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Abstract
In this article, we consider the existence of solutions to the Sturm–Liouville differential
equation with random impulses and boundary value problems. We first study the
Green function of the Sturm–Liouville differential equation with random impulses.
Then, we get the equivalent integral equation of the random impulsive differential
equation. Based on this integral equation, we use Dhage’s fixed point theorem to
prove the existence of solutions to the equation, and the theorem is extended to the
general second order nonlinear random impulsive differential equations. Then we use
the upper and lower solution method to give a monotonic iterative sequence of the
generalized random impulsive Sturm–Liouville differential equations and prove that it
is convergent. Finally, we give two concrete examples to verify the correctness of the
results.

Keywords: Random impulsive differential equation; Green function; Upper and
lower solution; Fixed point theorem; Boundary value problems

1 Introduction
Impulsive dynamical systems are an emerging field drawing attention from both theo-
retical and applied disciplines. They are often typically described by ordinary differential
equations with instantaneous state jumps [24, 29]. And the impulsive differential equa-
tions serve as basic models to study the dynamics of processes that are subject to sudden
changes in their states. Since many evolution processes, optimal control models in eco-
nomics, mechanics, electricity, several fields in engineering stimulated neural networks,
frequency modulated systems, and some motions of missiles or aircrafts are characterized
by the impulsive dynamical behavior, the study of impulsive systems, especially the impul-
sive differential, is of great importance, for details, see [12, 17, 24, 27, 34]. But real systems
are often subject to not only impulse effect but also noise perturbations. Taking into ac-
count the stochastic effects, the models are better described as random impulsive differ-
ential equations (RIDEs) rather than impulsive differential equations or stochastic differ-
ential equations. Hence the study of RIDEs has received some attention [2, 30]. Recently,
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a large number of important results about the impulsive differential equation have been
reported in [3, 4, 6, 13–15, 18, 23, 24, 28–31, 35, 36, 41]. For example, in [6], Gowrisankar
et al. investigated the existence and stability of mild solutions of the first order semilinear
differential equation with random impulse (1.1) using the contraction principle.

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = Ax(t) + f (t, xt), t �= ξk , t ≥ t0,

x(ξk) = bk(τk)x(ξ–
k ), k = 1, 2, . . . ,

xt0 = ϕ,

(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators S(t) with domain D(A) ⊆ X. xt(s) = x(t + s) and ξk is the random pulse
time point. In addition, many scholars have also studied the properties of random impul-
sive differential equations. Radhakrishnan et al. [25] studied the existence of solutions for
quasilinear random impulsive neutral differential evolution equation by using the analytic
semigroup theory and Schauder fixed point theorem. Niu et al. [23] studied the existence
and Hyers–Ulam stability of the random impulsive differential equation with the initial
condition. Zhang et al. [40] studied the existence and exponential stability of random im-
pulsive fractional differential equations using the Leray–Schauder fixed point theorem.

Moreover, Sturm–Liouville differential equations play an important role in the study of
differential equations. For any second order homogeneous linear differential equation

P(x)y′′(x) + Q(x)y′(x) + R(x)y(x) = 0,

we can multiply both sides of the equation by the integral factor μ(x) = 1
P(x) e

∫ Q(x)
P(x) dx, so that

the equation becomes a Sturm–Liouville differential equation

(
μ(x)P(x)y′(x)

)′ + μ(x)R(x)y(x) = 0.

Therefore, the study of Sturm–Liouville type differential equations is of great significance,
and some scholars have conducted in-depth research [22, 37, 38].

Besides, in recent years, the boundary value problems of different order differential
equations have emerged as an important area of research, since these problems have appli-
cations in various disciplines of science and engineering such as control theory, signal and
image processing, polymer rheology, regular variation in thermodynamics, biophysics,
aerodynamics, and damping [5, 36]. Many researchers studied the existence and stabil-
ity theory for differential equations with a variety of boundary conditions, for instance,
see the papers [1, 9–11, 16, 19–21, 26, 33, 42]. For example, Hua, Cong, and Cheng [8]
studied equation (1.2) in 2012, which is the existence and uniqueness of solutions for the
periodic-integrable boundary value problem of second order differential equations

⎧
⎪⎪⎨

⎪⎪⎩

(p(t)x′(t))′ + f (t, x(t)) = 0,

x(0) = x(T),
∫ T

0 x(s) ds = 0,

(1.2)

where p(t) ∈ C(R, R) is a given T-periodic function in t ∈ R, and p(t) > 0. f ∈ C(R × R, R) is
T-periodic in t.
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Finally, we found that the current main research results are focused on ordinary impul-
sive differential equations, and few scholars have studied random impulsive differential
equations. Therefore, based on the importance of random impulsive differential equa-
tions, we have carried out research on them. Besides, we found that many researchers
investigated the normal impulsive differential equations and the boundary value problem
of the equations. But there are fewer people who studied the boundary value problem
of Sturm–Liouville type differential equations with random impulses and the upper and
lower solutions of this kind of equation. In this paper, we discuss the Sturm–Liouville type
differential equations with random impulses and boundary value problems, and we derive
the Green function (the researchers gave the Green function of the normal impulsive dif-
ferential equations [4, 7]) of the equations with the random impulses which has never
been studied in the past. At the same time, we use the upper and lower solution method
to construct the monotone iterative sequence converging to the maximum and minimum
solutions of the equation and prove their convergence.

The rest of the paper is organized as follows: in Sect. 2, we introduce some notations and
necessary preliminaries to give an idea of some important definitions and lemmas. And
the Green function of the random impulsive differential equations is derived. In Sect. 3,
we use Dhage’s fixed point theorem to study the existence of the solutions of equation
(2.1), and then the existence of solutions of general second order nonlinear random im-
pulsive differential equations with boundary value problems is given. In Sect. 4, we use the
upper and lower solution method to give the monotonic iterative convergent sequence of
the generalized Sturm–Liouville differential equation with random impulses. Finally, two
practical examples are given in Sect. 5 to verify the correctness of the theorem.

2 Preliminaries
In this article, we investigate the solution of the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

Lx = f (t, x(t)), t ∈ J , t �= ξk , k = 1, 2, 3, . . . ,

x(ξ+
k ) = bk(τk)x(ξ–

k ), k = 1, 2, 3, . . . ,

a11x(0) – a12x′(0) = a21x(1) + a22x′(1) = 0,

(2.1)

where L is the Sturm–Liouville operator defined as Lu(t) = –(p(t)u′(t))′ + q(t)u(t). Let X
be a Banach space and � be a sample space. Assume that τk is a random variable defined
from � to Dk := (0, dk) for k = 1, 2, . . . , where 0 < dk < ∞. Furthermore, assume that τi and
τj are independent from each other when i �= j for i, j = 1, 2, . . . u(t) is a stochastic process
taking values in X. For the sake of simplicity, we denote J = [0, 1]. C = C(J , R) is the set
of all the stochastic processes mapping J into R. f : [J , C] → R is a continuous function.
ξk = ξk–1 + τk for k = 1, 2, . . . , and ξ0 = 0. Obviously, 0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · , i.e., ξk

forms a strictly increasing sequence. bk : Dk → R for each k = 1, 2, . . . The convergence is
under the meaning of the orbit, u(ξ–

k ) = limt↑ξk u(t). p(t) and q(t) are positive continuous
functions mapping J = [0, 1] into R+ = [0, +∞]. aij are positive constants for i, j = 1, 2.

Denote by {Wt , t ∈ [0, 1]} the simple counting process generated by {ξk}k∈N , it is to
say that {Wt ≥ n} = {ξn ≤ t} and denote by F the σ -algebra generated by {Wt , t ∈ J},
then {�,F , P} is a probability space. Define by Lp = Lp(�,F , R) the Hilbert space of all
F-measurable, pth integrable random variables with values in R.
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‖ · ‖ is any norm of R, and the expectation of the random variable x is defined as
E(x) =

∫

�
x dP < ∞. Then we introduce the space PC = PC(J , Lp) := {u(t) : u(t) is strongly

measurable, pth integrable random process from J into Lp, and u(t) is continuously differ-
entiable when t ∈ J \ {ξ1, ξ2, . . .} and left continuous when t ∈ J}. It is easy to see that PC is
a Banach space with the norm

∥
∥u(t)

∥
∥

PC =
(

sup
t∈J

E
∥
∥u(t)

∥
∥2
) 1

2 .

We use the following notations: Pcl(R) = {Y ⊆ R: Y is a closed set}, Pbd(R) = {Y ⊆ R: Y is
a bounded set}, Pcp(R) = {Y ⊆ R: Y is a compact set}, Pcv(R) = {Y ⊆ R: Y is a convex set}.

Definition 2.1
• The operator A is called upper semi-continuous (u.s.c.) on R if, for each open set V of

R containing A(x0), there exists an open neighborhood N of x0 such that A(N) ⊆ V .
• A is closed graph if there exists a sequence xn → x∗, yn → y∗, yn = Axn, then we can

imply y∗ = Ax∗.
• A is called a completely continuous operator if A is a bounded linear operator and for

every xn ⇀ x∗, we can get Axn → Ax∗.
• A is called a compact operator if A is a linear operator and A(V ) is compact for every

V ∈ Pbd(R).

Lemma 2.1 ([32]) Suppose that (X ,‖·‖) is a normed linear space, then the set A is compact
if and only if it is self-column compact.

Lemma 2.2 (Resonance theorem; [39]) Suppose that X is a Banach space, Y is a linear
normed space (B∗ space), if W is a subset of all bounded linear operators from X to Y
such that supA∈W ‖Ax‖ < ∞, ∀x ∈ X , then there exists a constant M such that ‖A‖ ≤ M,
∀A ∈ W .

Theorem 2.1 If A is a compact operator, then A is a completely continuous operator.

Proof Suppose xn ⇀ x∗, we use proof by contradiction. If Axn does not converge to y =
Ax∗, then there exist ε0 > 0 and {ni} such that ‖Axni – Ax∗‖ ≥ ε0. From Lemma 2.2, we can
know that {xn} is bounded. Combining that A is compact, we can get a subsequence from
{xni}, we write it as {xnik

} such that Axnik
→ z, but for every y∗ ∈ Y∗ (Y∗ is the conjugate

space of Y), 〈y∗, Axnik
– y〉 = 〈A∗y∗, xnik

– x∗〉 → 0, which implies Axnik
⇀ y, then y = z,

which is a contradiction. The proof is completed. �

Definition 2.2 Suppose that T is a linear operator from X to Y . D(T) is the definitional
domain of T , T is called closed if xn ∈ D(T), xn → x, and Txn → y, then we can imply
x ∈ D(T) and y = Tx.

Remark 2.1 From the closed graph theorem, we can easily know that if A is a completely
continuous operator, then A is u.s.c. if and only if A is a closed graph.

Theorem 2.2 (Dhage’s fixed point theorem) Let X be a Banach space, A : X → Pbd,cl,cv(R),
B : X → Pcl,cv(R) are two operators satisfying:
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(i) A is contraction,
(ii) B is u.s.c. and completely continuous.

Then either
(a) the operator inclusion x ∈ Ax + Bx has a solution for λ = 1 or
(b) the set U = {u ∈ X : u ∈ λAu + λBu, 0 ≤ λ ≤ 1} is unbounded.

Theorem 2.3 The solution of equation (2.1) is equivalent to the solution of the following
integral equation:

u(t) =
∫ 1

0
G(t, s)

(
–q(s)u(s) + f

(
s, u(s)

))
ds

+
∞∑

k=1

[
W (t, k)u(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .), (2.2)

where A is the set of all the sample orbits and IA(x) is the index function defined as

IA(t) =

⎧
⎨

⎩

1 t ∈ A,

0 t /∈ A,
(2.3)

G(t, s) =

⎧
⎨

⎩

1
|Q| (a12 + a11p(0)

∫ s
0

1
p(τ ) dτ )(a22

1
p(1) + a21

∫ 1
t

1
p(τ ) dτ ) s < t,

1
|Q| (a12 + a11p(0)

∫ t
0

1
p(τ ) dτ )(a22

1
p(1) + a21

∫ 1
s

1
p(τ ) dτ ) s ≥ t,

(2.4)

W (t, k) =

⎧
⎨

⎩

1
|Q| a11p(0)(a21

∫ 1
t

1
p(τ ) dτ + a22

1
p(1) )(bk(τk) – 1) 0 < ξk < t < 1,

– 1
|Q| a21p(0)(a11

∫ t
0

1
p(τ ) dτ + a12

1
p(0) )(bk(τk) – 1) 0 < t ≤ ξk < 1,

(2.5)

and

Q =

[
a11 –a12

a21 a21
∫ 1

0
p(0)
p(s) ds + a22

p(0)
p(1)

]

. (2.6)

Proof Suppose that ξ1, ξ2, . . . is a sample orbit. Thus, when t ∈ (0, ξ1], we have

(
p(t)u′(t)

)′ = q(t)u(t) – f
(
t, u(t)

)
,

u′(t) =
1

p(t)
p(0)u′(0) +

1
p(t)

∫ t

0
q(s)u(s) ds –

1
p(t)

∫ t

0
f
(
s, u(s)

)
ds,

u(t) = u(0) + p(0)u′(0)
∫ t

0

1
p(s)

ds +
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ .

When t ∈ (ξ1, ξ2], in the same way, we have

u′(t) =
1

p(t)
p(ξ1)u′(ξ1) +

1
p(t)

∫ t

ξ1

q(s)u(s) ds –
1

p(t)

∫ t

ξ1

f
(
s, u(s)

)
ds.
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The first derivative of this function has no impulses, so we can know

u(t) = u
(
ξ+

1
)

+ p(ξ1)u′(ξ1)
∫ t

ξ1

1
p(s)

ds +
∫ t

ξ1

1
p(τ )

∫ τ

ξ1

q(s)u(s) ds dτ

–
∫ t

ξ1

1
p(τ )

∫ τ

ξ1

f
(
s, u(s)

)
ds dτ

= u
(
ξ+

1
)

+
[

p(0)u′(0) +
∫ ξ1

0
q(s)u(s) ds –

∫ ξ1

0
f
(
s, u(s)

)
ds
]∫ t

ξ1

1
p(s)

ds

+
∫ t

ξ1

1
p(τ )

∫ τ

ξ1

q(s)u(s) ds dτ –
∫ t

ξ1

1
p(τ )

∫ τ

ξ1

f
(
s, u(s)

)
ds dτ .

Combining these two equations, we have

u(t) = u(0) + u
(
ξ+

1
)

– u(ξ1) + p(0)u′(0)
∫ t

0

1
p(s)

ds

+
∫ t

ξ1

1
p(s)

ds
∫ ξ1

0
q(s)u(s) ds +

∫ t

ξ1

1
p(τ )

∫ τ

ξ1

q(s)u(s) ds dτ

+
∫ ξ1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ –

[∫ t

ξ1

1
p(s)

ds
∫ ξ1

0
f
(
s, u(s)

)
ds

+
∫ t

ξ1

1
p(τ )

∫ τ

ξ1

f
(
s, u(s)

)
ds dτ +

∫ ξ1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ

]

.

Combining with the identity

∫ t

ξ1

1
p(s)

ds
∫ ξ1

0
q(s)u(s) ds =

∫ t

ξ1

1
p(τ )

∫ ξ1

0
q(s)u(s) ds dτ ,

we can get

u(t) = u(0) + p(0)u′(0)
∫ t

0

1
p(s)

ds +
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ + u

(
ξ+

1
)

– u(ξ1),

u′(t) =
1

p(t)
p(0)u′(0) +

1
p(t)

∫ t

0
q(s)u(s) ds –

1
p(t)

∫ t

0
f
(
s, u(s)

)
ds.

Suppose when t ∈ (ξk , ξk+1]

u(t) = u(0) + p(0)u′(0)
∫ t

0

1
p(s)

ds +
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

k∑

n=1

[
u
(
ξ+

n
)

– u(ξn)
]
.
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Then, using the same way, we can get when t ∈ (ξk+1, ξk+2],

u(t) = u(0) + p(0)u′(0)
∫ t

0

1
p(s)

ds +
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

k+1∑

n=1

[
u
(
ξ+

n
)

– u(ξn)
]
.

So, using the mathematical induction, we can get

u(t) =
∞∑

n=0

{

u(0) + p(0)u′(0)
∫ t

0

1
p(s)

ds +
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

∑

0<ξk <t

[
u
(
ξ+

k
)

– u(ξk)
]
}

I(ξn ,ξn+1](t)

and

u′(t) =
1

p(t)
p(0)u′(0) +

1
p(t)

∫ t

0
q(s)u(s) ds –

1
p(t)

∫ t

0
f
(
s, u(s)

)
ds.

It is easy to see that

u(1) = u(0) + p(0)u′(0)
∫ 1

0

1
p(s)

ds +
∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]
,

u′(1) =
1

p(1)
p(0)u′(0) +

1
p(1)

∫ 1

0
q(s)u(s) ds –

1
p(1)

∫ 1

0
f
(
s, u(s)

)
ds.

Plug in the boundary value conditions, we can get

a11u(0) – a12u′(0) = 0,

a21u(0) +
[

a21p(0)
∫ 1

0

1
p(s)

ds + a22
p(0)
p(1)

]

u′(0)

= –

[

a21

(∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]
)

+ a22

(
1

p(1)

∫ 1

0
q(s)u(s) ds –

1
p(1)

∫ 1

0
f
(
s, u(s)

)
ds
)]

.

Then we define the matrix Q as

Q =

[
a11 –a12

a21 a21
∫ 1

0
p(0)
p(s) ds + a22

p(0)
p(1)

]

.
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So, the solution of the above equation group is

u(0) =
1

|Q|

∣
∣
∣
∣
∣

–a12 0
a21

∫ 1
0

p(0)
p(s) ds + a22

p(0)
p(1) ζ

∣
∣
∣
∣
∣
, u′(0) =

1
|Q|

∣
∣
∣
∣
∣

0 a11

ζ a21

∣
∣
∣
∣
∣
,

where ζ is defined as

ζ =

[

a21

(∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]
)

+ a22

(
1

p(1)

∫ 1

0
q(s)u(s) ds –

1
p(1)

∫ 1

0
f
(
s, u(s)

)
ds
)]

.

So, we can write u(t) as

u(t) =
1

|Q|

{

–a12a21

(∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]
)

– a12a22

(
1

p(1)

∫ 1

0
q(s)u(s) ds –

1
p(1)

∫ 1

0
f
(
s, u(s)

)
ds
)

–
∫ t

0

1
p(s)

dsp(0)

[

a11a21

(∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ +

∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]
)

+ a11a22

(
1

p(1)

∫ 1

0
q(s)u(s) ds –

1
p(1)

∫ 1

0
f
(
s, u(s)

)
ds
)]}

+
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ –

∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ

+
∑

0<ξk<t

[
u
(
ξ+

k
)

– u(ξk)
]

=
1

|Q|
[

–a12a21

∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

– a12a22
1

p(1)

∫ 1

0
q(s)u(s) ds

– a11a21p(0)
∫ t

0

1
p(s)

ds
∫ 1

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

–
p(0)
p(1)

a11a22

∫ 1

0
q(s)u(s) ds

+ |Q|
∫ t

0

1
p(τ )

∫ τ

0
q(s)u(s) ds dτ

]
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+
1

|Q|
[

a12a21

∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ

+ a12a22
1

p(1)

∫ 1

0
f
(
s, u(s)

)
ds

+ a11a21p(0)
∫ t

0

1
p(s)

ds
∫ 1

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ

+ a11a22
p(0)
p(1)

∫ t

0

1
p(s)

ds
∫ 1

0
f
(
s, u(s)

)
ds

– |Q|
∫ t

0

1
p(τ )

∫ τ

0
f
(
s, u(s)

)
ds dτ

]

+
1

|Q|

[

–a12a21

∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]

– a11a21p(0)
∫ t

0

1
p(s)

ds
∞∑

k=1

[
u
(
ξ+

k
)

– u(ξk)
]

+ |Q|
∑

0<ξk<t

[
u
(
ξ+

k
)

– u(ξk)
]
]

= –
∫ 1

0
G(t, s)q(s)u(s) ds +

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds +

∞∑

k=1

W (t, k)u(ξk).

And we have completed the proof of Theorem 2.3. �

Remark 2.2 We can see that G(t, s) is a positive continuous function of t and s.

Remark 2.3 Using the same way, we can prove that the solution of the equation

⎧
⎪⎪⎨

⎪⎪⎩

–x′′(t) = f (t, x(t), x′(t)), t ∈ J \ {ξ1, ξ2, . . .},
x(ξ+

k ) = bk(τk)x(ξk), k = 1, 2, 3, . . . ,

a11x(0) – a12x′(0) = a21x(1) + a22x′(1) = 0,

(2.7)

is equivalent to the solution of the following integral equation:

x(t) =
∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

[
W (t, k)x(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .), (2.8)

where

G(t, s) =

⎧
⎨

⎩

1
|Q| (a11s + a12)(a21(1 – t) + a22) s < t,
1

|Q| (a11t + a12)(a21(1 – s) + a22) s ≥ t,
(2.9)

W (t, k) =

⎧
⎨

⎩

1
|Q| a11(a21(1 – t) + a22)(bk(τk) – 1) 0 < ξk < t < 1,

– 1
|Q| a21(a11t + a12)(bk(τk) – 1) 0 < t ≤ ξk < 1,

(2.10)
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and

|Q| =

∣
∣
∣
∣
∣

a11 –a12

a21 a21 + a22

∣
∣
∣
∣
∣

= a11a21 + a11a22 + a12a21. (2.11)

Definition 2.3 Define the operator � : PC(J , L2) → PC(J , L2) such that

�u =
∫ 1

0
G(t, s)

[
f
(
s, u(s)

)
– q(s)u(s)

]
ds +

∞∑

k=1

[
W (t, k)u(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .). (2.12)

Theorem 2.4 (Operator decomposition theorem) Suppose that X and Y are two Banach
spaces, T is an operator from X to Y . u(t) : � →X is a functional, {�i} is a division of �,
it is to say that

⋃
i∈I �i = �, and �i and �j have no element in common for every i, j ∈ I ,

i �= j, where I is an arbitrary set. Then u(t) is the fixed point of T if and only if, for every
i ∈ I , ui(t) is the fixed point of T , where the definition domain of ui(t) is �i and ui(t) ≡ u(t)
when t ∈ �i.

3 The existence of solutions
In this section, we list the following basic assumptions of this paper and prove our main
results.

(H1): There exists a constant M such that, for each u1, u2 ∈ PC(J , L2),

∥
∥f

(
t, u1(t)

)
– f

(
t, u2(t)

)∥
∥ ≤ M

∥
∥u1(t) – u2(t)

∥
∥.

(H2): There exists a constant η2 such that

sup
k,ω

‖bk(τk) – 1‖
E‖bk(τk) – 1‖ ≤ η2 < ∞.

(H3): {E‖bk(τk) – 1‖} is a convergent series, and

∞∑

k=1

sup
ω

∥
∥bk(τk) – 1

∥
∥ ≤ η3 < ∞,

where η3 is a constant.
(H4): There exists a constant Mf such that, for each u ∈ PC(J , L2) and t ∈ J ,

∥
∥f

(
t, u(t)

)∥
∥

PC ≤ Mf
(∥
∥u(t)

∥
∥

PC + 1
)
.

(H5): Suppose

η0 =
1

|Q|
(

a12 + a11p(0)
∫ 1

0

1
p(τ )

dτ

)(

a22
1

p(1)
+ a21

∫ 1

0

1
p(τ )

dτ

)

,

C1 = max

{
1

|Q|a11p(0)
(

a21

∫ 1

0

1
p(τ )

dτ + a22
1

p(1)

)

,

1
|Q|a21p(0)

(

a11

∫ 1

0

1
p(τ )

dτ + a12
1

p(0)

)}

,
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Mq = sup
t∈J

∥
∥q(t)

∥
∥,

then they should satisfy the following equalities:

4η2
0M2

q + 4η2
0M2

f + 2C2
1η2η

2
3 < 1

and

η0M < 1.

Theorem 3.1 If conditions (H1) ∼ (H5) are met, equation (2.1) has a solution u(t) in
PC(J , L2) which satisfies

∥
∥u(t)

∥
∥

PC ≤
4η2

0M2
f + 2η0Mf

√
1 – 4η2

0M2
q – 2C2

1η2η
2
3

1 – (4η2
0M2

q + 4η2
0M2

f + 2C2
1η2η

2
3)

.

Proof First of all, we can decompose the operator � into A and B, that is to say �u(t) =
Au(t) + Bu(t) for every u(t) ∈ PC(J , L2). The operators A and B are defined as

Au =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds,

Bu = –
∫ 1

0
G(t, s)q(s)u(s) ds +

∞∑

k=1

[
W (t, k)x(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .).

It is easy to see that B is a linear operator, and we can easily prove that the solution of
equation (2.1) is equivalent to the fixed point of the operator � = A + B. Then we will
prove Theorem 3.1 in six steps.

Step (1):
A is a single-valued operator, so Au ∈ Pcl,cv(R). Then we prove that, for every u ∈ Bq =
{u(t) : ‖u(t)‖PC ≤ q}, ‖Au(t)‖PC ≤ η1, where η1 is a constant.

G(t, s) ≤ 1
|Q|

(

a12 + a11p(0)
∫ 1

0

1
p(τ )

dτ

)(

a22
1

p(1)
+ a21

∫ 1

0

1
p(τ )

dτ

)

= η0.

Hence,

E‖Au‖2 ≤ E
(∫ 1

0

∥
∥G(t, s)f

(
s, u(s)

)∥
∥ds

)2

≤ E
[∫ 1

0

∥
∥G(t, s)

∥
∥2 ds

∫ 1

0

∥
∥f

(
s, u(s)

)∥
∥2 ds

]

≤ η2
0E

[∫ 1

0

∥
∥f

(
s, u(s)

)∥
∥2 ds

]

≤ η2
0

∫ 1

0

∥
∥f

(
s, u(s)

)∥
∥2

PC ds

≤ η2
0M2

f (q + 1)2 = η2
1.
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Step (2):
We prove that A is a contraction.

‖Au1 – Au2‖2 =
∥
∥
∥
∥

∫ 1

0
G(t, s)

[
f
(
s, u1(s)

)
– f

(
s, u2(s)

)]
ds
∥
∥
∥
∥

2

≤ M2η2
0

∫ 1

0

∥
∥u1(s) – u2(s)

∥
∥2 ds,

E‖Au1 – Au2‖2 ≤ M2η2
0

∫ 1

0

∫

�

∥
∥u1(s) – u2(s)

∥
∥2 dμds

≤ M2η2
0 sup

t∈J
E
∥
∥u1(t) – u2(t)

∥
∥2.

So, we get

‖Au1 – Au2‖PC ≤ Mη0
∥
∥u1(t) – u2(t)

∥
∥

PC ,

and we can easily know that A is a contraction.
Step (3):

It is easy to see that B is a single-valued operator, so for each u(t) ∈ PC(J , L2), Bu ∈ Pcl,cv(R).
Next, we prove, for every u(t) ∈ Bq, that Bu is bounded.

Bu(t) = –
∫ 1

0
G(t, s)q(s)u(s) ds +

∞∑

k=1

[
W (t, k)x(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .),

‖Bu‖2 ≤ 2
∫ 1

0

∥
∥G(t, s)q(s)u(s)

∥
∥2 ds + 2

∥
∥
∥
∥
∥

∞∑

k=1

W (t, k)u(ξk)

∥
∥
∥
∥
∥

2

≤ 2η2
0

∫ 1

0

∥
∥q(s)u(s)

∥
∥2 ds + 2

∥
∥
∥
∥
∥

∞∑

k=1

W (t, k)u(ξk)

∥
∥
∥
∥
∥

2

.

And based on the second mean value theorem of integrals, we know, for each k, that
there exists ωk ∈ � such that

E

∥
∥
∥
∥
∥

∞∑

k=1

W (t, k)u(ξk)

∥
∥
∥
∥
∥

2

=
∫

�

∥
∥
∥
∥
∥

∞∑

k=1

W (t, k)u(ξk)

∥
∥
∥
∥
∥

2

dμ

=
∫

�

∥
∥
∥
∥
∥

∞∑

k=1

W (t, k)u(ξk)

∥
∥
∥
∥
∥

dμ

∥
∥
∥
∥
∥

∞∑

k=1

W (t, k)(ωk)u
(
ξk(ωk)

)
∥
∥
∥
∥
∥

≤ C2
1

∫

�

∥
∥
∥
∥
∥

∞∑

k=1

(
bk(τk) – 1

)
u(ξk)

∥
∥
∥
∥
∥

dμ

∥
∥
∥
∥
∥

∞∑

k=1

(
bk(τk) – 1

)
u
(
ξk(ωk)

)
∥
∥
∥
∥
∥

≤ C2
1η3

[ ∞∑

k=1

supωk
‖bk(τk(ωk)) – 1‖

∫

�
‖bk(τk) – 1‖dμ

∫

�

∥
∥bk(τk) – 1

∥
∥dμ

∫

�

∥
∥u(ξk)

∥
∥dμ

]

× max
k

∥
∥u

(
ξk(ωk)

)∥
∥
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≤ C2
1η2η

2
3 max

k

∫

�

∥
∥u(ξk)

∥
∥dμ

∥
∥u

(
ξk(ωk)

)∥
∥

≤ C2
1η2η

2
3 max

k

∫

�

∥
∥u(ξk)

∥
∥2 dμ

≤ C2
1η2η

2
3
∥
∥u(ξk)

∥
∥2

PC .

Based on the above equation, we can easily know that Bu is bounded for each u(t) ∈ Bq.
Step (4):

Define B(Bq) = {Bu(t) : u(t) ∈ Bq}, then we prove that B(Bq) is equicontinuous. Based
on Theorem 2.4, we only need to prove for each (ξk , ξk+1], k = 0, 1, 2, . . . and every ε > 0
that there exists δ > 0 such that, for any t1, t2 ∈ (ξk , ξk+1], ‖t1 – t2‖ < δ, we have ‖Bu(t1) –
Bu(t2)‖PC < ε for every u(t) ∈ Bq.

∥
∥(Bu)(t1) – (Bu)(t2)

∥
∥2

=

∥
∥
∥
∥
∥

∫ 1

0

[
G(t1, s) – G(t2, s)

](
–q(s)u(s)

)
ds

+
∞∑

n=1

[
W (t1, n) – W (t2, n)

]
u(ξn)IA(·)

∥
∥
∥
∥
∥

2

≤ 2
(∫ 1

0

∥
∥G(t1, s) – G(t2, s)

∥
∥
∥
∥q(s)u(s)

∥
∥ds

)2

+ 2

∥
∥
∥
∥
∥

∞∑

n=1

[
W (t1, n) – W (t2, n)

]
u(ξn)

∥
∥
∥
∥
∥

2

,

so we have

E
∥
∥(Bu)(t1) – (Bu)(t2)

∥
∥2

≤ 2M2
qq2

∫ 1

0

∥
∥G(t1, s) – G(t2, s)

∥
∥2 ds

+ 2 sup
n,ω

‖W (t1, n) – W (t2, n)‖
∫

�
‖W (t1, n) – W (t2, n)‖dμ

∥
∥u(t)

∥
∥2

PC

×
( ∞∑

n=1

E
∥
∥W (t1, n) – W (t2, n)

∥
∥

)( ∞∑

n=1

sup
ω

∥
∥W (t1, n) – W (t2, n)

∥
∥

)

,

where

∞∑

n=1

∥
∥W (t1, k) – W (t2, k)

∥
∥

≤
∥
∥
∥
∥
∥

1
|Q|a11a21p(0)

∫ t2

t1

1
p(τ )

dτ

k∑

n=1

(
bn(τn) – 1

)
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

1
|Q|a11a21p(0)

∫ t2

t1

1
p(τ )

dτ

∞∑

n=k+1

(
bn(τn) – 1

)
∥
∥
∥
∥
∥
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≤
∥
∥
∥
∥

1
|Q|a11a21p(0)

∫ t2

t1

1
p(τ )

dτ

∥
∥
∥
∥

∞∑

n=1

∥
∥bn(τn) – 1

∥
∥,

hence

∞∑

n=1

E
∥
∥W (t1, n) – W (t2, n)

∥
∥ ≤ η3

∥
∥
∥
∥

1
|Q|a11a21p(0)

∫ t2

t1

1
p(τ )

dτ

∥
∥
∥
∥.

So, combining with the above equations, we have

E
∥
∥(Bu)(t1) – (Bu)(t2)

∥
∥2

≤ 2M2
qq2

∫ 1

0

∥
∥G(t1, s) – G(t2, s)

∥
∥2 ds

+ 2
1

|Q|2 a2
11a2

21p2(0) sup
k,ω

‖bk(τk) – 1‖
∫

�
‖bk(τk) – 1‖dμ

∥
∥u(t)

∥
∥2

PC

(∫ t2

t1

1
p(τ )

dτ

)2

×
( ∞∑

k=1

E
∥
∥bk(τk) – 1

∥
∥dμ

)( ∞∑

n=1

sup
ω

∥
∥bk(τk) – 1

∥
∥

)

≤ 2M2
qq2

∫ 1

0

∥
∥G(t1, s) – G(t2, s)

∥
∥2 ds

+ 2η2η
2
3

1
|Q|2 a2

11a2
21p2(0)

(∫ t2

t1

1
p(τ )

dτ

)2∥
∥u(t)

∥
∥2

PC .

It is easy to see that E‖(Bu)(t1) – (Bu)(t2)‖2 → 0 as |t1 – t2| → 0, so we have proved
that the set is equicontinuous. From step (3) to step (4), combining with the Arzela–Ascoli
theorem, we can easily know that B(Bq) is sequentially compact and B(Bq) is self-listed.
Using Lemma 2.1, we can know that B(Bq) is compact. Combining with Theorem 2.1, we
have proved that B is completely continuous.

Step (5):
We prove that B is u.s.c. Based on Remark 2.1, we only need to prove that for each un(t) →
u∗(t) we have (Bun)(t) → (Bu∗)(t).

∥
∥(Bun)(t) –

(
Bu∗)(t)

∥
∥2

=

∥
∥
∥
∥
∥

∫ 1

0
G(t, s)

[
–q(s)

(
un(s) – u∗(s)

)]
ds +

∞∑

k=1

W (t, k)
[
un(ξk) – u∗(ξk)

]
IA(·)

∥
∥
∥
∥
∥

2

≤ 2η2
0M2

q

∫ 1

0

∥
∥un(s) – u∗(s)

∥
∥2 ds + 2C2

1

∥
∥
∥
∥
∥

∞∑

k=1

(
bk(τk) – 1

)[
un(ξk) – u∗(ξk)

]
∥
∥
∥
∥
∥

2

.

Hence,

E
∥
∥(Bun)(t) –

(
Bu∗)(t)

∥
∥2

≤ 2η2
0M2

q
∥
∥un(s) – u∗(s)

∥
∥2

PC

+ 2C2
1 sup

k,ω

‖bk(τk(ωk)) – 1‖
∫

�
‖bk(τk) – 1‖dμ

∞∑

k=1

∫

�

∥
∥bk(τk) – 1

∥
∥dμ

∫

�

∥
∥un(ξk) – u∗(ξk)

∥
∥dμ
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× max
k

∥
∥un

(
ξk(ωk)

)
– u∗(ξk(ωk)

)∥
∥

∞∑

k=1

sup
ω

∥
∥bk(τk) – 1

∥
∥

≤ 2η2
0M2

q
∥
∥un(s) – u∗(s)

∥
∥2

PC + 2C2
1η2η

2
3
∥
∥un(s) – u∗(s)

∥
∥2

PC .

So, we have proved that B is u.s.c.
Step (6):

We prove that the set U = {u(t) : u(t) ∈ λ(Au)(t) + λ(Bu)(t), 0 ≤ λ ≤ 1} is bounded. If u(t) ∈
U , then we have

u(t) = λ

∫ 1

0
G(t, s)

[
–q(s)u(s) + f

(
s, u(s)

)]
ds + λ

∞∑

k=1

[
W (t, k)u(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .),

∥
∥u(t)

∥
∥2 ≤ 2λ2

(∫ 1

0

∥
∥G(t, s)

[
–q(s)u(s) + f

(
s, u(s)

)]∥
∥ds

)2

+ 2λ2

( ∞∑

k=1

∥
∥W (t, k)u(ξk)

∥
∥

)2

≤ 4λ2η2
0M2

q

∫ 1

0

∥
∥u(s)

∥
∥2 ds + 4λ2η2

0

∫ 1

0

∥
∥f

(
s, u(s)

)∥
∥2 ds

+ 2λ2C2
1

∥
∥
∥
∥
∥

∞∑

k=1

(
bk(τk) – 1

)
u(ξk)

∥
∥
∥
∥
∥

2

,

hence

E
∥
∥u(t)

∥
∥2 ≤ 4λ2η2

0M2
q
∥
∥u(s)

∥
∥2

PC + 4λ2η2
0

∫ 1

0
E
∥
∥f

(
s, u(s)

)∥
∥2 ds

+ 2λ2C2
1η2

∥
∥u(ξk)

∥
∥2

PC

∞∑

k=1

∫

�

∥
∥bk(τk) – 1

∥
∥dμ

∞∑

k=1

sup
ω

∥
∥bk

(
τk(ω)

)
– 1

∥
∥

≤ 4λ2η2
0M2

q
∥
∥u(s)

∥
∥2

PC + 4λ2η2
0M2

f
(∥
∥u(s)

∥
∥

PC + 1
)2

+ 2λ2C2
1η2η

2
3
∥
∥u(t)

∥
∥2

PC .

By simplifying, we can get

[
1 –

(
4λ2η2

0M2
q + 4λ2η2

0M2
f + 2λ2C2

1η2η
2
3
)]‖u‖2

PC

– 8λ2η2
0M2

f ‖u‖PC – 4λ2η2
0M2

f ≤ 0.

This is a quadratic function, and

� = 16λ2η2
0M2

f
(
1 – 4λ2η2

0M2
q – 2λ2C2

1η2η
2
3
) ≥ 0.

Then we can get

∥
∥u(t)

∥
∥

PC ≤
4λ2η2

0M2
f + 2λη0Mf

√
1 – 4λ2η2

0M2
q – 2λ2C2

1η2η
2
3

1 – (4λ2η2
0M2

q + 4λ2η2
0M2

f + 2λ2C2
1η2η

2
3)
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=
4η2

0M2
f + 2η0Mf

√
1
λ2 – 4η2

0M2
q – 2C2

1η2η
2
3

1
λ2 – (4η2

0M2
q + 4η2

0M2
f + 2C2

1η2η
2
3)

≤
4η2

0M2
f + 2η0Mf

√
1 – 4η2

0M2
q – 2C2

1η2η
2
3

1 – (4η2
0M2

q + 4η2
0M2

f + 2C2
1η2η

2
3)

.

So, the set U is bounded. As a consequence of Theorem 2.2, we deduce that A + B has a
fixed point u(t) which is a solution of equation (2.1), and we have completed the proof of
Theorem 3.1. �

Using the same way, we can prove the following theorem.
(H6): There exists a constant M such that, for each x1, x2 ∈ PC(J , L2),

∥
∥f

(
t, x1, x′

1
)

– f
(
t, x2, x′

2
)∥
∥ ≤ M‖x1 – x2‖.

(H7): There exists a constant Mf such that, for each u ∈ PC(J , L2) and t ∈ J ,

∥
∥f

(
t, x(t), x′(t)

)∥
∥ ≤ Mf

(∥
∥x(t)

∥
∥

PC + 1
)
.

(H8): Suppose

η0 =
(a11 + a12)(a21 + a22)

a11a21 + a12a21 + a11a22
,

C1 =
max{a11(a21 + a22), a21(a11 + a12)}

a11a21 + a12a21 + a11a22
,

then they should satisfy the following equalities:

4η2
0M2

f + 2C2
1η2η

2
3 < 1,

and

η0M < 1.

Theorem 3.2 If conditions (H2) ∼ (H3) and (H6) ∼ (H8) are met, then equation (2.7) has
a solution x(t) in PC(J , L2) which satisfies

∥
∥x(t)

∥
∥

PC ≤
4η2

0M2
f + 2η0Mf

√

1 – 2C2
1η2η

2
3

1 – (+4η2
0M2

f + 2C2
1η2η

2
3)

.

4 The upper and lower solutions
In this section, we consider the upper and lower solutions of the following generalized
Sturm–Liouville differential equation with random impulses:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) = f (t, u(t), u′(t)), t ∈ J ′,

u(ξ+
k ) = bk(τk)u(ξk), k = 1, 2, 3, . . . ,

a11u(0) – a12u′(0) = a21u(1) + a22u′(1) = 0.

(4.1)
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The notation in this equation is the same as the previous definition. First of all, we con-
sider the following linear random impulsive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) = f (t, h(t), h′(t)) – M(u(t) – h(t)), t ∈ J ′,

u(ξ+
k ) – u(ξk) = (bk(τk) – 1)h(ξk), k = 1, 2, 3, . . . ,

a11u(0) – a12u′(0) = a21u(1) + a22u′(1) = 0,

(4.2)

where h(t) ∈ PC(J , L2) is a stochastic process. Based on Theorem 2.3, we can get that the
solution of equation (4.2) is equivalent to the solution of the following integral equation:

u(t) = –M
∫ 1

0
G(t, s)u(s) ds +

∫ 1

0
G(t, s)

[
f
(
s, h(s), h′(s)

)
+ Mh(s)

]
ds

+
∞∑

k=1

[
W (t, k)h(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .),

where G(t, s) and W (t, k) are defined as (2.9) and (2.10).
Then we define the operator � : PC(J , L2) → PC(J , L2) as

�h = –M
∫ 1

0
G(t, s)�h(s) ds +

∫ 1

0
G(t, s)

[
f
(
s, h(s), h′(s)

)
+ Mh(s)

]
ds

+
∞∑

k=1

[
W (t, k)h(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .),

we can easily prove that h(t) is the solution of the equation if and only if it is the fixed point
of the operator �.

Definition 4.1 ω0(t) ∈ PC(J , L2) is called an upper solution of equation (4.1) if ω0(t) sat-
isfies the following inequality:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–ω′′
0(t) ≥ f (t,ω0(t),ω′

0(t)),

ω0(ξ+
k ) ≥ bk(τk)ω0(ξk),

a11ω0(0) – a12ω
′
0(0) ≥ x0,

a21ω0(1) + a22ω
′
0(1) ≥ x∗

0.

If the above inequalities are reversed, we call it a lower solution of equation (4.1).

Lemma 4.1 ([32]) Suppose that E is a semi-ordered Banach space. For x0, y0 ∈ E, x0 ≤ y0,
and D = [x0(t), y0(t)], A : D → E is an operator. Assume that the following conditions are
satisfied:

(i) A is an increasing operator,
(ii) x0 is the lower solution of A and y0 is the upper solution of A,

(iii) A is a continuous operator,
(iv) A(D) is a relatively compact set of columns in E.
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Then A has a maximum fixed point and a minimum fixed point in D. Let x0 and y0 be
the initial conditions. We then have the iteration sequences

xn = Axn–1, yn = Ayn–1, n = 1, 2, . . . .

Thus,

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0,

and

xn → x∗, yn → y∗.

(H9) v0(t) is the lower solution of equation (4.1) and ω0(t) is the upper solution of equa-
tion (4.1), and they meet the following inequality:

v0(t) ≤ ω0(t)

for any t ∈ J .
(H10)

inf
k

{
bk(τk) – 1 : k ∈ N

}
> 0.

Theorem 4.1 If conditions (H2) ∼ (H3), (H6) ∼ (H10) are met, then equation (4.1) has
the maximum solution u∗(t) and the minimum solution u∗(t) in [v0(t),ω0(t)] ∩ PC(J , L2).
ωn(t) = �ωn–1(t) uniformly converges to u∗(t), vn(t) = �vn–1(t) uniformly converges to u∗(t),
where n = 1, 2, . . . .

Proof First of all, we prove that v0 is the lower solution of �. It is to say that we should
prove that v0(t) ≤ �v0(t) = v1(t). We can easily prove this when there is no pulse (for more
details, see [34]). When the equation is equipped with the random impulses, we have

v0
(
ξ+

k
)

– v0(ξk) ≤ (
bk(τk) – 1

)
v0(ξk) = v1

(
ξ+

k
)

– v1(ξk),

combining with v1(ξk) ≥ v0(ξk), we can get v1(ξ+
k ) ≥ v0(ξ+

k ). So, we have proved v0(t) ≤
�v0(t).

Then we prove that it is an increasing operator. It is to say that, for any h1(t) ≤ h2(t),
we have �h1(t) ≤ �h2(t). When there is no pulse, we can easily prove this conclusion (for
more details, see [13]). When there are random impulses, we have

�h1
(
ξ+

k
)

– �h1(ξk) =
(
bk(τk) – 1

)
h1(ξk)

≤ (
bk(τk) – 1

)
h2(ξk) = �h2

(
ξ+

k
)

– �h2(ξk),

so we have proved that �h1(t) ≤ �h2(t).
Based on the proof of Theorem 3.1, we can easily prove that � is a continuous operator

and �([v0,ω0]) is a relatively compact set of columns. Combining with Lemma 4.1, we
complete the proof of Theorem 4.1. �
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In this section, we give some examples to illustrate our main result.

5 Examples
Example 5.1 Consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

–( 9
1.5–t u′(t))′ + 9t

t2+30 u(t) = 1
8 tet sin u(t), t ∈ J \ {ξ1, ξ2, . . .},

x(ξ+
k ) = (√τk + 1)x(ξk), k = 1, 2, . . . ,

x(0) – 1
2 x′(0) = 1

3 x(1) + x′(1) = 0,

(5.1)

where {τk} is a variable sequence, τi and τj are independent from each other for each i �= j.
τk ∼ U(0, 1

4k ), it is to say that the probability density function of τk is

p(x) =

⎧
⎨

⎩

4k x ∈ (0, 1
4k ),

0 others.

Then it is easy to see that {√τk} is also a variable sequence, and for every i �= j, √
τi and√

τj are independent. We can easily get the probability density function of √
τk :

p(x) =

⎧
⎨

⎩

22k+1x x ∈ (0, 1
2k ),

0 others.

Set ξ0 = 0, ξk+1 = ξk + τk+1, obviously, {ξk} is a process with independent increments, and
the impulsive moments {ξk} form a strictly increasing sequence. And we have

ξk ≤ 1
4

+
1
42 + · · · +

1
4k =

1
3

(

1 –
1
4k

)

< 1.

In this example, we define the norm ‖x‖ = |x|. Then we have

η3 =
∞∑

k=1

sup
ωk

∥
∥bk(τk) – 1

∥
∥ =

∞∑

k=1

1
2k = 1,

η2 = sup
k,ω

‖bk(τk) – 1‖
E‖bk(τk) – 1‖ =

1
2k

1
3

1
2k–1

=
3
2

,

|Q| =

∣
∣
∣
∣
∣

a11 –a12

a21 a21
∫ 1

0
p(0)
p(s) ds + a22

p(0)
p(1)

∣
∣
∣
∣
∣

=
13
18

,

η0 =
1

|Q|
(

a12 + a11p(0)
∫ 1

0

1
p(τ )

dτ

)(

a22
1

p(1)
+ a21

∫ 1

0

1
p(τ )

dτ

)

=
35
26

,

and

C1 = max

{
1

|Q|a11p(0)
(

a21

∫ 1

0

1
p(τ )

dτ + a22
1

p(1)

)

,

1
|Q|a21p(0)

(

a11

∫ 1

0

1
p(τ )

dτ + a12
1

p(0)

)}

=
7

13
.
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So we have

η0M =
35

1872
≈ 0.019 < 1,

4η2
0M2

q + 4η2
0M2

f + 2C2
1η2η

2
3 =

739,855,753
841,928,256

≈ 0.879 < 1.

Based on Theorem 3.1, we can know that equation (5.1) has a solution u(t) which satisfies

∥
∥u(t)

∥
∥

PC ≤
4η2

0M2
f + 2η0Mf

√
1 – 4η2

0M2
q – 2C2

1η2η
2
3

1 – (4η2
0M2

q + 4η2
0M2

f + 2C2
1η2η

2
3)

≈ 0.119.

We have completed the proof of the example.

Example 5.2 Now we consider the following second order random impulsive differential
equation with boundary value problems:

⎧
⎪⎪⎨

⎪⎪⎩

–33u′′(t) = et2 u(t) sin u′(t) + t2 + 1
2 t, t ∈ J \ {ξ1, ξ2, . . .},

x(ξ+
k ) = (τk + 1)x(ξk), k = 1, 2, . . . ,

x(0) – x′(0) = 1
7 x(1) + 1

4 x′(1) = 0.

(5.2)

Here we define the norm ‖u‖PC = supt∈J E|u(t)|2. {τk} is a variable sequence and τi and
τj are independent from each other when i �= j. The probability density function of τk is

p(x) =

⎧
⎪⎪⎨

⎪⎪⎩

4k+2x x ∈ [0, 1
2k+2 ),

2k+3 – 4k+2x x ∈ [ 1
2k+2 , 1

2k+1 ),

0 others.

Suppose ξk+1 = ξk + τk+1, k = 0, 1, 2, . . . . Obviously, we have

ξk <
∞∑

n=1

1
2n+1 =

1
2

< 1.

Then we have

η3 =
∞∑

k=1

1
2k+1 =

1
2

,

η2 = sup
k,ω

‖bk(τk) – 1‖
E‖bk(τk) – 1‖ =

1
2k+1

1
2k+2

= 2.

And we can easily get Mf = 1
22 , M = 1

33 ,

η0 =
(a11 + a12)(a21 + a22)

a11a21 + a12a21 + a11a22
=

22
15

,

C1 =
max{a11(a21 + a22), a21(a11 + a12)}

a11a21 + a12a21 + a11a22
=

11
15

.
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Hence, η0M = 2
45 ≈ 0.044 < 1 and 4η2

0M2
f + 2C2

1η2η
2
3 = 5

9 ≈ 0.556 < 1. So, this equation
satisfies all the conditions of Theorem 3.2, which shows that the equation has a solution
satisfying

∥
∥u(t)

∥
∥

PC ≤
4η2

0M2
f + 2η0Mf

√

1 – 2C2
1η2η

2
3

1 – (+4η2
0M2

f + 2C2
1η2η

2
3)

=
9(1 +

√
26)

225
≈ 0.244.

We can easily prove that ω0(t) = 0 is an upper solution and v0(t) = – 1
1+sin t is a lower

solution of equation (5.2) and ω0(t) ≥ v0(t). So, equation (5.2) satisfies all the conditions
of Theorem 4.1. Hence, we can get the extremal solutions of problem (5.2) between v0 and
ω0 by constructing iterative sequences starting from v0 and ω0:

vn(t) = –M
∫ 1

0
G(t, s)vn(s) ds +

∫ 1

0
G(t, s)

[
f
(
s, vn–1(s), v′

n–1(s)
)

+ Mvn–1(s)
]

ds

+
∞∑

k=1

[
W (t, k)vn–1(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .),

ωn(t) = –M
∫ 1

0
G(t, s)ωn(s) ds +

∫ 1

0
G(t, s)

[
f
(
s,ωn–1(s),ω′

n–1(s)
)

+ Mωn–1(s)
]

ds

+
∞∑

k=1

[
W (t, k)ωn–1(ξk)

]
IA(ξ1, ξ2, . . . , ξk , . . .).

We have completed the proof of the example.
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