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Abstract
We investigate the multiplicity of solutions for problems involving the fractional
N-Laplacian. We obtain three theorems depending on the source terms in which the
nonlinearities cross some eigenvalues. We obtain these results by direct
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1 Introduction
In this paper we consider the existence and multiplicity of solutions in W s

0LG(�) ∩ C(�)
for the following fractional N-Laplacian Dirichlet boundary value problems with jumping
nonlinearties;

(–�)s
gu(x) = b(s,g,α)g

(∣∣u(x)
∣∣) u(x)+

|u(x)| – a(s,g,α)g
(∣∣u(x)

∣∣) u(x)–

|u(x)|

+ τg
(∣∣φ(s,g,α)

1 (x)
∣∣) φ

(s,g,α)
1 (x)

|φ(s,g,α)
1 (x)|

,

∫

�

G
(∣∣u(x)

∣∣)dx = α, in �,

u(x) = 0 on ∂�,

(1.1)

where � is a bounded domain of RN with a smooth boundary ∂�, N ≥ 1, 0 < s < 1, α > 0,
g is an odd, strictly increasing continuous function from [0,∞) onto [0,∞) with g(0) = 0
and limt→∞ g(t) = ∞, G(t) =

∫ |t|
0 g(τ ) dτ , t ∈ R, is a N-function, (–�)s

gu(x) is the nonho-
mogeneous fractional N-Laplacian operators defined as: for each x ∈ � and any u in the
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fractional Orlicz–Sobolev space W s
0LG(�),

(–�)s
gu(x) = 2P.V.

∫

�

g
( |u(x) – u(y)|

|x – y|s
)

u(x) – u(y)
|u(x) – u(y)|

dy
|x – y|N+s ,

where P.V. denotes the Cauchy-principle value, u+ = max{u, 0}, u– = – min{u, 0}, τ ∈ R,
a(s,g,α) and b(s,g,α) are real numbers depending on s, g and α such that a(s,g,α) < b(s,g,α), and
φ

(s,g,α)
1 is the first eigenfunction, depending on s, g and α, of the fractional N-Laplacian

eigenvalue problem

(–�)s
gu = λg

(|u|) u
|u| ,

∫

�

G
(|u|)dx = α, in �,

u = 0 on ∂�,
(1.2)

and W s
0LG(�) and N-function will be introduced later.

The fractional Orlicz–Sobolev space and the fractional N-Laplacian operators have been
studied thoroughly both from the point of view of probability and analysis as they proved
to be accurate models to describe different phenomena in Physics, Finance, Image process-
ing and Ecology; see [2, 12, 19] and references therein; and have been researched by some
mathematicians for pure mathematical research and concrete real-world applications in
recent years.

Let g be an odd, strictly increasing continuous function from [0,∞) onto [0,∞), g(0) = 0
and limt→∞ g(t) = ∞. The integral representation

∫ |t|
0 g(τ ) dτ , ∀t ∈ R is an even func-

tion with respect to the variable t ∈ R, which is denoted as G(t). Then, the function
G(t) =

∫ |t|
0 g(τ ) dτ , ∀t ∈ R is a Young function and a N-function. A continuous, convex

function, G : R+ → R+ is a Young function if it is nonnegative, strictly increasing and ad-
mits the integral formulation G(t) =

∫ t
0 g(τ ) dτ , ∀t > 0. (cf. [21]). A continuous, convex

function, G : R → R+ is a N-function if it is even and if it satisfies both limt→0
G(t)

t = 0
and limt→∞ G(t)

t = +∞. Equivalently, G is a N-function if and only if there exists a nonde-
creasing, right continuous function g : [0,∞) → R+ such that g(0) = 0, g(t) is positive for
all t ∈ (0,∞), limt→+∞ g(t) = +∞ and G(t) =

∫ |t|
0 g(τ ) dτ , ∀t ∈ R (cf. [17]). The difference

between a Young function and a N-function is that a Young function admits the integral
formulation

∫ t
0 g(τ ) dτ , ∀t > 0, and a N-function is an even function admitting

∫ |t|
0 g(τ ) dτ ,

∀t ∈ R.
Let � be a bounded domain of RN with a smooth boundary ∂�, N ≥ 1, s ∈ (0, 1) and

p : � × � → (1,∞) be a continuous function with 1 < p(x, y) < ∞. The fractional Sobolev
spaces with variable exponent are defined by

W s,p(x,y)(�) =
{

u ∈ Lp(x,x)(�)|
∫

�

∫

�

|u(x) – u(y)|p(x,y)

λp(x,y)|x – y|N+sp(x,y) dx dy < ∞, for some λ > 0
}

.

Results on the fractional Sobolev spaces with variable exponent and the corresponding
nonlocal equations were obtained in [14]. In this paper, we are trying to relax the growth
condition on W s,p(x,y)(�) and the corresponding operators, and deal with more general-
ized spaces and their corresponding operators on the growth condition than the fractional
Sobolev spaces and their corresponding operators. When we are trying to relax the growth
conditions on the operators, we can not formulate with the fractional Lebesgue spaces and
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the fractional Sobolev spaces W s,p(x,y)(�). We adopt the Orlicz spaces LG(�) associated to
a N-function G defined as

LG(�) =
{

u|u : � → R is a measurable function with

‖u‖LG = sup

{∫

�

uv dx|
∫

�

G∗(|v|)dx ≤ 1
}

< ∞
}

,

where G∗ is the complementary function of G, the fractional Orlicz–Sobolev spaces
W sLG(�) associated to a N-function G and a fractional parameter 0 < s < 1 defined as

W sLG�) =
{

u ∈ LG(�) :
∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N < ∞

}

and their corresponding nonhomogeneous fractional N-Laplacian operators (–�)s
gu(x).

From [7], under the conditions that the Young function G and G∗ satisfy the �2 con-
ditions, which is introduced below in this section, for s ∈ (0, 1), W sLG(�) is a reflex-
ine and separable Banach space. Moreover, C∞

0 (�) is dense in W sLG(�). We also define
W s

0LG(�) as the closure of C∞
0 (�) in W sLG(�). We refer the readers to [13, 18] and the

references therein for the theory of Orlicz and Orlicz–Sobolev spaces. We also refer the
readers to [1, 4, 6, 7, 20] for some results about the fractional Orlicz–Sobolev spaces and
the fractional N-Laplacian operator. In [7], the authors provide the connection between
the fractional-order theories and the Orlicz–Sobolev ones, and define the fractional-order
Orlicz–Sobolev space associated to a Young function and a fractional parameter.

It was proved in [5, 20] that under the �2 condition on G defined as

G(2t) ≤ CG(t) t ≥ T , (1.3)

where C > 0 and T ≥ 0, the fractional N-Laplacian eigenvalue problem (1.2) in W s
0LG(�)∩

C(�) for each energy level α > 0 has a discrete nondecreasing sequence of nonnegative
eigenvalues λ

(s,g,α)
j , j = 1, 2, . . . , obtained by the Ljusternik–Schnirelman principle tending

to ∞ as j → ∞, and the sequence of the corresponding orthonormalized eigenfunctions
φ

(s,g,α)
j , j = 1, 2, . . . . The first eigenvalue λ

(s,g,α)
1 is positive and the eigenfunction φ

(s,g,α)
1 as-

sociated with λ
(s,g,α)
1 does not change sign, and is positive in C(�) and depends on s, g and

α. The set of eigenvalues is closed and the first eigenvalue λ
(s,g,α)
1 is isolated, which will be

proved in Lemma 2.9.
To state our main results we need some properties and give some assumptions: Let G∗

be the function defined by

G∗(t) =
∫ t

0
g–1(τ ) dτ for all τ ≥ 0,

where g–1 is the inverse function of g . The function G∗ is called the complementary func-
tion of G and satisfies

G∗(t) = sup
{

yt – G(y)|y ≥ 0
}

for all t ≥ 0.
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Then, G∗ satisfies that

lim
t→0

G∗(t)
t

= 0, lim
t→∞

G∗(t)
t

= +∞,

i.e., G∗ is a N-function. By Young’s inequality,

xy ≤ G(x) + G∗(y), for all x, y ≥ 0. (1.4)

For the Young function G =
∫ t

0 g(τ ) dτ let us set

g0 = inf
t>0

tg(t)
G(t)

, g0 = sup
t>0

tg(t)
G(t)

. (1.5)

We assume that

1 < g0 ≤ tg(t)
G(t)

≤ g0 < ∞ ∀t ≥ 0. (1.6)

By Proposition 2.3 of [16], it implies that G and G∗ satisfy the �2-condition. We also as-
sume that

G : t ∈ [0,∞) �→ G(
√

t) is convex, (1.7)
∫ 1

0

G–1t

t
N+s

N
dt < ∞ and

∫ ∞

1

G–1t

t
N+s

N
dt = ∞, where 0 < s < 1. (1.8)

We also assume that

1 < g0 ≤ g0 < g∗
0 =

Ng0

N – sg0
. (1.9)

An example of a function satisfying (1.6)–(1.8) is G(t) = tp with 2 ≤ p ≤ Np
N–sp .

Equation (1.1) is characterized as a jumping problem. A jumping problem was first sug-
gested in the suspension-bridge equation as a model of the nonlinear oscillations in the
differential equation

utt + K1uxxxx + K2u+ = W (x) + εf (x, t),

u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0.

This equation represents a bending beam supported by cables under a load f . The constant
K2 represents the restoring force if the cables stretch. The nonlinearity u+ models the fact
that cables resist expansion but do not resist compression. Choi and Jung (cf. [9–11]) and
McKenna and Walter (cf. [15]) investigated the existence and a multiplicity of solutions
for the single nonlinear suspension-bridge equation with Dirichlet boundary conditions.
In [8], the authors investigated the multiplicity of solutions of a semilinear equation

Au + bu+ – au– = f (x) in �,

u = 0 on �,
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where � is a bounded domain in RN , N ≥ 1, with smooth boundary ∂� and A is a second-
order linear partial differential operator when the forcing term is a multiple sφ1, s ∈ R, of
the positive eigenfunction and the nonlinearity crosses eigenvalues.

Since g is an odd, strictly increasing continuous function from [0,∞) onto [0,∞), g(0) =
0 and limt→∞ g(t) = ∞, there exists an inverse function g–1 of g that is also an odd, contin-
uous function from [0,∞) onto [0,∞), g–1(0) = 0 and limt→∞ g–1(t) = ∞. Then, the func-
tion g̃ : t �→ g(|t|) t

|t| is an odd, strictly increasing continuous function from (–∞,∞) onto
(–∞,∞), g̃(0) = g(|t|) t

|t| |t=0 = 0 and limt→±∞ g̃(t) = ±∞. We note that g̃(u)+ = g(|u|) u+

|u| and
g̃(u)– = g(|u|) u–

|u| . Moreover, g̃ has an inverse function g̃–1 that is also an odd, continuous
function from (–∞,∞) onto (–∞,∞), g̃–1(0) = 0 and limt→∞ g̃–1(t) = ∞.

Our main theorems are as follows:

Theorem 1.1 Let 0 < s < 1, sg0 < N , α > 0 and g be an odd, strictly increasing continuous
function. We assume that (1.6)–(1.9) hold.

(i) We also assume that a(s,g,α) < b(s,g,α), –∞ < a(s,g,α), b(s,g,α) < λ
(s,g,α)
1 .

Then, (1.1) has exactly one nontrivial solution in W s
0LG(�) ∩ C(�) for all τ in a bounded

interval: In particular, we have that
if a(s,g,α) < b(s,g,α), –∞ < a(s,g,α), b(s,g,α) < λ

(s,g,α)
1 and τ > 0, then

u = g–1( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) > 0 is a solution,

if a(s,g,α) < b(s,g,α), –∞ < a(s,g,α), b(s,g,α) < λ
(s,g,α)
1 and τ < 0, then

u = –g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) < 0 is a solution.

(ii) We also assume that a(s,g,α) < b(s,g,α), λ(s,g,α)
j < a(s,g,α), b(s,g,α) < λ

(s,g,α)
j+1 and τ ∈ R is

bounded, j = 1, 2, . . . .
Then, (1.1) has exactly one nontrivial solution in W s

0LG(�) ∩ C(�) for all τ in the bounded
interval.

Theorem 1.2 Let 0 < s < 1, sg0 < N , α > 0 and g be an odd, strictly increasing con-
tinuous function. We assume that (1.6)–(1.9) hold. We also assume that a(s,g,α) < b(s,g,α),
–∞ < a(s,g,α) < λ

(s,g,α)
1 < b(s,g,α) < λ

(s,g,α)
2 , τ ∈ R.

(i) If τ > 0, then (1.1) has no solution,
(ii) if τ = 0, then (1.1) has exactly one solution u = 0 in W s

0LG(�) ∩ C(�).
(iii) There exists τ

(s,g,α)
1 < 0 such that for any τ with τ

(s,g,α)
1 ≤ τ < 0, (1.1) has exactly two

solutions in W s
0LG(�) ∩ C(�).

Theorem 1.3 Let 0 < s < 1, sg0 < N , α > 0 and g be an odd, strictly increasing con-
tinuous function. We assume that (1.6)–(1.9) hold. We also assume that a(s,g,α) < b(s,g,α),
–∞ < a(s,g,α) < λ

(s,g,α)
1 ,λ(s,g,α)

2 < b(s,g,α) < λ
(s,g,α)
3 , τ ∈ R.

(i) If τ > 0, then (1.1) has no solution,
(ii) if τ = 0, then (1.1) has exactly one solution u = 0 in W s

0LG(�) ∩ C(�).
(iii) There exists τ

(s,g,α)
1 < 0 such that for any τ with τ

(s,g,α)
1 ≤ τ < 0, (1.1) has at least three

solutions in W s
0LG(�) ∩ C(�).

For the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3 we use the contraction
mapping principle and Leray–Schauder degree theory on W s

0LG(�)∩C(�). The rest of the
paper is organized as follows: In Sect. 2, we introduce some preliminaries and prove Theo-
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rem 1.1 by the direct computations with the eigenvalues and the corresponding eigenfunc-
tions of the fractional N-Laplacian eigenvalue problem, and by the contraction mapping
principle on W s

0LG(�) ∩ C(�). In Sect. 3, we prove Theorem 1.2 by the contraction map-
ping principle on W s

0LG(�) ∩ C(�). In Sect. 4, we prove (i), (ii) and (iii) of Theorem 1.3.
We prove (iii) of Theorem 1.3 by the Leray–Schauder degree theory on W s

0LG(�) ∩ C(�).

2 Preliminaries and proof of Theorem 1.1
Let G be a N-function. From the convexity of G, it follows that

G(pt) ≤ pG(t) if p ∈ [0, 1], t ≥ 0

and

G(qt) ≥ qG(t) if q ∈ (1,∞), t ≥ 0.

The Orlicz space LG(�) endowed with the norm ‖u‖LG is a Banach space. We note that
the norm ‖u‖LG is equivalent to the Luxemburg norm

‖u‖G = inf

{
λ > 0

∣∣
∣∣

∫

�

G
(∣∣

∣∣
u(x)
λ

∣∣
∣∣

)
≤ 1

}
.

In the Orlicz space LG(�), the Hölder inequality is valid (see [18]): for all u ∈ LG(�), v ∈
LG∗ (�), we have

∫

�

|uv|dx ≤ 2‖u‖LG‖v‖LG∗ .

For any given fractional parameter 0 < s < 1 and N-function G, the fractional Orlicz–
Sobolev spaces W sLG(�) is endowed with the norm

‖u‖s,G = ‖u‖G + [u]s,G,

where [u]s,G is the Gagliardo seminorm defined by

[u]s,G = inf

{
λ > 0|

∫

�

∫

�

G
( |u(x) – u(y)|

λ|x – y|s
)

dx dy
|x – y|N ≤ 1

}
.

From [7], for any given 0 < s < 1 and Young function G such that G and G∗ satisfy �2

conditions, W sLG(RN ) is a reflexive and separable Banach space. Furthermore, C∞
0 (RN ) is

dense in W sLG(RN ) in the norm ‖ · ‖s,G. Let W s
0LG(�) denote the closure of C∞

0 (�) in the
norm ‖u‖s,G. Later, we shall consider the fractional N-Laplacian eigenvalue problem (1.2)
in W s

0LG(�) ∩ C(�) under the �2 condition on G and prove Theorem 1.1.

Lemma 2.1 ([20] (Generalized Poincaré inequality on the Orlicz–Sobolev space)) Let �

be a bounded open subset of RN , N ≥ 1, 0 < s < 1 and G be a Young function. Then, there
exists a positive constant C > 0 such that

‖u‖G ≤ C[u]s,G, ∀u ∈ W s
0LG(�). (2.1)
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That is, the embedding

W s
0LG(�) ↪→ LG(�)

is continuous and compact. Furthermore, [u]s,G is a norm of W s
0LG(�) equivalent to ‖ · ‖s,G.

Lemma 2.2 ((Theorem 2.8 of [4]) (Embedding Theorem)) Let � be a bounded domain of
RN , N ≥ 1, 0 < s < 1 and G be a N-function. Then, the embedding

W sLG(�) ↪→ LG(�) is continuous and compact (2.2)

and there exists a positive constant D > 0 such that

‖u‖G ≤ D[u]s,G, ∀u ∈ W sLG(�).

Furthermore, [u]s,G is a norm of W sLG(�) equivalent to ‖u‖s,G.

Let us define the functional �s,G : W sLG(�) → R as

�s,G(u) =
∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N , u ∈ W s.LG(�).

Lemma 2.3 ([3]) Let u ∈ W sLG(�). Then,

‖u‖g0
s,G ≤ �s,G(u) =

∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N ≤ ‖u‖g0

s,G, if ‖u‖s,G > 1,

‖u‖g0

s,G ≤ �s,G(u) =
∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N ≤ ‖u‖g0

s,G, if ‖u‖s,G < 1.
(2.3)

Proof The proof is given by (1.4) and Theorem 3.11 of [3]. �

Lemma 2.4 ([21]) Let 0 < s < 1, sg0 < N and G be a N-function. Then, the embedding

W s,g0 (�) ↪→ Lq(x)(�)

is continuous and compact for all 1 ≤ q(x) < g∗
0 = Ng0

N–sg0
.

Lemma 2.5 Let 0 < s < 1, sg0 < N and G be a N-function. Then, the embedding

W sLG(�) ↪→ Lq(x)(�)

is continuous and compact for all 1 ≤ q(x) < g∗
0 .

Furthermore, there exists a positive constant C such that

‖u‖Lq(x)(�) ≤ C[u]s,G for all 1 ≤ q(x) < g∗
0 .
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Proof By Lemma 2.4, the embedding W s,g0 (�) ↪→ Lq(x)(�) is continuous and compact for
all 1 ≤ q(x) < g∗

0 = Ng0
N–sg0

. By (1.6) and (2.3), the embedding W sLG(�) ↪→ W s,g0 (�) is con-
tinuous. Combining these facts, we obtain that the embedding W sLG(�) ↪→ Lq(x)(�) is
continuous and compact for all 1 ≤ q(x) < g∗

0 = Ng0
N–sg0

. �

Lemma 2.6 Assume that the sequence {uk} converges weakly to u in W sLG(�) and

lim
k→+∞

sup < � ′
s,G(uk), uk – u >≤ 0.

Then, {uk} converges strongly to u in W sLG(�).

Proof Since the sequence {uk} converges weakly to u in W sLG(�) and limk→+∞ sup <
� ′(uk), uk – u >≤ 0, by (1.6), we have

∫

�

∫

�

g
( |uk(x) – uk(y)|

|x – y|s
)

uk(x) – uk(y)
|uk(x) – uk(y)|

uk(x) – uk(y)
|x – y|s

dx dy
|x – y|N

≤
∫

�

∫

�

g
( |u(x) – u(y)|

|x – y|s
)

u(x) – u(y)
|u(x) – u(y)|

u(x) – u(y)
|x – y|s

dx dy
|x – y|N

≤ g0
∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N .

Thus, the sequence {∫
�

∫
�

g( |uk (x)–uk (y)|
|x–y|s ) uk (x)–uk (y)

|uk (x)–uk (y)|
uk (x)–uk (y)

|x–y|s
dx dy

|x–y|N } is bounded and con-
verges to

∫
�

∫
�

g( |u(x)–u(y)|
|x–y|s ) u(x)–u(y)

|u(x)–u(y)|
u(x)–u(y)

|x–y|s
dx dy

|x–y|N . By (1.6), we have

∫

�

∫

�

g
( |uk(x) – uk(y)|

|x – y|s
)

uk(x) – uk(y)
|uk(x) – uk(y)|

uk(x) – uk(y)
|x – y|s

dx dy
|x – y|N

≥ g0

∫

�

∫

�

G
( |uk(x) – uk(y)|

|x – y|s
)

dx dy
|x – y|N .

Thus, the sequence {∫
�

∫
�

G( |uk (x)–uk (y)|
|x–y|s ) dx dy

|x–y|N } is bounded and converges to
∫
�

∫
�

G( |u(x)–u(y)|
|x–y|s ) dx dy

|x–y|N . Thus, the sequence {uk} is bounded and converges weakly to u
in W sLG(�). Since the embedding W sLG(�) ↪→ LG(�) is continuous and compact, {uk}
converges strongly to u in W sLG(�). �

Lemma 2.7 If uk , u ∈ W sLG(�), k = 1, 2, . . . , then the following statements are equivalent
to each other

(i) limk→∞ ‖uk – u‖s,G = 0, k = 1, 2,
(ii) limk→∞

∫
�

(G(uk(x) – u(x)) dx = 0 and limk→∞[uk – u]s,G = 0,
(iii) limk→∞

∫
�

G(uk(x)) dx =
∫
�

G(u(x)) dx.

Proof By the definition of ‖ · ‖s,G, (i)⇔(ii) holds. We shall show that (i) implies (iii). We
assume that (i) holds. Then,

∫

�

[
G(uk)(x) – G(u)(x)

]
dx

≤
∫

�

g
(
u + λ(uk – u)

)
(uk – u) dx
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≤ 2
∥∥g

(
u + λ(uk – u)

)∥∥
G∗‖uk – u‖G

≤ C
∥
∥g

(
u + λ(uk – u)

)∥∥
G∗‖uk – u‖s,G → 0

for 0 < λ < 1 and some C > 0. It follows that (iii) holds. Assume that (iii) holds. Since
limk→∞

∫
�

G(uk(x)) dx =
∫
�

G(u(x)) dx, {uk} converges weakly to u in LG(�). By assump-
tion (iii), uk → u in measure in W sLG(�). It follows that {uk} is bounded in W sLG(�) ⊂
LG(�). By Lemma 2.1, the embedding W sLG(�) ↪→ LG(�) is continuous and compact.
Thus, uk → u strongly in W sLG(�). Thus, (i) holds. �

By Lemma 2.1, we obtain the following:

Lemma 2.8 Let 0 < s < 1, G be a N-function and f (x, u) ∈ LG(�). Then, the solutions of the
problem

(–�)s
gu = f (x, u) in LG(�),

u = 0 ∂�

belong to W s
0LG(�).

Now, we consider the fractional N-Laplacian eigenvalue problem (1.2) in W s
0LG(�) ∩

C(�) under the conditions (1.6)–(1.9) on G for each energy level α > 0:

(–�)s
gu = λg

(|u|) u
|u| ,

∫

�

G
(|u|)dx = α, in �.

u = 0 on ∂�.

Lemma 2.9 (The fractional N-Laplacian eigenvalue problem) Let α > 0 be a real number
and G be a N-function. We assume that (1.6)–(1.9) hold. Then,

(i) the fractional N-Laplacian eigenvalue problem (1.2) in W s
0LG(�) ∩ C(�) has a

discrete nondecreasing sequence of nonnegative eigenvalues λ
(s,g,α)
j , λ(s,g,α)

j → ∞ as
j → ∞, j = 1, 2, . . . and

(ii) a sequence of the corresponding eigenfunctions u(s,g,α)
j , j = 1, 2, . . . , depending on s, g ,

α. Moreover,
(iii) we can construct the orthonormalized corresponding eigenfunctions φ

(s,g,α)
j from the

corresponding eigenfunctions u(s,g,α)
j belonging to the eigenvalues λ

(s,g,α)
j , j = 1, 2, . . . ,

(iv) the first eigenvalue λ
(s,g,α)
1 is positive,

(v) the set of eigenvalues is closed,
(vi) the first eigenfunction φ

(s,g,α)
1 is positive and

(vii) the first eigenvalue λ
(s,g,α)
1 is isolated.

Proof (i) and (ii) are proved in Theorem 1.2 of [5].
(iii) By (i) and (ii), the eigenvalues λ

(s,g,α)
j , j = 1, 2, . . . are discrete. Then, the corresponding

eigenfunctions u(s,g,α)
j , j = 1, 2, . . . , are mutually orthogonal, i.e., span{u(s,g,α)

j } ⊥ span{u(s,g,α)
k }

for j �= k, j, k = 1, 2, . . . . That is, u(s,g,α)
j , j = 1, 2, . . . are the orthogonal eigenfunctions. Let us
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set

φ
(s,g,α)
j =

u(s,g,α)
j

‖u(s,g,α)
j ‖s,G

, j = 1, 2, . . . .

Then, φ
(s,g,α)
j , j = 1, 2, . . . are the orthonormalized eigenfunctions belonging to the eigen-

values λ
(s,g,α)
j , j = 1, 2, . . . .

(iv) (iv) is proved in Corollary 5.3 of [20].
(v) (v) is proved in Theorem 1.5 of [5].
(vi) Since the functionals

∫
�

∫
�

G( |u(x)–u(y)|
λ|x–y|s ) dx dy

|x–y|N and
∫
�

G(|u|) dx are invariant by re-

placing φ
(s.g,α)
1 with |φ(s.g,α)

1 |, φ
(s.g,α)
1 ≥ 0. Since (1.2) is considered in W s

0LG(�) ∩ C(�),
φ

(s.g,α)
1 ∈ W s

0LG(�) ∩ C(�). By the strong maximum principle for continuous functions,
φ

(s.g,α)
1 is positive in � (cf. Proposition 3.8 of [5]).
(vii) To show the isolatedness of the first eigenvalue, we shall show the process of obtain-

ing the first eigenvalue associated with the first eigenfunction and the other eigenvalues
associated with the other eigenfunctions. We say that λ is an eigenvalue with eigenfunc-
tion φ ∈ W s

0LG(�) if

< (–�)s
gφ, v > –λ

∫

�

g
(|φ|) φ

|φ|v dx = 0 ∀v ∈ W s
0LG(�).

For each λ > 0 let us define the energy functional �(s,g,α)
λ : W s

0LG(�)∩C(�) → R associated
to (1.2) as

�
(s,g,α)
λ (u) =

∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N – λ

∫

�

G
(|u|)dx,

∫

�

G
(|u|)dx = α, α > 0.

Under the �2-condition on G the functional �
(s,g,α)
λ (u) is Fréchet differentiable, C1 and

satisfies the Palaise–Smale condition. The critical points of �
(s,g,α)
λ (u) coincide with the

weak solutions of (1.2). We claim that for each λ > 0 the functional �
(s,g,α)
λ (u) is coer-

cive and weakly lower semicontinuous. In fact, by Lemma 3.2 and Lemma 3.3 of [6],
∫
�

∫
�

G( |u(x)–u(y)|
|x–y|s ) dx dy

|x–y|N is of class C1 and weakly lower semicontinuous. Let u ∈ W s
0LG(�)

with ‖u‖s,G > 1. By Lemma 2.2, there exists a constant D > 0 such that ‖u‖G ≤ D‖u‖s,G. It
follows from Lemma 2.3 that

�
(s,g,α)
λ (u) =

∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N – λ

∫

�

G
(|u|)dx

≥ ‖u‖g0
(s,G) – λ‖u‖G

≥ ‖u‖g0
(s,G) – λD‖u‖s,G.

Since g0 > 1, �(s,g,α)
λ (u) → ∞ as ‖u‖s,G → ∞. Thus, �(s,g,α)

λ (u) is coercive.
Next, we shall show that �

(s,g,α)
λ (u) is weakly lower semicontinuous. Let un ∈ W s

0LG(�)
be a sequence that converges weakly to u in W s

0LG(�). By Lemma 3.3 of [6],

∫

�

∫

�

G
( |u(x) – u(y)|

|x – y|s
)

dx dy
|x – y|N ≤ lim

n→+∞ inf
∫

�

∫

�

G
( |un(x) – un(y)|

|x – y|s
)

dx dy
|x – y|N .
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On the other hand, since G is a continuous function,

lim
n→+∞

∫

�

G
(|un|

)
dx =

∫

�

G
(|u|)dx.

Thus, we have

�
(s,g,α)
λ (u) ≤ lim

n→+∞ inf�(s,g,α)
λ (un).

Thus, �
(s,g,α)
λ is weakly lower semicontinuous. It follows that there exists only one global

minimizer φ
(s,g,α)
1 ∈ W s

0LG(�), which is a critical point of �
(s,g,α)
λ (u) with a global mini-

mum value infW s
0LG(�)∩C(�) �

(s,g,α)
λ (tv) ≤ ‖tv‖g0

s,G – λ
(s,g,α)
1 α < 0 for sufficiently small t > 0 and

g0 > 1, nonnegative, and positive in C(�) by (vi). Let us set λ = λ
(s,g,α)
1 for the eigenvalue

corresponding to the weak solution φ
(s,g,α)
1 of the problem

(–�)s
gφ

(s,g,α)
1 = λg

(∣∣φ(s,g,α)
1

∣∣) φ
(s,g,α)
1

|φ(s,g,α)
1 |

.

Then, by (iv), λ(s,g,α)
1 > 0. By Theorem 1.2 of [5] and (iii), (1.2) has the other weak solutions

φ
(s,g,α)
j , j ≥ 2, different from φ

(s,g,α)
1 . In fact, for each α > 0 the other weak solutions φ

(s,g,α)
j ,

j ≥ 2 of (1.2) are obtained from the minimax theory. That is, for any α > 0 there exists a
discrete sequence of nonnegative eigenvalues λ

(s,g,α)
j . The corresponding eigenfunctions

{φ(s,g,α)
j } ⊂ W s

0LG(�) satisfy the constraint

∫

�

G
(∣∣φ(s,g,α)

j
∣
∣)dx = α,

∫

�

∫

�

G
( |φ(s,g,α)

j (x) – φ
(s,g,α)
j (y)|

|x – y|s
)

dx dy
|x – y|N = c(s,g,α)

j ,

where the critical values are obtained as

c(s,g,α)
j = inf

h∈(Sj–1,Mα )
sup

w∈Sj–1

∫

�

∫

�

G
( |h(w(x)) – h(w(y))|

|x – y|s
)

dx dy
|x – y|N

and (Sj, Mα) = {h ∈ C(Sj, Mα)|h is odd}, being Sj the unit sphere in Rj+1. The first eigen-
function φ

(s,g,α)
1 is a global minimizer and the other eigenfunctions φ

(s,g,α)
j , j = 2, 3, . . . are

critical points obtained from the minimax critical values �
(s,g,α)
λ (φ(s,g,α)

j ). As the first eigen-
function φ

(s,g,α)
1 can not be the critical points obtained from the minimax critical value,

φ
(s,g,α)
1 �= φ

(s,g,α)
j , j = 2, 3, . . . . Thus, the first eigenvalue λ

(s,g,α)
1 corresponding to the eigen-

function φ
(s,g,α)
1 is isolated from the other eigenvalues λ

(s,g,α)
j , j = 2, 3, . . . corresponding to

the eigenfunctions φ
(s,g,α)
j , j = 2, 3, . . . . �

Let I : f ∈ C(� × �) → R be an integral operator defined as

I
(
f (x, y)

)
= 2P.V.

∫

�

f (x, y)
dy

|x – y|N+s .

Then, (–�)s
gu can be expressed as the composition of the mappings I , g̃ and Ds as follows:

(–�)s
gu =

(
I ◦ g̃ ◦ Ds ◦ g̃–1)(g̃(u)

)
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or

(�)s
gu =

(
I ◦ g̃ ◦ Ds ◦ g–1)(g(u)

)
,

where Dsu(x, y) = u(x)–u(y)
|x–y|s and g̃(u) = g(|u|) u

|u| . We note that the operator norm of (I ◦ g̃ ◦
Ds ◦ g̃–1)–1 is

∥∥(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1∥∥ =

1
λ

(s,g,α)
1

.

For given f (x, u) ∈ LG(�), the equation

(–�)s
gu = f (x, u) in LG(�)

is equivalent to the equation

u =
(
(–�)s

g
)–1f (x, u).

We observe that

∥∥(
(–�)s

g
)–1f (x, u)

∥∥
s,G ≤

∥∥∥
∥g̃–1

(
1

λ
(s,g,α)
1

f (x, u)
)∥∥∥

∥
s,G

.

Proof of Theorem 1.1 (i) Let 0 < s < 1, G be a N-function and
∫
�

G(|u(x)|) dx = α, u ∈
W s

0LG(�) ∩ C(�). We assume that –∞ < a(s,g,α), b(s,g,α) < λ
(s,g,α)
1 . Let us choose ν(s,g,α) > 0

and ε(s,g,α) > 0 so that –ν(s,g,α) + ε(s,g,α) < a(s,g,α), b(s,g,α) < λ
(s,g,α)
1 – ε(s,g,α) and choose δ(s,g,α) =

a(s,g,α)+b(s,g,α)

2 . Then, the problem (1.1) can be rewritten as

(–�)s
gu – δ(s,g,α)g

(|u|) u
|u| = (b(s,g,α) – δ(s,g,α))g

(|u|) u+

|u| –
(
a(s,g,α) – δ(s,g,α))g

(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

. (2.4)

Since (–�)s
gu = (I ◦ g̃ ◦ Ds ◦ g̃–1)(g̃(u)), (1.1) can be rewritten as

(
I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))g̃(u) =

(
b(s,g,α) – δ(s,g,α))g̃(u)+ –

(
a(s,g,α) – δ(s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

. (2.5)

or equivalently

g̃(u) =
(
I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))–1

(
(
b(s,g,α) – δ(s,g,α))g̃(u)+ –

(
a(s,g,α) – δ(s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
. (2.6)
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The operator norm of the operator (I ◦ g̃ ◦ Ds ◦ g̃)–1 – δ(s,g,α)–1 is

∥∥(
I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))–1∥∥ =

1
λ

(s,g,α)
1 – δ(s,g,α)

.

Thus, we have that

(
I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))–1

((
b(s,g,α) – δ(s,g,α))g̃(u)+ –

(
a(s,g,α) – δ(s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)

≤ 1
λ

(s,g,α)
1 – δ(s,g,α)

∥∥
∥∥
(
b(s,g,α) – δ(s,g,α))g̃(u)+ –

(
a(s,g,α) – δ(s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

∥∥
∥∥

G
.

Let us set the right-hand side of (2.6) as

M(s,g,α)
(

g
(|u|) u

|u|
)

= M(s,g,α)(g̃(u)
)

=
(
I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))–1

((
b(s,g,α) – δ(s,g,α))g̃(u)+

–
(
a(s,g,α) – δ(s,g,α))g̃(u)– + τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
.

Then, M(s,g,α)(g(|u|) u
|u| ) satisfies

∥∥M(s,g,α)(g̃(u)
)

– M(s,g,α)(g̃(v)
)∥∥

s,G

=
∥∥(

I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))–1((b(s,g,α) – δ(s,g,α))g̃(u)+ –
(
a(s,g,α) – δ(s,g,α))g̃(u)–)

–
(
I ◦ g̃ ◦ Ds ◦ g̃–1 – δ(s,g,α))–1((b(s,g,α) – δ(s,g,α))g̃(v)+ –

(
a(s,g,α) – δ(s,g,α))g̃(v)–)∥∥

s,G

≤ 1
λ

(s,g,α)
1 – δ(s,g,α)

∥∥((
b(s,g,α) – δ(s,g,α))g̃(u)+ –

(
a(s,g,α) – δ(s,g,α))g̃(u)–)

–
((

b(s,g,α) – δ(s,g,α))g̃(v)+ –
(
a(s,g,α) – δ(s,g,α))g̃(v)–)∥∥

G

≤ 1
λ

(s,g,α)
1 – δ(s,g,α)

bs,g,α – a(s,g,α)

2
∥
∥g̃(u) – g̃(v)

∥
∥

G.

Since 1
λ

(s,g,α)
1 –δ(s,g,α)

bs,g,α–a(s,g,α)

2 < 1, M(s,g,α) is a contraction mapping with respect to the vari-

able g̃(u). Thus, (2.6) has a unique solution g̃(u) for each s, g , α. Since g̃(u) is a strictly
increasing continuous function, then there exists a unique u for a unique given value g̃(u).
Thus, (1.1) has a unique solution u �= 0.

(ii) We assume that λ
(s,g,α)
j < a(s,g,α), b(s,g,α) < λ

(s,g,α)
j+1 , j = 1, 2, . . . . Let us choose ε(s,g,α) > 0 so

that λ
(s,g,α)
j + ε(s,g,α) < a(s,g,α), b(s,g,α) < λ

(s,g,α)
j+1 – ε(s,g,α). Let us set γ (s,g,α) = a(s,g,α)+b(s,g,α)

2 . Then,
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the problem (1.1) can be rewritten as

(–�)s
gu – γ (s,g,α)g̃(u) =

(
b(s,g,α) – γ (s,g,α))g̃(u)+ –

(
a(s,g,α) – γ (s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

. (2.7)

Then, (1.1) can be rewritten as

(
I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))g̃(u) =

(
b(s,g,α) – γ (s,g,α))g̃(u)+ –

(
a(s,g,α) – γ (s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

. (2.8)

or equivalently

g̃(u) =
(
I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1

((
b(s,g,α) – γ (s,g,α))g̃(u)+ –

(
a(s,g,α) – γ (s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
. (2.9)

The operator norm of the operator (I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1 is

∥∥(
I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1∥∥ =

1
min{γ (s,g,α) – λ

(s,g,α)
j ,λ(s,g,α)

j+1 – γ (s,g,α)}
.

Thus, we have that

(
I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1

((
b(s,g,α) – γ (s,g,α))g̃(u)+ –

(
a(s,g,α) – γ (s,g,α))g̃(u)–

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)

≤ 1
min{γ (s,g,α) – λ

(s,g,α)
j ,λ(s,g,α)

j+1 – γ (s,g,α)}

∥∥
∥∥
(
b(s,g,α) – γ (s,g,α))g̃(u)+

–
(
a(s,g,α) – γ (s,g,α))g̃(u)– + τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

∥∥
∥∥

G
.

Let us set the right-hand side of (2.9) as

S(s,g,α)(g̃(u)
)

=
(
I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1

((
b(s,g,α) – γ (s,g,α))g̃(u)+

–
(
a(s,g,α) – γ (s,g,α))g̃(u)– + τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
.
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Then, S(s,g,α)(g̃) satisfies

∥∥S(s,g,α)(g̃(u)
)

– S(s,g,α)(g̃(v)
)∥∥

s,G

=
∥∥(

I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1((b(s,g,α) – γ (s,g,α))g̃(u)+ –
(
a(s,g,α) – γ (s,g,α))g̃(u)–)

–
(
I ◦ g̃ ◦ Ds ◦ g̃–1 – γ (s,g,α))–1((b(s,g,α) – γ (s,g,α))g̃(v)+ –

(
a(s,g,α) – γ (s,g,α))g̃(u)–)∥∥

s,G

≤ 1
min{γ (s,g,α) – λ

(s,g,α)
j ,λ(s,g,α)

j+1 – γ (s,g,α)}
∥∥((

b(s,g,α) – γ (s,g,α))g̃(u)+

–
(
a(s,g,α) – γ (s,g,α))g̃(u)–)

–
((

b(s,g,α) – γ (s,g,α))g̃(v)+ –
(
a(s,g,α) – γ (s,g,α))g̃(v)–)∥∥

G

≤ 1
min{γ (s,g,α) – λ

(s,g,α)
j ,λ(s,g,α)

j+1 – γ (s,g,α)}
bs,g,α – a(s,g,α)

2
∥∥g̃(u) – g̃(v)

∥∥
G.

Since 1
min{γ (s,g,α)–λ

(s,g,α)
j ,λ(s,g,α)

j+1 –γ (s,g,α)}
bs,g,α–a(s,g,α)

2 < 1, S(s,g,α) is a contraction mapping with re-

spect to the variable g̃(u) = g(|u|) u
|u| . Thus, (2.9) has a unique solution g̃(u) for each s, g ,

α. Since g̃ is a strictly increasing continuous function, there exists a unique u for a unique
given value g̃(u). Thus, (1.1) has a unique solution u �= 0. �

3 Proof of Theorem 1.2
(i) We assume that a(s,g,α) < b(s,g,α), –∞ < a(s,g,α) < λ

(s,g,α)
1 < b(s,g,α) < λ

(s,g,α)
2 , τ > 0. Then, (1.1)

can be rewritten as

(–�)s
gu – λ

(s,g,α)
1 g

(|u|) u
|u| =

(
b(s,g,α) – λ

(s,g,α)
1

)
g
(|u|) u+

|u| – (a(s,g,α) – λ
(s,g,α)
1 g

(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

. (3.1)

Taking the inner product with φ
(s,g,α)
1 > 0 in (3.1), we have

〈
(–�)s

gu – λ
(s,g,α)
1 g

(|u|) u
|u| ,φ(s,g,α)

1

〉

=
〈(

b(s,g,α) – λ
(s,g,α)
1

)
g
(|u|) u+

|u| – (a(s,g,α) – λ
(s,g,α)
1 g

(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

,φ(s,g,α)
1

〉
. (3.2)

The left-hand side of (3.2) is equal to 0. On the other hand, the right-hand side of (3.2)

is positive because b(s,g,α) – λ
(s,g,α)
1 > 0, –(a(s,g,α) – λ

(s,g,α)
1 ) > 0 and τg(|φ(s,g,α)

1 |) φ
(s,g,α)
1

|φ(s,g,α)
1 | > 0 for

τ > 0 and φ
(s,g,α)
1 > 0. Thus, if τ > 0, then there is no solution for (1.1).

(ii) We assume that τ = 0. Then, (3.2) is reduced to the equation

〈
(–�)s

gu – λ
(s,g,α)
1 g

(|u|) u
|u| ,φ(s,g,α)

1

〉

=
〈(

b(s,g,α) – λ
(s,g,α)
1

)
g
(|u|) u+

|u| – (a(s,g,α) – λ
(s,g,α)
1 g

(|u|) u–

|u| ,φ(s,g,α)
1

〉
. (3.3)
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i.e.,
〈
(–�)s

gu – λ
(s,g,α)
1 g

(|u|) u
|u| ,φ(s,g,α)

1

〉

= 0 =
∫

�

[(
(
b(s,g,α) – λ

(s,g,α)
1

)
g
(|u|) u+

|u| –
(
a(s,g,α) – λ

(s,g,α)
1

)
g
(|u|) u–

|u|
)

φ
(s,g,α)
1

]
dx.

(3.4)

Since b(s,g,α) – λ
(s,g,α)
1 > 0 and –(a(s,g,α) – λ

(s,g,α)
1 ) > 0, the only possibility to hold (3.4) is that

u = 0 in W s
0LG(�) ∩ C(�).

(iii) We assume that a(s,g,α) < b(s,g,α), –∞ < a(s,g,α) < λ
(s,g,α)
1 < b(s,g,α) < λ

(s,g,α)
2 , τ < 0. Let V

be a subspace of LG(�) spanned by φ
(s,g,α)
1 and W be the orthogonal complement of V in

LG(�). Then,

LG(�) = V ⊕ W .

Let Q be an orthogonal projection in LG(�) onto V and I – Q be the orthogonal projection
onto W . Then,

Qu =
(∫

�

uφ
(s,g,α)
1

)
φ

(s,g,α)
1 for all u ∈ LG(�).

Let u ∈ LG(�). Then, u can be written as

u = v + z, v = Qu, w = (I – Q)z.

We note that Q commutes with D = d
dx . Then, (1.1) is equivalent to a pair of equations

Q(–�)s
g(v + z) = Q

(
b(s,g,α)g

(|v + z|) (v + z)+

|v + z| – a(s,g,α)g
(∣∣(v + z)

∣
∣) (v + z)–

|v + z|

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, (3.5)

(I – Q)(–�)s
g(v + z)

= (I – Q)
(

b(s,g,α)g
(|v + z|) (v + z)+

|v + z| – a(s,g,α)g
(|v + z|) (v + z)–

|v + z|
)

. (3.6)

Since (–�)s
gu = (I ◦ g̃ ◦ Ds ◦ g̃–1)(g̃(u)), (3.6) can be rewritten as

(I – Q)
(
g̃(v + z)

)
=

(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

(
b(s,g,α)g̃(v + z)+ – a(s,g,α)g̃(v + z)–)

. (3.7)

The operator norm of the operator (I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q) is

∥∥(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

∥∥ =
1

λ
(s,g,α)
2

.

We claim that for fixed v ∈ V , (3.6) has a unique solution z(v). We first shall show that
there exists a unique g(|v + z|) v+z

|v+z| satisfying (3.6) for any given v ∈ V and some z ∈ W . In
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fact, we suppose that there exist two z1(v) and z1(v) satisfying (3.6) for fixed v ∈ V . Since
g is a strictly increasing function, there exist two g̃(v + z1) = g(|v + z1|) v+z1

|v+z1| and g̃(v + z2) =
g(|v + z2|) v+z2

|v+z2| satisfying (3.6) for the given two z1(v) and z1(v). Then we have, from (3.7),

(I – Q)
(
g̃(v + z1) – g̃(v + z2)

)

=
(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

(
b(s,g,α)g̃(v + z1)+ – a(s,g,α)g̃(v + z1)–)

–
(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

(
b(s,g,α)g̃(v + z2)+ – a(s,g,α)g̃(v + z2)–)

. (3.8)

Taking the inner product of (3.8) with g̃(v + z1) – g̃(v + z2), we have

(I – Q)
(
g̃(v + z1) – g̃(v + z2)

)2

=
[(

I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)
(
b(s,g,α)g̃(v + z1)+ – a(s,g,α)g̃(v + z1)–)

–
(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

(
b(s,g,α)g̃(v + z2)+ – a(s,g,α)g̃(v + z2)–)]

· (g̃(v + z1) – g̃(v + z2)
)
. (3.9)

Then, the right-hand side of (3.9) is equal to

[(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

(
b(s,g,α)g̃(v + z1)+ – a(s,g,α)g̃(v + z1)–)

–
(
I ◦ g̃ ◦ Ds ◦ g̃–1)–1(I – Q)

(
b(s,g,α)g̃(v + z2)+ – a(s,g,α)g̃(v + z2)–)]

× (
g̃(v + z1) – g̃(v + z2)

)

≤ b(s,g,α)

λ
(s,g,α)
2

(
g̃(v + z1) – g̃(v + z2)

)2,

which is a contradiction because b(s,g,α)

λ
(s,g,α)
2

< 1. Thus, g̃(v + z1) = g̃(v + z2). Since g̃ is a strictly

increasing continuous function, z1 = z2 for fixed v ∈ V . Thus, there exists a unique z(v) ∈
W for any given v ∈ V . We note that z = 0 is a solution of (3.6) for every v ∈ V , v > 0 or
v < 0 everywhere in �. If v > 0 and z = 0, then

(I – Q)(–�)s
g(v) = (I – Q)

(
b(s,g,α)g

(|v|) v+

|v| – a(s,g,α)g
(|v|) v–

|v|
)

= 0. (3.10)

If v < 0 and z = 0, then (I – Q)(b(s,g,α)g(|v|) v+

|v| – a(s,g,α)g(|v|) v–

|v| ) = 0. Thus, (1.1) is reduced to

Q(–�)s
g(v) = Q

(
b(s,g,α)g

(|v|) v+

|v| – a(s,g,α)g
(|v|) v–

|v| + τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, (3.11)

where v = c(s,g,α)φ
(s,g,α)
1 , c ∈ R.

If c(s,g,α) > 0 and τ < 0, then

λ
(s,g,α)
1 g

(
c(s,g,α)φ

(s,g,α)
1

)c(s,g,α)φ
(s,g,α)
1

c(s,g,α)φ
(s,g,α)
1

= b(s,g,α)g
(
c(s,g,α)φ

(s,g,α)
1

)c(s,g,α)φ
(s,g,α)
1

c(s,g,α)φ
(s,g,α)
1

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

.
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Thus, we have

c(s,g,α) =
g–1( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |))

φ
(s,g,α)
1

If c(s,g,α) < 0 and τ < 0, then

λ
(s,g,α)
1 g

(
–c(s,g,α)φ

(s,g,α)
1

) c(s,g,α)φ
(s,g,α)
1

–c(s,g,α)φ
(s,g,α)
1

= –a(s,g,α)g
(
–c(s,g,α)φ

(s,g,α)
1

)–cφ(s,g,α)
1

–cφ(s,g,α)
1

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

.

Thus, we have

c(s,g,α) = –
g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |))

φ
(s,g,α)
1

.

Thus, (1.1) has exactly two solutions in W s
0LG(�) ∩ C(�).

4 Proofs of Theorem 1.3 (i), (ii) and (iii)
The proofs of Theorem 1.3 (i) and (ii) are the same as those of Theorem 1.2 (i) and (ii).

For the proof of Theorem 1.3 (iii), we assume that 0 < s < 1, a(s,g,α) < b(s,g,α), –∞ <
a(s,g,α) < λ

(s,g,α)
1 ,λ(s,g,α)

2 < b(s,g,α) < λ
(s,g,α)
3 , τ < 0 and u ∈ W s

0LG(�) ∩ C(�). We also as-
sume that the conditions (1.6)–(1.9) hold. We note that (1.1) has a positive solution

g–1( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) > 0 in W s

0LG(�) ∩ C(�) and a negative solution

–g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) < 0 in W s

0LG(�) ∩ C(�).

Lemma 4.1 (A priori bound) Assume that 0 < s < 1, –∞ < a(s,g,α) < λ
(s,g,α)
1 ,λ(s,g,α)

2 < b(s,g,α) <
λ

(s,g,α)
3 and τ ∈ R. Then, there exist τ

(s,g,α)
1 < 0, τ

(s,g,α)
2 > 0, a constant C(s,g,α)) > 0 and a con-

stant C(s,g,α))
1 > 0 depending only on a(s,g,α) and b(s,g,α) such that for any τ with τ

(s,g,α)
1 ≤ τ ≤

τ
(s,g,α)
2 , any solution u of (1.1) in W s

0LG(�) ∩ C(�) satisfies ‖u‖s,G < C(s,g,α), and so satisfies
‖g̃(u)‖s,G < C(s,g,α)

1 , where g̃(u) = g(|u|) u
|u| .

Proof Let u be any solution of (1.1) in W s
0LG(�) ∩ C(�). Suppose that any solution of (1.1)

is not bounded. Then, there exists a sequence (un)n such that ‖un‖s,G → ∞ so that

(–�)s
gun = b(s,g,α)g

(|un|
) u+

n
|un| – a(s,g,α)g

(|un|
) u–

n
|un| + τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

(4.1)

or equivalently

g̃(un) =
(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g̃(un)+ – a(s,g,α)g̃(un)= + τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
in �.

Since ‖un‖s,G → ∞ and g is a strictly increasing continuous function, g(|un|) un
|un| →

∞. Let us consider { g(|un|) un|un|
‖g(|un|) un|un| ‖s,G

}n. Since ‖(
g(|un|) un|un|

‖g(|un|) un|un| ‖s,G
)n‖s,G = 1, { g(|un|) un|un|

‖g(|un|) un|un| ‖s,G
}n is
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bounded. Thus, there exists a subsequence, up to a subsequence, { g(|un|) un|un|
‖g(|un|) un|un| ‖s,G

}n such

that
g(|un|) un|un|

‖g(|un|) un|un| ‖s,G
⇀

g(|u|) u
|u|

‖g(|u|) u|u| ‖s,G
weakly for some

g(|u|) u
|u|

‖g(|u|) u|u| ‖s,G
in LG(�). Dividing (4.1) by

‖g(|un|) un
|un| ‖s,G, we have

(–�)s
gun

‖g(|un|) un
|un| ‖s,G

= b(s,g,α)
g(|un|) u+

n
|un|

‖g(|un|) un
|un| ‖s,G

– a(s,g,α)
g(|un|) u–

n
|un|

‖g(|un|) un
|un| ‖s,G

+
τg(|φ(s,g,α)

1 |) φ
(s,g,α)
1

|φ(s,g,α)
1 |

‖g(|un|) un
|un| ‖s,G

in �. (4.2)

Since, by Lemma 2.1, the embedding W s
0LG(�) ↪→ LG(�) is compact, and ((–�)s

g)–1 is a

compact operator,
g(|un|) un|un|

‖g(|un|) un|un| ‖s,G
→ g(|u|) u

|u|
‖g(|u|) u

|u| ‖s,G
strongly in W s

0LG(�). Limiting (4.2) as n →
∞, we have

(–�)s
gu

‖g(|u|) u
|u| ‖s,G

= b(s,g,α)
g(|u|) u+

|u|
‖g(|u|) u

|u| ‖s,G
– a(s,g,α)

g(|u|) u–

|u|
‖g(|u|) u

|u| ‖s,G
in �. (4.3)

We claim that (4.3) implies
g(|u|) u

|u|
‖g(|u|) u

|u| ‖s,G
= 0. In fact, (4.3) can be rewritten as

(–�)s
gu

‖g(|u|) u
|u| ‖s,G

– λ
(s,g,α)
1

g(|u|) u
|u|

‖g(|u|) u
|u| ‖s,G

=
(
b(s,g,α) – λ

(s,g,α)
1

) g(|u|) u+

|u|
‖g(|u|) u

|u| ‖s,G
–

(
a(s,g,α) – λ

(s,g,α)
1

) g(|u|) u–

|u|
‖g(|u|) u

|u| ‖s,G
in �. (4.4)

Taking the inner product with φ
(s,g,α)
1 > 0 on both sides of (4.4), we have

〈 (–�)s
gu

‖g(|u|) u
|u| ‖s,G

– λ
(s,g,α)
1

g(|u|) u
|u|

‖g(|u|) u
|u| ‖s,G

,φ(s,g,α)
1

〉

=
〈(

b(s,g,α) – λ
(s,g,α)
1

) g(|u|) u+

|u|
‖g(|u|) u

|u| ‖s,G
–

(
a(s,g,α) – λ

(s,g,α)
1

) g(|u|) u–

|u|
‖g(|u|) u

|u| ‖s,G
,φ(s,g,α)

1

〉
in �.

(4.5)

The left-hand side of (4.5) is equal to 0. On the other hand, the right-hand side of (4.5) is
positive because b(s,g,α) –λ

(s,g,α)
1 > 0, –(a(s,g,α) –λ

(s,g,α)
1 ) > 0 and φ

(s,g,α)
1 > 0. The only possibility

to hold (4.5) is that
g(|u|) u|u|

‖g(|u|) u
|u| ‖s,G

= 0, which leads to a contradiction because ‖ g(|u|) u|u|
‖g(|u|) u

|u| ‖s,G
‖s,G =

1 �= 0. Thus, there exist a constant C(s,g,α)) > 0 and a constant C(s,g,α))
1 > 0 depending only on

a(s,g,α) and b(s,g,α) such that any solution u of (1.1) satisfies ‖u‖s,G < C(s,g,α), and so satisfies
‖g̃(u)‖s,G < C(s,g,α)

1 since g is a continuous function. Thus, the lemma is proved. �

We shall consider the Leray–Schauder degree on a large ball.

Lemma 4.2 (Leray–Schauder degree on a large ball) Assume that –∞ < a(s,g,α) < λ
(s,g,α)
1 ,

λ
(s,g,α)
2 < b(s,g,α) < λ

(s,g,α)
3 . Then, there exist a constant R(s,g,α) > 0 depending on a(s,g,α), b(s,g,α),
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τ , τ (s,g,α)
1 < 0 and τ

(s,g,α)
2 > 0 such that for any τ with τ

(s,g,α)
1 ≤ τ ≤ τ

(s,g,α)
2 , the Leray–Schauder

degree

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, BR(s,g,α) (0), 0

)
= 0.

Proof (1.1) can be rewritten as

u –
(
(–�)s

g
)–1

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u| + τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
= 0

or equivalently

g̃(u) –
(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u| + τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
= 0

in W s
g LG(�) ∩ C(�). (4.6)

Let us consider the homotopy

H (s,g,α)(x, g̃(u)
)

= g̃(u) –
(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
. (4.7)

By Theorem 1.3 (ii), for any τ > 0, (4.6) has no solution. Thus, there exist τ
(s,g,α)
2 > 0 and a

large R(s,g,α) > 0 such that (4.7) has no zero in BR(s,g,α) (0) for any τ ≥ τ
(s,g,α)
2 , and by a priori

bound in Lemma 4.1, there exist R(s,g,α) > 0 and τ
(s,g,α)
1 < 0 such that for any τ with τ

(s,g,α)
1 ≤

τ ≤ τ
(s,g,α)
2 , all solutions u of (4.6) in W s

0LG(�) ∩ C(�) satisfy ‖g̃(u)‖s,G < R(s,g,α) and (4.7)
has no zero on ∂BR(s,g,α) (0) for any τ with τ

(s,g,α)
1 ≤ τ ≤ τ

(s,g,α)
2 . Since

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u|

– a(s,g,α)g
(|u|) u–

|u| + τ
(s,g,α)
2 g

(∣∣φ(s,g,α)
1

∣∣) φ
(s,g,α)
1

|φ(s,g,α)
1 |

)
, BR(s,g,α) (0), 0

)
= 0,

by homotopy arguments, for any τ with τ
(s,g,α)
1 ≤ τ ≤ τ

(s,g,α)
2 , we have

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, BR(s,g,α) (0), 0

)

= dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|
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+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
+ η(s,g,α)(τ (s,g,α)

2 – τ
)|g(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, BR(s,g,α) (0), 0)

= dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τ
(s,g,α)
2 g

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, BR(s,g,α) (0), 0

)
= 0

for any 0 ≤ η(s,g,α) ≤ 1. Thus, the lemma is proved. �

Lemma 4.3 (Modulus of continuity) Let F be a compact set in LG(�). Let ξ > 0. Then,
there exists a modulus of continuity β : R → R depending only on F and ξ such that

∥
∥∥
∥|

(
|τ | –

ξ

η

)+∥
∥∥
∥

LG(�)
≤ β(η) for all τ ∈ F .

It follows that

∥
∥|(ητ + ξ )–∥

∥
LG(�) ≤ ηβ(η).

and

∥
∥|(ητ – ξ )+∥

∥
LG(�) ≤ ηβ(η) for all τ ∈ F .

Proof For any τ ∈ F , let τη = (|τ |– ξ

η
)+. Since 0 ≤ τη ≤ |τ | and τη(x) → 0 as η → 0, it follows

that ‖τη‖LG(�) → 0 for all τ ∈ F . We claim that for given ε > 0, there exists δ > 0 such that
if τ ∈ F , then ‖τη‖LG(�) ≤ 2ε for all η ∈ [0, δ]. Choose {τi, i = 1, . . . , N} as an ε net for F .
Choose δ so that ‖(τi)δ‖LG(�) < ε for i = 1, . . . , N . Then, for any τ ∈ F , there exists τk , β ,
‖β‖LG(�) < ε such that τ = τk + β . Since (u + v)+ ≤ u+ + v+, we have ‖τδ‖LG(�) ≤ (τk)δ + |β|
and therefore ‖τη‖LG(�) ≤ ‖τδ‖LG(�) + ‖β‖LG(�) ≤ 2ε. �

Lemma 4.4 Assume that –∞ < a(s,g,α) < λ
(s,g,α)
1 ,λ(s,g,α)

2 < b(s,g,α) < λ
(s,g,α)
3 . Then, there exist a

constant ε
(s,g,α)
0 > 0 depending on a(s,g,α), b(s,g,α), τ and τ

(s,g,α)
1 < 0 such that for any τ such

that τ
(s,g,α)
1 ≤ τ < 0, the Leray–Schauder degree

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, B|τ |ε(s,g,α)

0

(
g̃(u1)

)
, 0

)
= 1,

where u1 = g–1( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) > 0 is a positive solution of (1.1) in W s

0LG(�)∩
C(�).

Proof (1.1) can be rewritten as

(
(–�)s

g – b(s,g,α)g̃
)
u = b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u) + τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |
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or equivalently

g̃(u) =
(
g̃ ◦ (

(–�)s
g – b(s,g,α)g̃

)–1)

×
(

b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u) + τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
,

where g̃(u) = g(|u|) u
|u| . Let us set N (s,g,α) = g̃ ◦ ((–�)s

g – b(s,g,α)g̃)–1. Then, (1.1) can be rewrit-
ten equivalently as

g̃(u) = N (s,g,α)
(

b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u) + τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
. (4.8)

Since ((–�)s
g)–1 is a compact operator on LG(�), the operator N (s,g,α) is a compact operator

on LG(�) for each s, g and α. Let B(s,g,α) = N (s,g,α)(D̄) be a closed unit ball for some closed
ball D in LG(�). Let us set γ (s,g,α) = min{b(s,g,α) – λ

(s,g,α)
2 ,λ(s,g,α)

3 – b(s,g,α)}. We can observe
that the operator norm of N (s,g,α) is ‖N (s,g,α)‖ = 1

γ (s,g,α) . Let β (s,g,α) be the modulus of con-

tinuity of Lemma 4.3 corresponding to B(s,g,α) and g̃(ξ (s,g,α)) = N (s,g,α)(τg(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) =

τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | . Let us choose ε

(s,g,α)
0 > 0 so that

β (s,g,α)
(

|τ |ε(s,g,α)
0

1
γ

(
b(s,g,α) – a(s,g,α))

)
≤ γ (s,g,α)2

4(b(s,g,α) – a(s,g,α))2 . (4.9)

We note that

∥∥b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u)
∥∥

LG(�) ≤ (
b(s,g,α) – a(s,g,α))∥∥g̃(u)–∥∥

LG(�). (4.10)

For g̃(u) ∈ τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | + |τ |ε(s,g,α)

0 w with w ∈ B̄,

∥∥g̃(u)–∥∥
LG(�) =

∥
∥∥
∥

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

+ |τ |ε(s,g,α)
0 w

)–∥
∥∥
∥

LG(�)

≤ ∥
∥(|τ |ε(s,g,α)

0 w
)–∥

∥
LG(�) ≤ |τ |ε(s,g,α)

0

since τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | > 0. Let us set F (s,g,α)(g̃(u)) = N (s,g,α)(b(s,g,α)g̃(u)+ –

a(s,g,α)g̃(u)– – b(s,g,α)g̃(u)) + N (s,g,α)(τg(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | . Then, F (s,g,α)((̃g)(u)) can be rewrit-

ten as

F (s,g,α)(g̃(u)
)

=
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

+ N (s,g,α)((b(s,g,α) – a(s,g,α))|τ |ε(s,g,α)
0 w

)
, w ∈ B.



Choi and Jung Boundary Value Problems        (2021) 2021:100 Page 23 of 27

If u is a solution of (4.8), then g̃(u) = F (s,g,α)(g̃(u)) and by Lemma 4.3,

∥
∥(

g̃(u)
)–∥

∥
LG(�) =

∥∥
∥∥

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

+N (s,g,α)((b(s,g,α) – a(s,g,α))|τ |ε(s,g,α)
0 w

))–∥∥
∥∥

LG(�)

≤ ∥∥(
N (s,g,α)((b(s,g,α) – a(s,g,α))|τ |ε(s,g,α)

0 w
))–∥∥

LG(�)

≤ |τ |ε(s,g,α)
0

1
γ

(
b(s,g,α) – a(s,g,α))β

(
|τ |ε(s,g,α)

0
1
γ

(
b(s,g,α) – a(s,g,α))

)

≤ γ (s,g,α)|τ |ε(s,g,α)
0

4(b(s,g,α) – a(s,g,α))
.

Thus, we have

∥
∥N (s,g,α)(b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u)

)∥∥
LG(�)

≤ ∥
∥N

((
b(s,g,α) – a(s,g,α))g̃(u)–)∥∥

LG(�)

≤ 1
γ (s,g,α) (b(s,g,α) – a(s,g,α)∥∥g̃(u)–∥∥

LG(�) ≤ 1
4
|τ |ε(s,g,α)

0 .

Thus, we have shown that for any solution u of (1.1), g̃(u) ∈ τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1

+

|τ |ε(s,g,α)
0 B̄ belong to g̃(u) ∈ τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | + 1

4 |τ |ε(s,g,α)
0 B̄. This estimate holds

if we replace b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u) by λ(s,g,α)(b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– –
b(s,g,α)g̃(u) with 0 ≤ λ(s,g,α) ≤ 1. Thus, the equation

g̃(u) =
(
g̃ ◦ (

(–�)s
g
)–1)(τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)

+λ(s,g,α)(b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u)
)

has no solution on the boundary of the ball B|τ |ε(s,g,α)
0

( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ(s,g,α)

|φ(s,g,α)
1 | ) for 0 ≤

λ(s,g,α) ≤ 1. By the homotopy invariance degree,

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α0
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)

+ λ(s,g,α)(b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u)
)
)

,

B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣∣) φ(s,g,α)

|φ(s,g,α)
1 |

)
, 0

)

is defined for 0 ≤ λ(s,g,α) ≤ 1 and is independent of λ(s,g,α). For λ(s,g,α) = 0,

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)
)

,
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B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ(s,g,α)

|φ(s,g,α)
1 |

)
, 0

)

= (–1) × (–1) = +1

since u = g–1( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ(s,g,α)

|φ(s,g,α)
1 | ) is the unique solution of (1.1) with

B|τ |ε(s,g,α)
0

( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ(s,g,α)

|φ(s,g,α)
1 | ) and since there are two eigenvalues λ

(s,g,α)
1 , λ(s,g,α)

2 of

(–�)s
g to the left of b(s,g,α) and thus the operator g̃ – (g̃ ◦ ((–�)s

g)–1)b(s,g,α)g̃ has two negative
eigenvalues, while all the rest are positive. When λ(s,g,α) = 1, we have

dLS(g̃(u) –
(
g̃ ◦ (

(–�)s
g
)–1)

(
τg

(∣∣φ(s,g,α)
1

∣∣) φ
(s,g,α0
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)

+ 1
(
b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)– – b(s,g,α)g̃(u)

)
,

B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ(s,g,α)

|φ(s,g,α)
1 |

)
, 0

)

= dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α0
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)–
)

,

B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ(s,g,α)

|φ(s,g,α)
1 |

)
, 0

)
.

By the homotopy invariance of degree, we have

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α0
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)+ – a(s,g,α)g̃(u)–
)

,

B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ(s,g,α)

|φ(s,g,α)
1 |

)
, 0

)

= dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
τg

(∣∣φ(s,g,α)
1

∣
∣) φ

(s,g,α0
1

|φ(s,g,α)
1 |

+ b(s,g,α)g̃(u)
)

,

B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣∣) φ(s,g,α)

|φ(s,g,α)
1 |

)
, 0

)
= 1.

Thus, the lemma is proved. �

Lemma 4.5 Assume that –∞ < a(s,g,α) < λ
(s,g,α)
1 ,λ(s,g,α)

2 < b(s,g,α) < λ
(s,g,α)
3 and τ

(s,g,φ)
1 < 0.

Then, there exist a constant ε
(s,g,α)
1 > 0 depending on a(s,g,α), b(s,g,α), τ and τ

(s,g,α)
1 such that

for any τ such that τ
(s,g,α)
1 ≤ τ < 0, the Leray–Schauder degree

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u| + τg
(
φ

(s,g,α)
1

) φ
(s,g,α)
1

|φ(s,g,α)
1 |

)
,

B|τ |ε(s,g,α)
1

(
g̃(u2)

)
, 0

)
= 1,
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where u2 = –g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α|
1 |) φ

(s,g,α|
1

|φ(s,g,α|
1 | ) < 0 is a negative solution of (1.1) in

W s
0LG(�) ∩ C(�).

Proof We can prove this lemma by the almost identical proof to that of Lemma 4.4. �

Proof of Theorem 1.3 (iii) Let τ < 0. We note that there is a solution τ

λ
(s,g,α)
1 –b(s,g,α)

×

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | > 0 in B|τ |ε(s,g,α)

0
( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) and a solution

g̃(–g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | )) < 0 in B|τ |ε(s,g,α)

1
(g̃(–g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |) ×

φ
(s,g,α)
1

|φ(s,g,α)
1 | ))). Let us choose ε

(s,g,α)
0 > 0 and ε

(s,g,α)
1 > 0 such that max{ε(s,g,α)

0 , ε(s,g,α)
1 } <

min{ 1
|λ(s,g,α)

1 –b(s,g,α)| ,
1

|a(s,g,α)–λ
(s,g,α)
1 | }. Then, these two balls B|τ |ε(s,g,α)

0
( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) ×

φ
(s,g,α)
1

|φ(s,g,α)
1 | ) and B|τ |ε(s,g,α)

1
(g̃(–g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ))) are disjoint. This gives two so-

lutions. There is a large ball BR(s,g,α) (0) centred at the origin and containing

B|τ |ε(s,g,α)
0

( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ) and B|τ |ε(s,g,α)

1
(g̃(–g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α)
1 |) φ

(s,g,α)
1

|φ(s,g,α)
1 | ))).

Since

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u| + τg
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φs,g,α
1 |

)
,

BR(s,g,α) (0), 0
)

= 0

and

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τg
(∣∣φ(s,g,α)

1
∣∣) φ

(s,g,α)
1

|φ(s,g,α)
1 |

)
, B|τ |ε(s,g,α)

0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣∣)

)
, 0

)

= dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u|

+ τg
(
φ

(s,g,α)
1

) φ
(s,g,α)
1

|φ(s,g,α)
1 |

)
,

B|τ |ε(s,g,α)
1

( ˜
g
(

– g–1
(

τ

a(s,g,α) – λ
(s,g,α)
1

g
(∣∣φ(s,g,α|

1
∣
∣) φ

(s,g,α|
1

|φ(s,g,α|
1 |

)))
, 0

)
= 1,

it follows that

dLS

(
g̃(u) –

(
g̃ ◦ (

(–�)s
g
)–1)

(
b(s,g,α)g

(|u|) u+

|u| – a(s,g,α)g
(|u|) u–

|u| + τg(φ1)
φ

(s,g,α)
1

|φs,g,α
1 |

)
,

BR(s,g,α) (0)
∖ (

B|τ |ε(s,g,α)
0

(
τ

λ
(s,g,α)
1 – b(s,g,α)

g
(∣∣φ(s,g,α)

1
∣
∣) φ

(s,g,α)
1

|φs,g,α
1 |

)

∪ B|τ |ε(s,g,α)
1

(
g̃
(

–g–1
(

τ

a(s,g,α) – λ
(s,g,α)
1

g
(∣∣φ(s,g,α|

1
∣
∣) φ

(s,g,α|
1

|φ(s,g,α|
1 |

))))
, 0

)
= –2.
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Thus, there exists a third solution g̃(u) in BR(s,g,α) (0)\(B|τ |ε(s,g,α)
0

( τ

λ
(s,g,α)
1 –b(s,g,α)

g(|φ(s,g,α)
1 |)) ∪

B|τ |ε(s,g,α)
1

(g̃(–g–1( τ

a(s,g,α)–λ
(s,g,α)
1

g(|φ(s,g,α|
1 |) φ

(s,g,α|
1

|φ(s,g,α|
1 | )))) such that u is a solution of (1.1) in W s

0LG(�)∩
C(�). Thus, there exists a third solution u of (1.1) in W s

0LG(�) ∩ C(�). Thus, we prove
(iii) of Theorem 1.3. �
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