2-critical bi-harmonic equation (1.1) with α = 4, σ = 8 ∈ (0, n), p1 = q1 =
2, 0 < p2, q2 ≤ 1, u = v. They also derived Liouville theorem in the subcritical cases. One
should observe that system (1.1) can be written as the integral system

⎧
⎨

⎩

u(y) =
∫

Rn
Rα,n

|y–z|n–α (
∫

Rn
vp1 (ξ )
|z–ξ |σ dξ )vp2 (z) dz,

v(y) =
∫

Rn
Rα,n

|y–z|n–α (
∫

Rn
uq1 (ζ )
|z–ζ |σ dζ )uq2 (z) dz,

(1.4)

where the Riesz potential’s constants Rα,n := 	( n–α
2 )

π
n
2 2α	( α

2 )
(see [44]).

When σ = 2α, α ∈ (0, n
2 ), p1 = q1 = 2, p2 = q2 = 1, u = v, Dai, Fang et al. [21] classified

all the positive H α
2 (Rn) weak solutions to (1.1) by using the method of moving planes in

integral forms for the equivalent integral equation system (1.4) due to Chen, Li, and Ou
[16, 17], in which they established the equivalence between a PDE system and an integral
system, and also classified all the L 2n

n–α (Rn) integrable solutions to the equivalent integral
equation. For 0 < α < min{2, n

2 }, Dai, Fang, and Qin [22] classified all the C1,1
loc ∩Lα solutions

to (1.1) with σ = 2α, p1 = q1 = 2, p2 = q2 = 1, u = v by applying a variant (for nonlocal non-
linearity) of the direct method of moving planes for fractional Laplacians. The qualitative
properties of solutions to general fractional order or higher order elliptic equations have
also been extensively studied, for instance, see Chen, Fang, and Yang [9], Chen, Li, and Li
[15], Chen, Li, and Ou [17], Caffarelli and Silvestre [5], Chang and Yang [8], Dai and Qin
[26], Cao, Dai, and Qin [7], Dai, Liu, and Qin [25], Fang and Chen [27], Lin [34], Wei and
Xu [45] and the references therein.

Our main theorem is the following complete classification theorem for PDE system (1.1).

Theorem 1.1 Let n ≥ 2, 0 < σ < n, 0 < α ≤ 2, and 0 < p1 ≤ 2n–σ
n–α

, 0 < p2 ≤ n+α–σ
n–α

, 0 < q1 ≤
2n–σ
n–α

, 0 < q2 ≤ n+α–σ
n–α

. Suppose that (u, v) is a pair of nonnegative classical solutions of (1.1).
If p1 = 2n–σ

n–σ
, p2 = n+α–σ

n–α
, q1 = 2n–σ

n–α
, and q2 = n+α–σ

n–α
, then either (u, v) ≡ (0, 0) or u, v must

assume the following form:

u(x) = C1

(
μ

1 + μ2|x – x0|2
) n–α

2
, v(x) = C2

(
μ

1 + μ2|x – x0|2
) n–α

2

for some μ > 0 and x0 ∈R
n, where the constants C1, C2 depend on n, α, σ . If ci ≥ 0,

∑4
i=1 ci >

0, c1( 2n–σ
n–α

– p1) + c2( n+α–σ
n–α

– p2) + c3( 2n–σ
n–α

– q1) + c4( n+α–σ
n–α

– q2) > 0, then (u, v) ≡ (0, 0) in
R

n.

Remark 1.2 We apply a variant (for nonlocal nonlinearity) of the direct method of moving
spheres for fractional Laplacians developed by Chen, Li, and Zhang [19] to prove Theo-
rem 1.1, in which we extended the classification results by Dai and Liu [23], and Dai, Liu,
and Qin [25] for a single equation. However, since the nonlinearities in our PDE system
(1.1) are nonlocal, the difference between two nonlinearities will become much more com-
plicated and subtle.

The rest of our paper is organized as follows. In Sect. 2, we carry out our proof of Theo-
rem 1.1. In the following, we use C to denote a general positive constant that may depend
on n, α, p1, p2, q1, q2, σ , u, and v, and whose value may differ from line to line.
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2 Proof of Theorem 1.1
In this section, we use a direct method of moving spheres for nonlocal nonlinearity with
the help of the narrow region principle to classify the nonnegative solutions of PDE system
(1.1).

2.1 The direct method of moving spheres for nonlocal nonlinearity
Let n ≥ 2, 0 < σ < n, 0 < α ≤ 2 with 0 < p1 ≤ 2n–σ

n–α
, 0 < p2 ≤ n+α–σ

n–α
, 0 < q1 ≤ 2n–σ

n–α
, and

0 < q2 ≤ n+α–σ
n–α

. Suppose that (u, v) is a pair of nonnegative classical solutions of (1.1) which
is not identically zero.

If there exists some point x0 ∈R
n such that u(x0) = 0, then we have

(–�)
α
2 u

(
x0) = Cα,n P.V .

∫

Rn

–u(y)
|x0 – y|n+α

dy < 0. (2.1)

On the other hand, we can deduce from system (1.1) that

∫

Rn

vp2 (ξ )
|x – ξ | dξvp2 (x) ≥ 0, (2.2)

then we can derive a contradiction from (2.1), (2.2) for u, v ≥ 0, u, v 
≡ 0. Thus, one can
deduce immediately that u, v > 0 in R

n and
∫

Rn
uq1 (x)
|x|σ dx < +∞,

∫

Rn
vp1 (x)
|x|σ dx < +∞. From

now onwards we shall assume that (u, v) is a positive solution.
For any x ∈R

n and λ > 0, denote

ux,λ(y) :=
(

λ

|y – x|
)n–α

u
(
yx,λ), ∀y ∈R

n \ {x},

vx,λ(y) :=
(

λ

|y – x|
)n–α

v
(
yx,λ), ∀y ∈R

n \ {x},

where

yx,λ =
λ2(y – x)
|y – x|2 + x.

Then, since (u, v) is a pair of positive classical solutions of (1.1), one can verify that
ux,λ, vx,λ ∈ Lα(Rn) ∩ C1,1

loc(Rn \ {x}) if 0 < α < 2 (ux,λ, vx,λ ∈ C2(Rn \ {x}) if α = 2) and sat-
isfies the integrability property

∫

Rn

uq1
x,λ(y)
λσ

dy =
∫

Rn

uq1 (x)
|x|σ dx < +∞,

∫

Rn

vp1
x,λ(y)
λσ

dy =
∫

Rn

vp1 (x)
|x|σ dx < +∞,

and a similar equation as u, v for any x ∈ R
n and λ > 0. In fact, without loss of generality,

we may assume x = 0 for simplicity and get, for 0 < α < 2 (α = 2 is similar),

(–�)
α
2 u0,λ(y)

= Cα,n P.V .
∫

Rn

(( λ
|y| )

n–α – ( λ
|z| )

n–α)u( λ2y
|y|2 ) + ( λ

|z| )
n–α(u( λ2y

|y|2 ) – u( λ2z
|z|2 ))

|y – z|n+α
dz
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= u
(

λ2y
|y|2

)

(–�)
α
2

[(
λ

|y|
)n–α]

+ Cα,n P.V .
∫

Rn

u( λ2y
|y|2 ) – u(z)

|y – λ2z
|z|2 |n+α

λn+α

|z|n+α
dz (2.3)

=
λn+α

|y|n+α
(–�)

α
2 u

(
λ2y
|y|2

)

=
λn+α

|y|n+α

∫

Rn

vp1 (z)

| λ2y
|y|2 – z|σ

dz · vp2

(
λ2y
|y|2

)

=
λn+α

|y|n+α

∫

Rn

λ2n|z|–2n

| λ2y
|y|2 – λ2z

|z|2 |σ
vp1

(
λ2z
|z|2

)

dz · vp2

(
λ2y
|y|2

)

=
∫

Rn

vp1
0,λ(z)

|y – z|σ
(

λ

|z|
)τ1

dz
(

λ

|y|
)τ2

vp2
0,λ(y),

(–�)
α
2 v0,λ(y)

= Cα,n P.V .
∫

Rn

(( λ
|y| )

n–α – ( λ
|z| )

n–α)v( λ2y
|y|2 ) + ( λ

|z| )
n–α(v( λ2y

|y|2 ) – v( λ2z
|z|2 ))

|y – z|n+α
dz

= v
(

λ2y
|y|2

)

(–�)
α
2

[(
λ

|y|
)n–α]

+ Cα,n P.V .
∫

Rn

v( λ2y
|y|2 ) – v(z)

|y – λ2z
|z|2 |n+α

λn+α

|z|n+α
dz (2.4)

=
λn+α

|y|n+α
(–�)

α
2 v

(
λ2y
|y|2

)

=
λn+α

|y|n+α

∫

Rn

uq1 (z)

| λ2y
|y|2 – z|σ

dz · uq2

(
λ2y
|y|2

)

=
λn+α

|y|n+α

∫

Rn

λ2n|z|–2n

| λ2y
|y|2 – λ2z

|z|2 |σ
uq1

(
λ2z
|z|2

)

dz · uq2

(
λ2y
|y|2

)

=
∫

Rn

uq1
0,λ(z)

|y – z|σ
(

λ

|z|
)τ3

dz
(

λ

|y|
)τ4

uq2
0,λ(y).

This means that the conformal transforms ux,λ, vx,λ ∈ Lα(Rn) ∩ C1,1
loc(Rn \ {x}) if 0 < α < 2

(ux,λ, vx,λ ∈ C2(Rn \ {x}) if α = 2) satisfy

⎧
⎪⎨

⎪⎩

(–�) α
2 ux,λ(y) =

∫

Rn
vp1

x,λ(z)
|y–z|σ ( λ

|z–x| )
τ1 dz( λ

|y–x| )
τ2 vp2

x,λ(y),

(–�) α
2 vx,λ(y) =

∫

Rn
uq1

x,λ(z)
|y–z|σ ( λ

|z–x| )
τ3 dz( λ

|y–x| )
τ4 uq2

x,λ(y),
(2.5)

for every y ∈ R
n \ {x}, where τ1 := 2n – σ – p1(n – α) ≥ 0, τ2 := n + α – σ – p2(n – α) ≥ 0,

τ3 := 2n – σ – q1(n – α) ≥ 0 and τ4 := n + α – σ – q2(n – α) ≥ 0. For any λ > 0, we define

Bλ(x) :=
{

y ∈R
n||y – x| < λ

}
,

P(y) :=
(

1
| · |σ ∗ vp1

)

(y), P̃x,λ(y) :=
∫

Bλ(x)

vp1–1(z)
|y – z|σ dz,

Q(y) :=
(

1
| · |σ ∗ uq1

)

(y), Q̃x,λ(y) :=
∫

Bλ(x)

uq1–1(z)
|y – z|σ dz.



Li et al. Boundary Value Problems         (2021) 2021:91 Page 6 of 23

Define Ux,λ(y) = ux,λ(y) – u(y), Vx,λ(y) = vx,λ(y) – v(y) for any y ∈ Bλ(x) \ {x}. By the defi-
nition of ux,λ, vx,λ and Ux,λ, Vx,λ, we have

Ux,λ(y) = ux,λ(y) – u(y) =
(

λ

|y – x|
)n–α

u
(
yx,λ) – u(y)

=
(

λ

|y – x|
)n–α(

u
(
yx,λ) –

(
λ

|yx,λ – x|
)n–α

u
((

yx,λ)x,λ)
)

= –
(

λ

|y – x|
)n–α

Ux,λ
(
yx,λ) = –(Ux,λ)x,λ(y),

(2.6)

Vx,λ(y) = vx,λ(y) – v(y) =
(

λ

|y – x|
)n–α

v
(
yx,λ) – v(y)

=
(

λ

|y – x|
)n–α(

v
(
yx,λ) –

(
λ

|yx,λ – x|
)n–α

v
((

yx,λ)x,λ)
)

= –
(

λ

|y – x|
)n–α

Vx,λ
(
yx,λ) = –(Vx,λ)x,λ(y)

(2.7)

for every y ∈ Bλ(x) \ {x}.
We will first show that there exists ε0 > 0 (depending on x) sufficiently small such that,

for any 0 < λ ≤ ε0, it holds that Ux,λ(y) ≥ 0, Vx,λ(y) ≥ 0 for every y ∈ Bλ(x) \ {x}.
We first need to show that the nonnegative solution (u, v) to PDE system (1.1) also sat-

isfies the equivalent integral system (1.4).

Lemma 2.1 Assume that (u, v) is a pair of nonnegative solutions to PDE system (1.1), then
(u, v) also satisfies the equivalent integral system (1.4), and vice versa.

Proof Recall that G(y, z) = Rn,α
|y–z|n–α is the fundamental solution for (–�) α

2 on R
n. If (u, v) is

a pair of positive solutions of (1.4), then

(–�)
α
2 u(y) =

∫

Rn
(–�)

α
2

Rn,α

|y – z|n–α

(
1

| · |σ ∗ vp1

)

(z)vp2 (z) dz

=
∫

Rn
δy(z)

(
1

| · |σ ∗ vp1

)

(z)vp2 (z) dz

=
(

1
| · |σ ∗ vp1

)

(y)vp2 (y),

(–�)
α
2 v(y) =

∫

Rn
(–�)

α
2

Rn,α

|y – z|n–α

(
1

| · |σ ∗ uq1

)

(z)uq2 (z) dz

=
∫

Rn
δy(z)

(
1

| · |σ ∗ uq1

)

(z)uq2 (z) dz

=
(

1
| · |σ ∗ uq1

)

(y)uq2 (y),

this is, (u, v) satisfies system (1.1).
Conversely, assume that (u, v) is a pair of positive solutions of (1.1). For any R > 0, let

u1,R(y) =
∫

BR

Gα
R(y, z)

(
1

| · |σ ∗ vp1

)

(z)vp2 (z) dz,
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v1,R(y) =
∫

BR

Gα
R(y, z)

(
1

| · |σ ∗ uq1

)

(z)uq2 (z) dz,

where Gα
R is Green’s function for (–�) α

2 on BR(0) which is given by

Gα
R(y, z) =

⎧
⎪⎨

⎪⎩

Cn,α
|y–z|n–α

∫ tR
sR

0
b

α
2 –1

(1+b)
n
2

db, for all y, z ∈ BR(0),

0, if y or z ∈ Rn \ BR(0),

with sR = |y–z|2
R2 and tR = (1 – |y|2

R2 )(1 – |z|2
R2 ).

Using the properties of Green’s function, we can deduce

⎧
⎨

⎩

(–�) α
2 u1,R(y) = ( 1

|·|σ ∗ vp1 )(y)vp2 (y), y ∈ BR(0),

u1,R(y) = 0, y ∈ R
n \ BR(0),

(2.8)

⎧
⎨

⎩

(–�) α
2 v1,R(y) = ( 1

|·|σ ∗ uq1 )(y)uq2 (y), y ∈ BR(0),

v1,R(y) = 0, y ∈R
n \ BR(0).

(2.9)

Let UR = u – u1,R, VR = v – v1,R, by (1.1), (2.8), and (2.9), we have

⎧
⎨

⎩

(–�) α
2 UR(y) = 0, y ∈ BR(0),

UR(y) ≥ 0, y ∈R
n \ BR(0),

⎧
⎨

⎩

(–�) α
2 VR(y) = 0, y ∈ BR(0),

VR(y) ≥ 0, y ∈ R
n \ BR(0),

for any R > 0, it follows from the maximum principle that

UR(y) = u(y) – u1,R(y) ≥ 0, VR(y) = v(y) – v1,R(y) ≥ 0 for all y ∈R
n.

Now, for each fixed y ∈R
n, letting R → ∞, we have

u(y) ≥ u1(y) :=
∫

Rn

Rn,α

|y – z|n–α

(
1

| · |σ ∗ vp1

)

(z)vp2 (z) dz,

v(y) ≥ v1(y) :=
∫

Rn

Rn,α

|y – z|n–α

(
1

| · |σ ∗ uq1

)

(z)uq2 (z) dz.

On the other hand, (u1, v1) is a pair of solutions of the following system:

⎧
⎨

⎩

(–�) α
2 u1(y) = ( 1

|·|σ ∗ vp1 )(y)vp2 (y), y ∈R
n,

(–�) α
2 v1(y) = ( 1

|·|σ ∗ uq1 )(y)uq2 (y), y ∈ R
n,

define U(y) = u(y) – u1(y), V (y) = v(y) – v1(y), then

⎧
⎨

⎩

(–�) α
2 U(y) = 0, y ∈R

n,

U(y) ≥ 0, y ∈R
n,
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⎧
⎨

⎩

(–�) α
2 V (y) = 0, y ∈R

n,

V (y) ≥ 0, y ∈ R
n.

By the Liouville theorem, we deduce U(y) = u(y) – u1(y) ≡ C3 ≥ 0, V (y) = v(y) – v1(y) ≡
C4 ≥ 0.

Thus, we have proved that

u(y) =
∫

Rn

Rn,α

|y – z|n–α

(
1

| · |σ ∗ vp1

)

(z)vp2 (z) dz + C3 ≥ C3,

v(y) =
∫

Rn

Rn,α

|y – z|n–α

(
1

| · |σ ∗ uq1

)

(z)uq2 (z) dz + C4 ≥ C4.

Then we have

∞ > u(0) ≥ u1(0) =
∫

Rn

Rn,α

|z|n–α

(∫

Rn

vp1 (ξ )
|z – ξ |σ dξ

)

vp2 (z) dz

≥ Cp1+p2
4

∫

Rn

Rn,α

|z|n–α

∫

Rn

1
|z – ξ |σ dξ dz,

∞ > v(0) ≥ v1(0) =
∫

Rn

Rn,α

|z|n–α

(∫

Rn

uq1 (ζ )
|z – ζ |σ dζ

)

uq2 (z) dz

≥ Cq1+q2
3

∫

Rn

Rn,α

|z|n–α

∫

Rn

1
|z – ζ |σ dζ dz,

from which we can infer immediately that C3 = 0, C4 = 0, therefore, we arrive at

⎧
⎨

⎩

u(y) =
∫

Rn
Rn,α

|y–z|n–α ( 1
|·|σ ∗ vp1 )(z)vp2 (z) dz,

v(y) =
∫

Rn
Rn,α

|y–z|n–α ( 1
|·|σ ∗ uq1 )(z)uq2 (z) dz.

Therefore, (u, v) satisfies integral system (1.4). �

Based on Lemma 2.1, we can prove that Ux,λ, Vx,λ have a strictly positive lower bound
in a small neighborhood of x.

Lemma 2.2 For every fixed x ∈ R
n, there exists η0 > 0 (depending on x) sufficiently small

such that, if 0 < λ ≤ η0, then

Ux,λ(y) ≥ 1, Vx,λ(y) ≥ 1, y ∈ Bλ2 (x) \ {x}.

Proof Using a similar argument as that in [19], one can denote

f
(
v(y)

)
:= vp2 (y)

∫

Rn

vp1 (ξ )
|y – ξ |σ dξ ,

g
(
u(y)

)
:= uq2 (y)

∫

Rn

uq1 (ζ )
|y – ζ |σ dζ .



Li et al. Boundary Value Problems         (2021) 2021:91 Page 9 of 23

For any |y| ≥ 1, since u, v > 0 also satisfy integral system (1.4), we can deduce that

u(y) = Rα,n

∫

Rn

f (v(z))
|y – z|n–α

dz

≥ Rα,n

∫

B 1
2

(0)

f (v(z))
|y – z|n–α

dz

≥ b1

|y|n–α

∫

B 1
2

(0)
f
(
v(z)

)
dz

≥ b1

|y|n–α
,

v(y) = Rα,n

∫

Rn

g(u(z))
|y – z|n–α

dz

≥ Rα,n

∫

B 1
2

(0)

g(u(z))
|y – z|n–α

dz

≥ b2

|y|n–α

∫

B 1
2

(0)
g
(
u(z)

)
dz

≥ b2

|y|n–α
.

It follows immediately that

ux,λ(y) =
(

λ

|y – x|
)n–α

u
(
yx,λ) ≥

(
λ

|y – x|
)n–α b1

|yx,λ|n–α
=

b1

λn–α
,

vx,λ(y) =
(

λ

|y – x|
)n–α

v
(
yx,λ) ≥

(
λ

|y – x|
)n–α b2

|yx,λ|n–α
=

b2

λn–α

for all y ∈ Bλ2 (x) \ {x}. Therefore, we have if 0 < λ ≤ η0 for some η0(x) > 0 small enough,
then

Ux,λ(y) = ux,λ(y) – u(y) ≥ b1

λn–α
– max

|y–x|≤λ2
u(y) ≥ 1,

Vx,λ(y) = vx,λ(y) – v(y) ≥ b2

λn–α
– max

|y–x|≤λ2
v(y) ≥ 1

for any y ∈ Bλ2 (x) \ {x}.
This completes the proof of Lemma 2.2. �

For every fixed x ∈R
n, define

B–
λ =

{
y ∈ Bλ(x) \ {x}|Ux,λ(y) < 0, Vx,λ(y) < 0

}
.

Now we need the following theorem, which is a variant (for nonlocal nonlinearity) of
the narrow region principle (Theorem 2.2 in [19]).

Theorem 2.3 (Narrow region principle) Assume that x ∈R
n is arbitrarily fixed. Let � be

a narrow region in Bλ(x) \ {x} with small thickness 0 < l < λ such that � ⊆ Aλ,l(x) := {y ∈
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R
n|λ – l < |y – x| < λ}. Suppose Ux,λ, Vx,λ ∈Lα(Rn) ∩ C1,1

loc(�) if 0 < α < 2 (Ux,λ, Vx,λ ∈ C2(�)
if α = 2) and satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(–�) α
2 Ux,λ(y) – L1(y)Vx,λ(y) – p1(

∫

B–
λ

vp1–1(z)Vx,λ(z)
|y–z|σ dz)vp2 (y) ≥ 0 in � ∩ B–

λ ,

(–�) α
2 Vx,λ(y) – L2(y)Ux,λ(y) – q1(

∫

B–
λ

uq1–1(z)Ux,λ(z)
|y–z|σ dz)uq2 (y) ≥ 0 in � ∩ B–

λ ,

negative minimum of Ux,λ, Vx,λ is attained in the interior of Bλ(x) \ {x}
if B–

λ 
= ∅,

negative minimum of Ux,λ, Vx,λ cannot be attained in (Bλ(x) \ {x}) \ �,

(2.10)

where L1(y) := p2vp2–1
x,λ (y)P(y), L2(y) := q2uq2–1

x,λ (y)Q(y). Then we have:
(i) There exists a sufficiently small constant γ0(x) > 0 such that, for all 0 < λ ≤ γ0,

Ux,λ(y) ≥ 0, Vx,λ(y) ≥ 0, ∀y ∈ �; (2.11)

(ii) There exists sufficiently small l0(x,λ) > 0 depending on λ continuously such that, for
all 0 < l ≤ l0,

Ux,λ(y) ≥ 0, Vx,λ(y) ≥ 0, ∀y ∈ �. (2.12)

Proof Without loss of generality, we may assume x = 0 here for simplicity. Suppose on
the contrary that (2.11) and (2.12) do not hold, we will obtain a contradiction for any 0 <
λ ≤ γ0 with constant γ0 small enough and any 0 < l ≤ l0(λ) with l0(λ) sufficiently small
respectively. By (2.10) and our hypothesis, there exists ỹ ∈ (�∩B–

λ) ⊆ Aλ,l(0) := {y ∈R
n|λ–

l < |y| < λ} such that

U0,λ(ỹ) = min
Bλ(0)\{0}

U0,λ(y) < 0. (2.13)

We first consider the cases 0 < α < 2. Let Ũ0,λ(y) = U0,λ(y) – U0,λ(ỹ), then Ũ0,λ(ỹ) = 0 and

(–�)α/2Ũ0,λ(y) = (–�)α/2U0,λ(y).

By the anti-symmetry property Ux,λ(y) = –(Ux,λ)x,λ(y), it holds

(
λ

|y|
)n–α

Ũ0,λ
(
y0,λ) =

(
λ

|y|
)n–α

U0,λ
(
y0,λ) –

(
λ

|y|
)n–α

U0,λ(ỹ)

= –U0,λ(y) + U0,λ(ỹ) –
(

1 +
(

λ

|y|
)n–α)

U0,λ(ỹ)

= –Ũ0,λ(y) –
(

1 +
(

λ

|y|
)n–α)

U0,λ(ỹ).
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As a consequence, it follows that

(–�)α/2Ũ0,λ(ỹ) = Cn,α P.V .
∫

Rn

Ũ0,λ(ỹ) – Ũ0,λ(z)
|ỹ – z|n+α

dz

= Cn,α P.V .
∫

Bλ(0)

–Ũ0,λ(z)
|ỹ – z|n+α

dz +
∫

Rn\Bλ(0)

–Ũ0,λ(z)
|ỹ – z|n+α

dz

= Cn,α P.V .
(∫

Bλ(0)

–Ũ0,λ(z)
|ỹ – z|n+α

dz +
∫

Rn\Bλ(0)

( λ
|z| )

n–αŨ0,λ(z0,λ)
|ỹ – z|n+α

dz

+
∫

Rn\Bλ(0)

(1 + ( λ
|z| )

n–α)U0,λ(ỹ)
|ỹ – z|n+α

dz
)

= Cn,α P.V .
(∫

Bλ(0)

–Ũ0,λ(z)
|ỹ – z|n+α

dz +
∫

Bλ(0)

Ũ0,λ(z)
| |z|ỹ

λ
– λz

|z| |n+α
dz

+
∫

Rn\Bλ(0)

(1 + ( λ
|z| )

n–α)U0,λ(ỹ)
|ỹ – z|n+α

dz
)

.

Notice that, for any z ∈ Bλ(0) \ {0},

∣
∣
∣
∣
|z|ỹ
λ

–
λz
|z|

∣
∣
∣
∣

2

– |ỹ – z|2 =
(|ỹ|2 – λ2)(|z|2 – λ2)

λ2 > 0,

together with U0,λ(ỹ) < 0, we have

(–�)α/2U0,λ(ỹ) ≤ Cn,αU0,λ(ỹ)
∫

Rn\Bλ(0)

1
|ỹ – z|n+α

dz

≤ Cn,αU0,λ(ỹ)
∫

(Rn\Bλ(0))∩(B4l(ỹ)\Bl(ỹ))

1
|ỹ – z|n+α

dz

≤ C
lα

U0,λ(ỹ) < 0.

(2.14)

For α = 2, we can also obtain the same estimate as (2.14) at some point y0 ∈ � ∩ B–
λ . To

this end, we define

φ(y) := cos
|y| – λ + l

l
, (2.15)

then it follows that φ(y) ∈ [cos 1, 1] for any y ∈ Aλ,l(0) = {y ∈ R
n|λ – l ≤ |y| ≤ λ} and

– �φ(y)
φ(y) ≥ 1

l2 . Define

U0,λ(y) :=
U0,λ(y)
φ(y)

(2.16)

for y ∈ Aλ,l(0). Then there exists y0 ∈ � ∩ B–
λ such that

U0,λ(y0) = min
Aλ,l(0)

U0,λ(y) < 0. (2.17)
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Since

–�U0,λ(y0) = –�U0,λ(y0)φ(y0) – 2∇U0,λ(y0) · ∇φ(y0) – U0,λ(y0)�φ(y0), (2.18)

it follows immediately that

–�U0,λ(y0) ≤ 1
l2 U0,λ(y0). (2.19)

In conclusion, we have proved that, for both 0 < α < 2 and α = 2, there exists some ŷ ∈
� ∩ B–

λ such that

(–�)
α
2 U0,λ(ŷ) ≤ C

lα
U0,λ(ŷ) < 0. (2.20)

Since ỹ ∈ � ∩ B–
λ , we have V0,λ(ỹ) < 0, then we know that there exists ȳ such that

V0,λ(ȳ) = min
Bλ(0)\(0)

V0,λ(y) < 0.

Similar to (2.14), we can derive that

(–�)
α
2 V0,λ(ȳ) ≤ C

lα
V0,λ(ȳ) < 0. (2.21)

On the other hand, by (2.10), we have at the point ỹ

0 ≤ (–�)
α
2 U0,λ(ỹ) – L1(ỹ)V0,λ(ỹ) – p1

(∫

B–
λ

vp1–1(z)V0,λ(z)
|ỹ – z|σ dz

)

vp2 (ỹ) (2.22)

≤ (–�)
α
2 U0,λ(ỹ) – L1(ỹ)V0,λ(ȳ) – p1

(∫

B–
λ

vp1–1(z)
|ỹ – z|σ dz

)

vp2 (ỹ)V0,λ(ȳ)

≤ (–�)
α
2 U0,λ(ỹ) – c′

0,λ(ỹ)V0,λ(ȳ),

where

c′
x,λ(y) := L1(y) + p1P̃x,λ(y)vp2 (y)

= p2P(y)vp2–1
x,λ (y) + p1P̃x,λ(y)vp2 (y) > 0.

Since λ – l < |y| < λ, we derive

P(y) ≤
{∫

|y–z|< |z|
2

+
∫

|y–z|≥ |z|
2

}
vp1 (z)
|y – z|σ dz (2.23)

≤
[

max
|y|≤2λ

v(y)
]p1

∫

|y–z|<λ

1
|y – z|σ dz + 2σ

∫

Rn

vp1 (z)
|z|σ dz

≤ Cλn–σ
[

max
|y|≤2λ

v(y)
]p1

+ 2σ

∫

Rn

vp1 (x)
|x|σ dx =: C′

1,λ,
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and

P̃0,λ(y) ≤
∫

|y–z|<2λ

1
|y – z|σ vp1–1(z) dz (2.24)

≤ Cλn–σ
[

max
|y|≤4λ

v(y)
]p1–1

=: C′′
1,λ.

It is obvious that C′
1,λ and C′′

1,λ depend on λ continuously and monotone increase with
respect to λ > 0.

As a consequence, we can deduce from (2.23) and (2.24) that, for any λ – l ≤ |y| ≤ λ,

0 < c′
0,λ(y) = p2P(y)vp2–1

0,λ (y) + p1P̃0,λ(y)vp2 (y) (2.25)

≤ p2C′
1,λ

[
min|y|≤λ

v0,λ(y)
]p2–1

+ p1C′′
1,λ

[
max
|y|≤λ

v(y)
]p2

=: C1,λ,

where C1,λ depends continuously on λ and monotone increases with respect to λ > 0.
From (2.14) and (2.22), we have

U0,λ(ỹ) ≥ c′
0,λ(ỹ)lαV0,λ(ȳ). (2.26)

By (2.10), we also have at the point ȳ

0 ≤ (–�)
α
2 V0,λ(ȳ) – L2(ȳ)U0,λ(ȳ) – q1

(∫

B–
λ

uq1–1(z)U0,λ(z)
|ȳ – z|σ dz

)

uq2 (ȳ) (2.27)

≤ (–�)
α
2 V0,λ(ȳ) – L2(ȳ)U0,λ(ỹ) – q1

(∫

B–
λ

uq1–1(z)
|ȳ – z|σ dz

)

uq2 (ȳ)U0,λ(ỹ)

≤ (–�)
α
2 V0,λ(ȳ) – c′′

0,λ(ȳ)U0,λ(ỹ),

where

c′′
x,λ(y) := L2(y) + q1Q̃x,λ(y)uq2 (y)

= q2Q(y)uq2–1
x,λ (y) + q1Q̃x,λ(y)uq2 (y) > 0.

Since λ – l < |y| < λ, we have

Q(y) ≤
{∫

|y–z|< |z|
2

+
∫

|y–z|≥ |z|
2

}
uq1 (z)
|y – z|σ dz (2.28)

≤
[

max
|y|≤2λ

u(y)
]q1

∫

|y–z|<λ

1
|y – z|σ dz + 2σ

∫

Rn

uq1 (z)
|z|σ dz

≤ Cλn–σ
[

max
|y|≤2λ

u(y)
]q1

+ 2σ

∫

Rn

uq1 (x)
|x|σ dx =: C′

2,λ,

and

Q̃0,λ(y) ≤
∫

|y–z|<2λ

1
|y – z|σ uq1–1(z) dz (2.29)

≤ Cλn–σ
[

max
|y|≤4λ

u(y)
]q1–1

=: C′′
2,λ.
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It is obvious that C′
2,λ and C′′

2,λ depend on λ continuously and monotone increase with
respect to λ > 0.

Thus, we infer from (2.28) and (2.29) that, for any λ – l ≤ |y| ≤ λ,

0 < c′′
0,λ(y) = q2Q(y)uq2–1

0,λ (y) + q1Q̃0,λ(y)uq2 (y) (2.30)

≤ q2C′
2,λ

[
min|y|≤λ

u0,λ(y)
]q2–1

+ q1C′′
2,λ

[
max
|y|≤λ

u(y)
]q2

=: C2,λ,

where C2,λ depends continuously on λ and monotone increases with respect to λ > 0.
As a consequence, it follows from (2.21), (2.26), and (2.27) that

0 ≤ (–�)
α
2 V0,λ(ȳ) – c′′

0,λ(ȳ)U0,λ(ỹ) (2.31)

≤ C
lα

V0,λ(ȳ) – c′
0,λ(ỹ)c′′

0,λ(ȳ)lαV0,λ(ȳ)

≤ C
lα

V0,λ(ȳ) – C1,λC2,λlαV0,λ(ȳ)

=
(

C
lα

– Cλlα
)

V0,λ(ȳ),

that is,

C
λα

≤ C
lα

≤ Cλlα . (2.32)

We can derive a contradiction from (2.32) directly if 0 < λ ≤ γ0 for some constant γ0

small enough, or if 0 < l ≤ l0 for some sufficiently small l0 depending on λ continuously.
This implies that (2.11) and (2.12) must hold. Furthermore, by (2.10), we can actually de-
duce from Ux,λ(y) ≥ 0, Vx,λ ≥ 0 in � that

Ux,λ(y) ≥ 0, Vx,λ(y) ≥ 0, ∀y ∈ Bλ(x) \ {x}. (2.33)

This completes the proof of Theorem 2.3. �

The following lemma provides a starting point for us to move the spheres.

Lemma 2.4 For every x ∈ R
n, there exists ε0(x) > 0 such that ux,λ(y) ≥ u(y) and vx,λ(y) ≥

v(y) for all λ ∈ (0, ε0(x)] and y ∈ Bλ(x) \ {x}.

Proof For every x ∈R
n, define

B–
λ =

{
y ∈ Bλ(x) \ {x}|Ux,λ(y) < 0, Vx,λ(y) < 0

}
.

Choose ε0(x) := min{η0(x),γ0(x)}, where η0(x) and γ0(x) are defined the same as in
Lemma 2.2 and Theorem 2.3. We will show via contradiction arguments that, for any
0 < λ ≤ ε0,

B–
λ = ∅. (2.34)
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Suppose that (2.34) does not hold, that is, B–
λ 
= ∅ and hence Ux,λ, Vx,λ is negative some-

where in Bλ(x) \ {x}. For arbitrary y ∈ B–
λ , one can infer from (1.1) and (2.5) that

(–�)
α
2 Ux,λ(y)

=
∫

Rn

vp1
x,λ(z)

|y – z|σ
(

λ

|z – x|
)τ1

dz
(

λ

|y – x|
)τ2

vp2
x,λ(y) –

∫

Rn

vp1 (z)
|y – z|σ dzvp2 (y)

≥
∫

Rn

vp1
x,λ(z)

|y – z|σ dzvp2
x,λ(y) –

∫

Rn

vp1 (z)
|y – z|σ dzvp2 (y)

≥ p2

∫

Rn

vp1 (z)
|y – z|σ dzvp2–1

x,λ (y)Vx,λ(y) +
∫

Rn

vp1
x,λ(z) – vp1 (z)

|y – z|σ dzvp2
x,λ(y)

= L1(y)Vx,λ(y) +
∫

Rn

vp1
x,λ(z) – vp1 (z)

|y – z|σ dzvp2
x,λ(y)

≥L1(y)Vx,λ(y) + vp2
x,λ(y)

∫

Bλ(x)

(
1

| (y–x)|z–x|
λ

– λ(z–x)
|z–x| |σ –

1
|y – z|σ

)
(
vp1 (z) – vp1

x,λ(z)
)

dz

≥L1(y)Vx,λ(y) + vp2 (y)
∫

B–
λ (x)

1
|y – z|σ

(
vp1

x,λ(z) – vp1 (z)
)

dz

≥L1(y)Vx,λ(y) + p1

(∫

B–
λ

vp1–1(z)Vx,λ(z)
|y – z|σ dz

)

vp2 (y),

(–�)
α
2 Vx,λ(y)

=
∫

Rn

uq1
x,λ(z)

|y – z|σ
(

λ

|z – x|
)τ3

dz
(

λ

|y – x|
)τ4

uq2
x,λ(y) –

∫

Rn

uq1 (z)
|y – z|σ dzuq2 (y)

≥
∫

Rn

uq1
x,λ(z)

|y – z|σ dzuq2
x,λ(y) –

∫

Rn

uq1 (z)
|y – z|σ dzuq2 (y)

≥ q2

∫

Rn

uq1 (z)
|y – z|σ dzuq2–1

x,λ (y)Ux,λ(y) +
∫

Rn

uq1
x,λ(z) – uq1 (z)

|y – z|σ dzuq2
x,λ(y)

= L2(y)Ux,λ(y) +
∫

Rn

uq1
x,λ(z) – uq1 (z)

|y – z|σ dzuq2
x,λ(y)

≥L2(y)Ux,λ(y) + uq2
x,λ(y)

∫

Bλ(x)

(
1

| (y–x)|z–x|
λ

– λ(z–x)
|z–x| |σ –

1
|y – z|σ

)
(
uq1 (z) – uq1

x,λ(z)
)

dz

≥L2(y)Ux,λ(y) + uq2 (y)
∫

B–
λ (x)

1
|y – z|σ

(
uq1

x,λ(z) – uq1 (z)
)

dz

≥L2(y)Ux,λ(y) + q1

(∫

B–
λ

uq1–1(z)Ux,λ(z)
|y – z|σ dz

)

uq2 (y).

That is, for all y ∈ B–
λ ,

(–�)
α
2 Ux,λ(y) – L1(y)Vx,λ(y) – p1

(∫

B–
λ

vp1–1(z)Vx,λ(z)
|y – z|σ dz

)

vp2 (y) ≥ 0, (2.35)

(–�)
α
2 Vx,λ(y) – L2(y)Ux,λ(y) – q1

(∫

B–
λ

uq1–1(z)Ux,λ(z)
|y – z|σ dz

)

uq2 (y) ≥ 0. (2.36)
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Since ε0(x) := min{η0(x),γ0(x)}, by Lemma 2.2, we can deduce that, for any 0 < λ ≤ ε0,

Ux,λ(y) ≥ 1, Vx,λ(y) ≥ 1, ∀y ∈ Bλ2 (x) \ {x}. (2.37)

Therefore, by taking l = λ – λ2 and � = Aλ,l(x), then it follows from (2.35), (2.36), and
(2.37) that all the conditions in (2.10) in Theorem 2.3 are fulfilled. We can deduce from (i)
in Theorem 2.3 that Ux,λ ≥ 0, Vx,λ ≥ 0 in � = Aλ,l(x) for any 0 < λ ≤ ε0(x). That is, there
exists ε0(x) > 0 such that, for all λ ∈ (0, ε0(x)],

Ux,λ(y) ≥ 0, Vx,λ(y) ≥ 0, ∀y ∈ Bλ(x) \ {x}.

This completes the proof of Lemma 2.4. �

For each fixed x ∈ R
n, we define

λ̄(x) = sup
{
λ > 0|ux,μ ≥ u, vx,μ ≥ v in Bμ(x) \ {x},∀0 < μ ≤ λ

}
, (2.38)

by Lemma 2.4, λ̄(x) is well defined and 0 < λ̄(x) ≤ +∞ for any x ∈R
n.

We need the following lemma, which is crucial in our proof.

Lemma 2.5 If λ̄(x̄) < +∞ for some x̄ ∈ R
n, then

ux̄,λ̄(x̄)(y) = u(y), vx̄,λ̄(x̄)(y) = v(y), ∀y ∈ Bλ̄(x̄) \ {x̄}.

Proof Without loss of generality, let x̄ = 0. Since (u, v) is a pair of positive solutions to
integral system (1.4), one can verify that u0,λ, v0,λ also satisfy a similar integral system as
(1.4) in R

n \ {0}. In fact, by (1.4) and direct calculations, we have, for any y ∈R
n \ {0},

u0,λ(y) =
(

λ

|y|
)n–α

u
(

λ2y
|y2|

)

=
λn–α

|y|n–α

∫

Rn

Rα,n

| λ2y
|y|2 – z|n–α

∫

Rn

vp1 (ξ )
|z – ξ |σ dξvp2 (z) dz

=
λn–α

|y|n–α

∫

Rn

Rα,n

| λ2y
|y|2 – λ2z

|z|2 |n–α

∫

Rn

vp1 ( λ2ξ

|ξ |2 )

| λ2z
|z|2 – λ2ξ

|ξ |2 |σ
λ2n

|ξ |2n dξvp2

(
λ2z
|z|2

)
λ2n

|z|2n dz

=
∫

Rn

Rα,n

|y – z|n–α

∫

Rn

vp1
0,λ(ξ )

|z – ξ |σ
(

λ

|ξ |
)τ1

dξvp2
0,λ(z)

(
λ

|z|
)τ2

dz,

v0,λ(y) =
(

λ

|y|
)n–α

v
(

λ2y
|y2|

)

=
λn–α

|y|n–α

∫

Rn

Rα,n

| λ2y
|y|2 – z|n–α

∫

Rn

uq1 (ζ )
|z – ζ |σ dζuq2 (z) dz

=
λn–α

|y|n–α

∫

Rn

Rα,n

| λ2y
|y|2 – λ2z

|z|2 |n–α

∫

Rn

uq1 ( λ2ζ

|ζ |2 )

| λ2z
|z|2 – λ2ζ

|ζ |2 |σ
λ2n

|ζ |2n dζuq2

(
λ2z
|z|2

)
λ2n

|z|2n dz

=
∫

Rn

Rα,n

|y – z|n–α

∫

Rn

uq1
0,λ(ζ )

|z – ζ |σ
(

λ

|ζ |
)τ3

dζuq2
0,λ(z)

(
λ

|z|
)τ4

dz,
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where τ1 := 2n–σ –p1(n–α) ≥ 0, τ2 := n+α–σ –p2(n–α) ≥ 0 and τ3 := 2n–σ –q1(n–α) ≥
0, τ4 := n + α – σ – q2(n – α) ≥ 0.

Suppose on the contrary that U0,λ̄ ≥ 0 but U0,λ̄ is not identically zero in Bλ̄(0) \ {0}, then
we will get a contradiction with the definition (2.38) of λ̄. We first prove that

U0,λ̄(y) > 0, V0,λ̄(y) > 0, ∀y ∈ Bλ̄(0) \ {0}. (2.39)

Indeed, if there exists a point y0 ∈ Bλ̄(0) \ {0} such that U0,λ̄(y0) > 0, by continuity, there
exists small γ > 0 and constant c0 > 0 such that

Bγ

(
y0) ⊂ Bλ̄(0) \ {0} and U0,λ̄(y) ≥ c0 > 0, ∀y ∈ Bγ

(
y0).

For any y ∈ Bλ̄(0) \ {0}, one can derive that

u(y) =
∫

Rn

Rα,n

|y – z|n–α
P(z)vp2 (z) dz

=
∫

Bλ̄(0)

Rα,n

|y – z|n–α
P(z)vp2 (z) dz +

∫

Rn\Bλ̄(0)

Rα,n

|y – z|n–α
P(z)vp2 (z) dz

=
∫

Bλ̄(0)

Rα,n

|y – z|n–α
P(z)vp2 (z) dz +

∫

Bλ̄(0)

Rα,n

| y|z|
λ̄

– λ̄z
|z| |n–α

P
(
zλ̄

)
(

λ̄

|z|
)σ+τ2

vp2
0,λ̄(z) dz,

and

u0,λ̄(y) =
∫

Rn

Rα,n

|y – z|n–α

∫

Rn

vp1
0,λ̄(ξ )

|z – ξ |σ
(

λ̄

|ξ |
)τ1

dξvp2
0,λ̄(z)

(
λ̄

|z|
)τ2

dz

=
∫

Bλ̄(0)

Rα,n

|y – z|n–α

(
λ̄

|z|
)τ2

P̄0,λ̄(z)vp2
0,λ̄(z) dz

+
∫

Bλ̄(0)

Rα,n

| y|z|
λ̄

– λ̄z
|z| |n–α

P̄0,λ̄
(
zλ̄

)
(

λ̄

|z|
)σ

vp2 (z) dz,

where

P̄x,λ(y) :=
∫

Rn

vp1
x,λ(ξ )

|y – ξ |σ
(

λ

|ξ – x|
)τ1

dξ .

Let us define

K1,λ̄(y, z) = Rα,n

(
1

|y – z|n–α
–

1
| y|z|

λ̄
– λ̄z

|z| |n–α

)

,

K2,λ̄(y, z) = Rα,n

(
1

|y – z|σ –
1

| y|z|
λ̄

– λ̄z
|z| |σ

)

.

It is easy to derive that K1,λ̄(y, z) > 0, K2,λ̄(y, z) > 0, and

P̄0,λ̄(z) = P
(
zλ̄

)
(

λ̄

|z|
)σ

, P(z) = P̄0,λ̄
(
zλ̄

)
(

λ̄

|z|
)σ

,
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and furthermore,

P̄0,λ̄(z) – P(z) =
∫

Bλ̄(0)
K2,λ̄(z, ξ )

(
vp1

0,λ̄(ξ ) – vp1 (ξ )
)

dξ > 0.

As a consequence, it follows immediately that, for any y ∈ Bλ̄(0) \ {0},

U0,λ̄(y) =
∫

Bλ̄(0)
K1,λ̄(y, z)P(z)

((
λ̄

|z|
)τ2

vp2
0,λ̄(z) – vp2 (z)

)

dz

+
∫

Bλ̄(0)
K1,λ̄(y, z)

(
P̄0,λ̄(z) – P(z)

)
(

λ̄

|z|
)τ2

vp2
0,λ̄(z) dz

≥
∫

Bλ̄(0)
K1,λ̄(y, z)P(z)

((
λ̄

|z|
)τ2

vp2
0,λ̄(z) – vp2 (z)

)

dz

≥ p2

∫

Bγ (y0)
K1,λ̄(y, z)P(z)vp2–1

0,λ̄ (z)
(
v0,λ̄(z) – v(z)

)
dz > 0,

(2.40)

thus we arrive at (2.39). Furthermore, (2.40) also implies that there exists 0 < η < λ̄ small
enough such that, for any y ∈ Bη(0) \ {0},

U0,λ̄(y) ≥ p2

∫

B γ
2

(y0)
c9c8cp2–1

7 c0 dz =: c̃0 > 0. (2.41)

Now we define

l̃0 := min
λ∈[λ̄,2λ̄]

l0(0,λ) > 0, (2.42)

where l0(0,λ) is given by Theorem 2.3. For fixed small 0 < r0 < 1
2 min{l̃0, λ̄}, by (2.39) and

(2.41), we can define

m0 := inf
y∈Bλ̄–r0

(0)\{0}
U0,λ̄(y) > 0. (2.43)

Similarly, we can also define

n0 := inf
y∈Bλ̄–r0

(0)\{0}
V0,λ̄(y) > 0. (2.44)

Then, by the uniform continuity of u on an arbitrary compact set K ⊂ R
n (say, K =

B4λ̄(0)), one can infer from (2.43) that there exists 0 < ε0 < 1
2 min{l̃0, λ̄} sufficiently small

such that, for any λ ∈ [λ̄, λ̄ + ε0],

U0,λ(y) ≥ m0

2
> 0, ∀y ∈ Bλ̄–r0 (0) \ {0}. (2.45)

In order to prove (2.45), one should observe that (2.43) is equivalent to

|y|n–αu(y) – λ̄n–αu
(
y0,λ̄) ≥ m0λ̄

n–α , ∀|y| ≥ λ̄2

λ̄ – r0
. (2.46)
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Since u is uniformly continuous on B4λ̄(0), we infer from (2.46) that there exists 0 < ε0 <
1
2 min{l̃0, λ̄} sufficiently small such that, for any λ ∈ [λ̄, λ̄ + ε0],

|y|n–αu(y) – λn–αu
(
y0,λ) ≥ m0

2
λn–α , ∀|y| ≥ λ2

λ – r0
, (2.47)

which is equivalent to (2.45), hence we have proved (2.45).
Similar to (2.45),we can also derive that

V0,λ(y) ≥ n0

2
> 0, ∀y ∈ Bλ̄–r0 (0) \ {0}. (2.48)

For any λ ∈ [λ̄, λ̄ + ε0], let l := λ – λ̄ + r0 ∈ (0, l̃0) and � := Aλ,l(0), then it follows from
(2.35), (2.36), and (2.45) that all conditions (2.10) in Theorem 2.3 are fulfilled, hence we
can deduce from (ii) in Theorem 2.3 that

U0,λ(y) ≥ 0, V0,λ(y) ≥ 0, ∀y ∈ � = Aλ,l(0). (2.49)

Therefore, one can infer from (2.45) and (2.49) that B–
λ = ∅ for all λ ∈ [λ̄, λ̄ + ε0], that is,

U0,λ(y) ≥ 0, V0,λ(y) ≥ 0, ∀y ∈ Bλ(0) \ {0}, (2.50)

which contradicts definition (2.38) of λ̄(0). As a consequence, in the case 0 < λ̄(0) < +∞,
we must have U0,λ̄ ≡ 0, V0,λ̄ ≡ 0 in Bλ̄(0) \ {0}, that is,

u0,λ̄(0)(y) ≡ u(y), v0,λ̄(0)(y) ≡ v(y), ∀y ∈ Bλ̄(0) \ {0}. (2.51)

This finishes our proof of Lemma 2.5. �

We also need the following property about the limiting radius λ̄(x).

Lemma 2.6 If λ̄(x̄) = +∞ for some x̄ ∈R
n, then λ̄(x) = +∞ for all x ∈R

n.

Proof Since λ̄(x̄) = +∞, recalling the definition of λ̄, we can derive

ux̄,λ(y) ≥ u(y), vx̄,λ(y) ≥ v(y), ∀y ∈ Bλ(x̄) \ {x̄},∀0 < λ < +∞.

That is,

u(y) ≥ ux̄,λ(y), v(y) ≥ vx̄,λ(y), ∀|y – x̄| ≥ λ,∀0 < λ < +∞.

It follows immediately that

lim|y|→∞ |y|n–αu(y) = +∞, lim|y|→∞ |y|n–αv(y) = +∞. (2.52)

On the other hand, if we assume λ̄(x) < +∞ for some x ∈ R
n, then by Lemma 2.5, one

arrives at

lim|y|→∞ |y|n–αu(y) = lim|y|→∞ |y|n–αux,λ̄(x)(y) =
(
λ̄(x)

)n–αu(x) < +∞,
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lim|y|→∞ |y|n–αv(y) = lim|y|→∞ |y|n–αvx,λ̄(x)(y) =
(
λ̄(x)

)n–αv(x) < +∞,

which contradicts (2.52).
This finishes the proof of Lemma 2.6. �

In the following two subsections, we carry out the proof of Theorem 1.1 by discussing
the critical cases and subcritical cases separately.

2.2 Classification of positive solutions in the critical case
c1( 2n–σ

n–α – p1) + c2( n+α–σ
n–α – p2) + c3( 2n–σ

n–α – q1) + c4( n+α–σ
n–α – q2) = 0

Without loss of generality, we may assume that c1 >, c2 > 0, c3 > 0, c4 > 0, that is, p1 = 2n–σ
n–σ

,
p2 = n+α–σ

n–α
, q1 = 2n–σ

n–α
, and q2 = n+α–σ

n–α
.

We carry out the proof by discussing two different possible cases.
Case (i). λ̄(x) = +∞ for all x ∈R

n. Therefore, for all x ∈R
n and 0 < λ < +∞, we have

ux,λ(y) ≥ u(y), vx,λ(y) ≥ v(y), ∀y ∈ Bλ(x) \ {x},∀0 < λ < +∞.

By a calculus lemma (Lemma 11.2 in [32]), we must have u ≡ d1 > 0, v ≡ d2 > 0, which
contradicts system (1.1).

Case (ii). By Case (i) and Lemma 2.6, we only need to consider the cases that

λ̄(x) < ∞ for all x ∈R
n.

From Lemma 2.5, we infer that

ux,λ̄(x)(y) = u(y), vx,λ̄(x)(y) = v(y), ∀y ∈ Bλ̄(x)(x) \ {x}. (2.53)

Since equation (1.1) is conformally invariant, from a calculus lemma (Lemma 11.1 in [32])
and (2.53), we deduce that there exist some μ > 0 and x0 ∈R

n such that

u(x) = C1

(
μ

1 + μ2|x – x0|2
) n–α

2
, v(x) = C2

(
μ

1 + μ2|x – x0|2
) n–α

2
, ∀x ∈R

n,

where the constants C1, C2 depend on n, α, σ .

2.3 Nonexistence of positive solutions in the subcritical case
c1( 2n–σ

n–α – p1) + c2( n+α–σ
n–α – p2) + c3( 2n–σ

n–α – q1) + c4( n+α–σ
n–α – q2) > 0

Without loss of generality, we may assume that c1( 2n–σ
n–α

– p1) ≥ 0, c3( 2n–σ
n–α

– q1) ≥ 0 and
c2( n+α–σ

n–α
– p2) > 0, c4( n+α–σ

n–α
– q2) > 0, that is, c1, c3 ≥ 0, c2, c4 > 0, 0 < p1 ≤ 2n–σ

n–α
, 0 < p2 <

n+α–σ
n–α

, 0 < q1 ≤ 2n–σ
n–α

, and 0 < q2 < n+α–σ
n–α

. PDE system (1.1) involves at least one subcritical
nonlinearity in such cases.

We will obtain a contradiction in both the following two different possible cases.
Case (i). λ̄(x) = +∞ for all x ∈R

n. Therefore, for all x ∈R
n and 0 < λ < +∞, we have

ux,λ(y) ≥ u(y), vx,λ(y) ≥ v(y), ∀y ∈ Bλ(x) \ {x},∀0 < λ < +∞.
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By a calculus lemma (Lemma 11.2 in [32]), we must have u ≡ d1 > 0, v ≡ d2 > 0, which
contradicts equation (1.1).

Case (ii). By Case (i) and Lemma 2.6, we only need to consider the case that

λ̄(x) < ∞ for all x ∈R
n.

From Lemma 2.5, we infer that

ux,λ̄(x)(y) = u(y), vx,λ̄(x)(y) = v(y), ∀y ∈ Bλ̄(x)(x) \ {x}. (2.54)

Consider x = 0, one can derive from (2.40) and (2.54) that

0 = U0,λ̄(y) =
∫

Bλ̄(0)
K1,λ̄(y, z)P(z)

((
λ̄

|z|
)τ2

vp2
0,λ̄(z) – vp2 (z)

)

dz

+
∫

Bλ̄(0)
K1,λ̄(y, z)

(
P̄0,λ̄(z) – P(z)

)
(

λ̄

|z|
)τ2

vp2
0,λ̄(z) dz

=
∫

Bλ̄(0)
K1,λ̄(y, z)P(z)

((
λ̄

|z|
)τ2

– 1
)

vp2 (z) dz,

(2.55)

where

P̄0,λ̄(z) – P(z) =
∫

Bλ̄(0)
K2,λ̄(z, ξ )

(
vp1

0,λ̄(ξ ) – vp1 (ξ )
)

dξ = 0,

and τ2 = n + α – p2(n – α) > 0. As a consequence, it follows immediately that

0 ≥
∫

Bλ̄(0)
K1,λ̄(y, z)P(z)

((
λ̄

|z|
)τ2

– 1
)

vp2 (z) dz > 0,

which is absurd.
Thus we have ruled out both Case (i) and Case (ii), and hence system (1.1) does not admit

any positive solutions. Therefore, the unique nonnegative solution to (1.1) is (u, v) ≡ (0, 0).
This concludes our proof of Theorem 1.1.
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