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Abstract
In this paper, we study a class of initial value problems for a nonlinear implicit
fractional differential equation with nonlocal conditions involving the
Atangana–Baleanu–Caputo fractional derivative. The applied fractional operator is
based on a nonsingular and nonlocal kernel. Then we derive a formula for the
solution through the equivalent fractional functional integral equations to the
proposed problem. The existence and uniqueness are obtained by means of
Schauder’s and Banach’s fixed point theorems. Moreover, two types of the continuous
dependence of solutions to such equations are discussed. Finally, the paper includes
two examples to substantiate the validity of the main results.
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1 Introduction
Fractional calculus [1, 2] has persistently magnetized the attention of many researchers
in the few past decades. Recently, novel fractional derivatives which mix the Riemann–
Liouville, Caputo, Hadamard, Hilfer, and generalized fractional derivatives have emerged
(see [3–8]). Some interested authors and researchers have realized that innovation for
novel fractional derivatives with nonsingular (nonlocal) or singular (local) kernels is an
urgent necessity to satisfy the need to model more realistic problems in different fields of
applied science.

Caputo and Fabrizio in [9] suggested a novel kind of fractional derivatives where the ker-
nel relies on the exponential function. Some properties of this novel operator were studied
by Losada and Nieto in [10]. In [11] the authors proposed interesting new fractional oper-
ators called Atangana–Baleanu (AB) fractional operators. One of these operators is called
Atangana–Baleanu–Caputo (ABC) fractional derivative, and it is basically a generalization
of the Caputo operator. Then, in [12, 13], the authors discussed the discrete versions of
those novel operators. Some recent and interesting contributions on fractional differential
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equations (FDEs) and mathematical modeling that incorporate ABC fractional derivatives
can be found in the following series of articles [14–26].

The recent investigations of the qualitative analysis of FDEs, e.g., the evolution, impul-
sive, and functional problems with initial (or boundary) nonlocal conditions, can be found
in [27–35] and the references therein.

On the other hand, in the case where a physical procedure is described by IVPs for FDEs,
at that point it is desirable that any mistakes made in the estimation of initial data do not
impact the solution so much. Mathematically, this is known as continuous dependence
of solution of an IVP on the data introduced in the proposed problem. Actually, nonlocal
conditions come up when estimations of the function on the limit are associated with val-
ues in the domain. It is seen as more reasonable than the classical initial conditions for the
forming of some physical phenomena in specific problems of wave spread and thermody-
namics. In crossing, we saw that the nonlocal condition

∑m
k=1 βkκ(τk) = κ0 that may be

applied in physical models yields preferred impact over the initial conditions κ(0) = κ0.
In this regard, many interested authors have presented excellent results on the existence

and continuous dependence of solution of FDEs with the nonlocal conditions and classical
fractional operators. For the recent review of these studies, we refer to [36–44].

Recently, ABC-fractional IVP is one of the studied problems by Thabet et al. [14] which
is of type

⎧
⎨

⎩

ABC
D

�

a,θκ(θ ) = f (θ ,κ(θ )), θ ∈ [a,χ ], 0 < � ≤ 1,

κ(a) = κ0.

Through the above discussions, and motivated by [14, 40], in this work, we will prove
some new results based on a novel version of fractional operators. More precisely, we
consider the following ABC-type nonlocal fractional problem:

ABC
D

�

0,θκ(θ ) = f
(
θ ,κ(θ ), ABC

D
�

0,θκ(θ )
)
, θ ∈ [0,χ ], (1.1)

m∑

k=1

βkκ(τk) = κ0, τk ∈ (0,χ ), (1.2)

where 0 < � ≤ 1, ABC
D

�

a+ is the ABC fractional derivative of order �, f : [0,χ ]×R×R →R

is a continuous function with f (0,κ(0), ABC
D

�

0,θκ(0)) = 0, 0 < τ1 < τ2 < · · · < τm < χ , βk are
real numbers (k = 1, 2, . . . , m), and κ ∈ C[0,χ ] such that the operator ABC

D
�

0,θ exists and
ABC

D
�

0,θκ ∈ C[0,χ ].
The main aim of this work is to study the existence, uniqueness of solutions and their

continuous dependence on the nonlinear nonlocal problem (1.1)–(1.2) in the frame of
ABC fractional derivative by means of Schauder’s and Banach’s fixed point theorems. To
the best of our knowledge in the subject, no one considered the existence and data de-
pendence of the ABC-type fractional problem with nonlocal conditions. Therefore, the
acquired results are recent studies and an extension of the development of FDEs involv-
ing an ABC fractional derivative. Furthermore, the analysis of the results is restricted to a
minimum of hypotheses.

The rest of the paper is arranged as follows. In Sect. 2, we recall some useful prelimi-
naries related to the main outcomes. Section 3 is dedicated to obtaining the solution rep-
resentation to a given problem. Then the existence and uniqueness results are proved via
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functional integral equation with the aid of some fixed point approaches. Moreover, we
discuss the continuous dependence of solutions for the problem at hand. Illustrative ex-
amples are given in Sect. 4. Finally, concluding remarks are mentioned in Sect. 5.

2 Background materials and preliminaries
Here, we recall some essential definitions and preliminary facts related to AB fractional
operators.

Let C([0,χ ],R) = C[0,χ ] be the space of continuous functions υ : [0,χ ] → R with the
norm

‖υ‖ = max
{∣
∣υ(θ )

∣
∣ : θ ∈ [0,χ ]

}
.

Clearly, C[0,χ ] is a Banach space with the norm ‖ · ‖.

Definition 2.1 ([11]) Let � ∈ [0, 1] and υ ∈ H1(0,χ ). Then the AB-Riemann–Liouville
and AB-Caputo fractional derivatives are given by

ABR
D

�

a+,θυ(θ ) =
N(�)
1 – �

d
dθ

∫ θ

a
E�

(
–�

1 – �
(θ – σ )�

)

υ(σ ) dσ , θ > a,

and

ABC
D

�

a+,θυ(θ ) =
N(�)
1 – �

∫ θ

a
E�

(
–�

1 – �
(θ – σ )�

)

υ ′(σ ) dσ , θ > a,

respectively, where E� is called the MLF defined by

E�(θ ) =
∞∑

k=0

θ k

	(k� + 1)
, Re(�) > 0, θ ∈C.

The AB fractional integral is described by

AB
I
�

a+,θυ(θ ) =
1 – �

N(�)
υ(θ ) +

�

N(�)
I�

a+υ(θ ), θ > a,

where N(�) > 0 is a normalization function satisfying N(0) = N(1) = 1 and

I�

a+υ(θ ) =
1

	(�)

∫ θ

a
(θ – σ )�–1υ(σ ) dσ .

Lemma 2.2 ([11, 45]) Let � ∈ (0, 1] and υ ∈ H1(0,χ ), if an ABC fractional derivative exists,
then we have

ABC
D

�

a+,θ
AB
I
�

a+,θυ(θ ) = υ(θ )

and

AB
I
�

a+,θ
ABC

D
�

a+,θυ(θ ) = υ(θ ) – υ(a).
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Definition 2.3 ([11]) The relation between the AB-Caputo and AB-Riemann–Liouville
operator is

ABC
D

�

a+,θυ(θ ) = ABR
D

�

a+,θυ(θ ) –
N(�)
1 – �

υ(a)E�

(
–�

1 – �
(θ – a)�

)

.

Lemma 2.4 ([15]) For n < � ≤ n + 1, for some n ∈N0 and υ(θ ) defined on [0,χ ], we have
(i) ABC

D
�

a+,θ
AB
I
�

a+,θυ(θ ) = υ(θ );
(ii) AB

I
�

a+,θ
ABC

D
�

a+,θυ(θ ) = υ(θ ) –
∑n

k=0
υ(k)(a)

k! (θ – a)k ;
(iii) AB

I
�

a+,θ
ABR

D
�

a+,θυ(θ ) = υ(θ ) –
∑n–1

k=0
υ(k)(a)

k! (θ – a)k .

Lemma 2.5 ([15]) For n < � ≤ n + 1, ABC
D

�

a+,θ (θ – a)k = 0, k = 0, 1, . . . , n. Moreover,
ABC

D
�

a+,θυ(θ ) = 0 if υ(θ ) is a constant function.

Lemma 2.6 ([11, 15]) Let � ∈ (0, 1] and 
 ∈ C[0, 1] with 
 (0) = 0. Then the solution of

ABC
D

�

0+υ(θ ) = 
 (θ ), θ ∈ [0, 1],

υ(0) = c

is given by

υ(θ ) = c + AB
I
�

0+
 (θ ).

Theorem 2.7 ([46]) Let X be a Banach space and K be a nonempty closed subset of X. If
B : K−→ K is a contraction, then there exists a unique fixed point of B.

Theorem 2.8 ([46]) Let X be a Banach space and K be a convex subset of X and Q : K → K

be a compact and continuous map. Then Q has at least one fixed point in K.

3 Main results
This section is devoted to obtaining formula of the solution to ABC-type nonlocal problem
(1.1)–(1.2). Then we prove the existence and uniqueness of solution for problem (1.1)–
(1.2) by means of Schauder’s fixed point theorem (Theorem 2.8)and Banach’s fixed point
theorem (Theorem 2.7). Moreover, we also discuss the continuous dependence of solu-
tions to such equations on arbitrary data.

3.1 Solution representation
Lemma 3.1 Let 0 < � ≤ 1 and

∑m
k=1 βk �= 0. Then the solution of ABC-type nonlocal prob-

lem (1.1)–(1.2) can be indicated by the fractional integral equation

κ(θ ) = A
(

κ0 –
m∑

k=1

βk
AB
I
�
0,τk

Fκ(τk)

)

+ AB
I
�

0,θFκ(θ ), (3.1)

where Fκ is the solution of the functional integral equation

Fκ(θ ) = f

(

θ ,Aκ0 – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) + AB

I
�

0,θFκ(θ ),Fκ(θ )

)

(3.2)

and A := (
∑m

k=1 βk)–1.
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Proof Set ABC
D

�

0,θκ(θ ) = Fκ(θ ) in (1.1). Then we get

Fκ(θ ) = f
(
θ ,κ(θ ),Fκ(θ )

)
.

Applying AB
I
�

0,θ on both sides of (1.1) and using Lemma 2.2, we have

κ(θ ) = κ(0) + AB
I
�

0,θFκ(θ ). (3.3)

Putting θ = τk into (3.3), we get

κ(τk) = κ(0) + AB
I
�

0,τk
Fκ(τk). (3.4)

Multiplying βk and taking the sum to both sides of (3.4), we can write

m∑

k=1

βkκ(τk) =
m∑

k=1

βkκ(0) +
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk).

By nonlocal condition (1.2), we obtain

κ0 =
m∑

k=1

βkκ(τk)

=
m∑

k=1

βkκ(0) +
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk),

which implies

κ(0) =

( m∑

k=1

βk

)–1[

κ0 –
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk)

]

.

Since A = (
∑m

k=1 βk)–1, we get

κ(θ ) = A
(

κ0 –
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk)

)

+ AB
I
�

0,θFκ(θ ).

Here, Fκ is the solution of equation Fκ(θ ) = f (θ ,κ(θ ),Fκ(θ )), i.e.,

Fκ(θ ) = f

(

θ ,Aκ0 – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) + AB

I
�

0,θFκ(θ ),Fκ(θ )

)

.

The proof is completed.
Now, we consider the following hypotheses: �

(H1) There exists a constant L1 > 0 such that

∣
∣f (θ , x, y) – f

(
θ , x∗, y∗)∣∣ ≤ L1

(∣
∣x – x∗∣∣ +

∣
∣y – y∗∣∣)

for all θ ∈ [0,χ ] and x, x∗, y, y∗ ∈R.
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(H2) There exists a constant κ > 0 such that

∣
∣f (θ , x, y)

∣
∣ ≤ κ

(
1 + |x| + |y|), ∀(θ , x, y) ∈ [0,χ ] ×R×R.

3.2 Existence results
In this subsection, we prove the existence and uniqueness of solution to ABC-type non-
local problem (1.1)–(1.2).

The following result is based on Theorem 2.8.

Theorem 3.2 Assume that f : [0,χ ] × R
2 −→ R is continuous. If (H2) holds with κ �= 1,

and

η1 :=
κ

1 – κ

[
(|A|∑m

k=1 |βk| + 1)(1 – �)
N(�)

+
|A|∑m

k=1 |βk|τ�

k + χ�

N(�)	(�)

]

< 1, (3.5)

then ABC-type nonlocal problem (1.1)–(1.2) has at least one solution κ ∈ C[0,χ ].

Proof Define the operator T : C[0,χ ] → C[0,χ ] by

(T κ)(θ ) = Aκ0 – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) + AB

I
�

0,θFκ(θ ), (3.6)

where

Fκ(θ ) = f

(

θ ,Aκ0 – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) + AB

I
�

0,θFκ(θ ),Fκ(θ )

)

. (3.7)

The operator T is well defined. Indeed, we consider a function κ ∈ C[0,χ ]. It is clear that
T κ ∈ C[0,χ ]. Also, by equation (3.6), Lemmas 2.4 and 2.5, we have

(ABC
D

�

0,θT κ

)
(θ ) = Aκ0

(ABC
D

�

0,θ 1
)
(θ ) – A

m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk)

(ABC
D

�

0,θ 1
)
(θ )

+ ABC
D

�

0,θ
AB
I
�

0,θFκ(θ )

= Fκ(θ ).

Since κ ∈ C[0,χ ] and ABC
D

�

0,θκ(θ ) = Fκ(θ ) in equation (1.1), it follows that

(ABC
D

�

0,θT κ

)
(θ ) = f

(
θ ,κ(θ ), ABC

D
�

0,θκ(θ )
)
.

As f (θ ,κ(θ ), ABC
D

�

0,θκ(θ )) is continuous on [0,χ ], then ABC
D

�

0,θT κ(θ ) ∈ C[0,χ ].
Let r ≥ η2

1–η1
and Br = {κ ∈ C[0,χ ] : ‖κ‖ ≤ r}, where Br is a nonempty, closed, convex,

and bounded subset of C[0,χ ] and

η2 = |Aκ0| + η1. (3.8)

Now, we show that T fulfills the hypotheses of Theorem 2.8. The proof is presented in
numerous steps as follows.
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Step 1. T Br ⊆ Br .
For θ ∈ [0,χ ], we get

∣
∣T κ(θ )

∣
∣ ≤ |Aκ0| + |A|

m∑

k=1

|βk|AB
I
�

0,τk

∣
∣Fκ(τk)

∣
∣ + AB

I
�

0,θ
∣
∣Fκ(θ )

∣
∣

≤ |Aκ0| + |A|
m∑

k=1

|βk|
[

1 – �

N(�)
∣
∣Fκ(τk)

∣
∣

+
�

N(�)
1

	(�)

∫ τk

0
(τk – σ )�–1∣∣Fκ(σ )

∣
∣dσ

]

+
1 – �

N(�)
∣
∣Fκ(θ )

∣
∣ +

�

N(�)
1

	(�)

∫ θ

0
(θ – σ )�–1∣∣Fκ(σ )

∣
∣dσ

and

∣
∣Fκ(θ )

∣
∣ =

∣
∣f

(
θ ,κ(θ ),Fκ(θ )

)∣
∣

≤ κ
(
1 +

∣
∣
κ(θ )

∣
∣+

∣
∣Fκ(θ )

∣
∣
)
.

Thus

∣
∣Fκ(θ )

∣
∣ ≤ κ(1 + |κ(θ )|)

1 – κ
. (3.9)

It follows from (3.5) and (3.8) that, for each κ ∈ Br ,

∣
∣T κ(θ )

∣
∣ ≤ |Aκ0| + |A|κ(1 + r)

1 – κ

m∑

k=1

|βk|
(

1 – �

N(�)
+

τ
�

k
N(�)	(�)

)

+
κ(1 + r)

1 – κ

(
1 – �

N(�)
+

θ�

N(�)	(�)

)

= |Aκ0| +
κ

1 – κ

[(

|A|
m∑

k=1

|βk| + 1

)
(1 – �)
N(�)

+
|A|∑m

k=1 |βk|τ�

k + θ�

N(�)	(�)

]

+
κ

1 – κ

[(

|A|
m∑

k=1

|βk| + 1

)
(1 – �)
N(�)

+
|A|∑m

k=1 |βk|τ�

k + θ�

N(�)	(�)

]

r

≤ η2 + η1r

≤ r.

Step 2. T is continuous.
Let κn be a sequence such that κn → κ as n → ∞. Then

∣
∣T κn(θ ) – T κ(θ )

∣
∣

≤ |A|
m∑

k=1

|βk|AB
I
�

0,τk

∣
∣Fκn (τk) – Fκ(τk)

∣
∣

+ AB
I
�

0,θ
∣
∣Fκn (θ ) – Fκ(θ )

∣
∣
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≤ |A|
m∑

k=1

|βk|
[

1 – �

N(�)
∣
∣Fκn (τk) – Fκ(τk)

∣
∣

+
�

N(�)
1

	(�)

∫ τk

0
(τk – σ )�–1∣∣Fκn (σ ) – Fκ(σ )

∣
∣dσ

]

+
1 – �

N(�)
∣
∣Fκn (θ ) – Fκ(θ )

∣
∣ +

�

N(�)
1

	(�)

∫ θ

0
(θ – σ )�–1∣∣Fκn (σ ) – Fκ(σ )

∣
∣dσ

≤ (|A|∑m
k=1 |βk| + 1)(1 – �)

N(�)
∥
∥Fκn (·) – Fκ(·)∥∥

+
|A|∑m

k=1 |βk|τ�

k + χ�

N(�)	(�)
∥
∥Fκn (·) – Fκ(·)∥∥.

Since Fκ(·) = f (·,κ(·),Fκ(·)) ∈ C[0,χ ], it follows that ‖T κn(·) – T κ(·)‖ → 0 as n → ∞,
which proves the required result.

Step 3. T is compact.
We shall show that T Br is relatively compact. Clearly, T Br is uniformly bounded due

to Step 1. It remains to show that T Br is equicontinuous. Let θ1, θ2 ∈ [0,χ ] such that 0 ≤
θ1 ≤ θ2 ≤ χ . Then

∣
∣T κ(θ2) – T κ(θ1)

∣
∣

=
∣
∣AB

I
�

0,θ2
Fκ(θ2) – AB

I
�

0,θ1
Fκ(θ1)

∣
∣

≤
∣
∣
∣
∣
1 – �

N(�)
|Fκ(θ2)

∣
∣
∣
∣ +

�

N(�)
1

	(�)

∫ θ2

0
(θ2 – σ )�–1|Fκ(σ )|dσ

–
1 – �

N(�)
|Fκ(θ1)| –

�

N(�)
1

	(�)

∫ θ1

0
(θ1 – σ )�–1|Fκ(σ )|dσ |

≤ 1 – �

N(�)
∣
∣Fκ(θ2) – Fκ(θ1)

∣
∣

+
�

N(�)
1

	(�)

∫ θ1

0

∣
∣(θ1 – σ )�–1 – (θ2 – σ )�–1∣∣

∣
∣Fκ(σ )

∣
∣dσ

+
�

N(�)
1

	(�)

∫ θ2

θ1

(θ2 – σ )�–1∣∣Fκ(σ )
∣
∣dσ .

It follows from (3.9) that, for each κ ∈ Br ,

∣
∣T κ(θ2) – T κ(θ1)

∣
∣ ≤ 1 – �

N(�)
∣
∣Fκ(θ2) – Fκ(θ1)

∣
∣

+
κ(1 + r)

1 – κ

�

N(�)
1

	(�)

∫ θ1

0

∣
∣(θ1 – σ )�–1 – (θ2 – σ )�–1∣∣dσ

+
κ(1 + r)

1 – κ

�

N(�)
1

	(�)

∫ θ2

θ1

(θ2 – σ )�–1 dσ

=
1 – �

N(�)
∣
∣Fκ(θ2) – Fκ(θ1)

∣
∣

+
κ(1 + r)

1 – κ

1
N(�)	(�)

[
(θ�

1 + (θ2 – θ1)� – θ
�

2
]

+
κ(1 + r)

1 – κ

1
N(�)	(�)

(θ2 – θ1)�



Alnahdi et al. Boundary Value Problems        (2021) 2021:104 Page 9 of 18

≤ 1 – �

N(�)
∣
∣Fκ(θ2) – Fκ(θ1)

∣
∣ +

κ(1 + r)
1 – κ

2(θ2 – θ1)�

N(�)	(�)
.

Since Fκ(·) = f (·,κ(·),Fκ(·)) ∈ C[θ1, θ2], it follows that |T κ(θ2) – T κ(θ1)| → 0 as θ2 → θ1.
As a result of Steps 1 to 3 together with the Arzela–Ascoli theorem, we arrive at T being

continuous and compact. According to Theorem 2.8, ABC-type nonlocal problem (1.1)–
(1.2) has at least one solution in Br . �

The following result is based on Theorem 2.7.

Theorem 3.3 Assume that f : [0,χ ] × R
2 −→ R is continuous. If (H1) holds with L1 �= 1,

then ABC-type nonlocal problem (1.1)–(1.2) has a unique solution κ ∈ C[0,χ ] provided
that

ϒ :=
L1

1 – L1

[
(|A|∑m

k=1 |βk| + 1)(1 – �)
N(�)

+
|A|∑m

k=1 |βk|τk
� + χ�

N(�)	(�)

]

< 1. (3.10)

Proof We shall use Theorem 2.7 to prove that T defined by (3.6) has a fixed point.
Let κ,κ∗ ∈ C[0,χ ] and θ ∈ [0,χ ]. Then

∣
∣(T κ)(θ ) –

(
T κ

∗)(θ )
∣
∣ ≤ |A|

m∑

k=1

|βk|AB
I
�

0,τk

∣
∣Fκ(τk) – Fκ

∗ (τk)
∣
∣

+ AB
I
�

0,θ
∣
∣Fκ(θ ) – Fκ

∗ (θ )
∣
∣. (3.11)

On the other hand, we have, for each θ ∈ [0,χ ],

∣
∣Fκ(θ ) – Fκ

∗ (θ )
∣
∣ =

∣
∣f

(
θ ,κ(θ ),Fκ(θ )

)
– f

(
θ ,κ∗(θ ),Fκ

∗ (θ )
)∣
∣

≤ L1
(∣
∣
κ(θ ) – κ

∗(θ )
∣
∣ +

∣
∣Fκ(θ ) – Fκ

∗ (θ )
∣
∣
)
.

Thus

∣
∣Fκ(θ ) – Fκ

∗ (θ )
∣
∣ ≤ L1

1 – L1

∣
∣
κ(θ ) – κ

∗(θ )
∣
∣. (3.12)

By replacing (3.12) in (3.11), we get

∣
∣(T κ)(θ ) –

(
T κ

∗)(θ )
∣
∣ ≤ |A|L1

1 – L1

m∑

k=1

|βk|AB
I
�

0,τk

∣
∣
κ(τk) – κ

∗(τk)
∣
∣

+
L1

1 – L1

AB
I
�

0,θ
∣
∣
κ(θ ) – κ

∗(θ )
∣
∣

=
|A|L1

1 – L1

m∑

k=1

|βk|
[

1 – �

N(�)
∣
∣
κ(τk) – κ

∗(τk)
∣
∣

+
�

N(�)
1

	(�)

∫ τk

0
(τk – σ )�–1∣∣

κ(σ ) – κ
∗(σ )

∣
∣dσ

]

+
L1

1 – L1

[
1 – �

N(�)
∣
∣
κ(θ ) – κ

∗(θ )
∣
∣
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+
�

N(�)
1

	(�)

∫ θ

0
(θ – σ )�–1∣∣

κ(σ ) – κ
∗(σ )

∣
∣dσ

]

≤ L1

1 – L1

[
(|A|∑m

k=1 |βk| + 1)(1 – �)
N(�)

+
|A|∑m

k=1 |βk|τk
� + χ�

N(�)	(�)

]
∥
∥
κ – κ

∗∥∥.

Consequently, by (3.10), T is a contraction. As a consequence of Theorem 2.7, we con-
clude that T has a fixed point which is a solution of problem (1.1)–(1.2). �

3.3 Continuous dependence
This portion is devoted to discussing the continuous dependence of the solution for ABC-
type nonlocal problem (1.1)–(1.2).

Definition 3.4 The solution κ ∈ C[0,χ ] of ABC-type nonlocal problem (1.1)–(1.2) is
called continuously dependent on κ0 if, for every ε > 0, there exists δ(ε) > 0 such that
|κ0 – κ̃0| < δ implies ‖κ – κ̃‖ < ε, where κ̃ is the solution of equation (1.1) with the non-
local condition

m∑

k=1

βkκ(τk) = κ̃0, τk ∈ (0,χ ). (3.13)

Theorem 3.5 Assume that the hypotheses of Theorem 3.3 are fulfilled. Then the solution
of ABC-type nonlocal problem (1.1)–(1.2) depends continuously on κ0.

Proof In view of Lemma 3.1, the solution of ABC-type nonlocal problem (1.1)–(1.2) is

κ(θ ) = A
(

κ0 –
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk)

)

+ AB
I
�

0,θFκ(θ ), (3.14)

and the solution of ABC-type nonlocal problem (1.1)–(3.13) is

κ̃(θ ) = A
(

κ̃0 –
m∑

k=1

βk
AB
I
�

0,τk
Fκ̃(τk)

)

+ AB
I
�

0,θFκ̃(θ ), (3.15)

where Fκ and Fκ̃ are the solutions of

Fκ(θ ) = f

(

θ ,Aκ0 – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) + AB

I
�

0,θFκ(θ ),Fκ(θ )

)

= f
(
θ ,κ(θ ),Fκ(θ )

)

and

Fκ̃(θ ) = f

(

θ ,Aκ̃0 – A
m∑

k=1

βk
AB
I
�
0,τk

Fκ̃(τk) + AB
I
�

0,θFκ̃(θ ),Fκ̃(θ )

)

= f
(
θ , κ̃(θ ),Fκ̃(θ )

)
.
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Hence,

∣
∣
κ(θ ) – κ̃(θ )

∣
∣ ≤ |A|

(

|κ0 – κ̃0| +
m∑

k=1

|βk|AB
I
�

0,τk

∣
∣Fκ(τk) – Fκ̃(τk)

∣
∣

)

+ AB
I
�

0,θ
∣
∣Fκ(θ ) – Fκ̃(θ )

∣
∣. (3.16)

However, we have from (H1) that

∣
∣Fκ(θ ) – Fκ̃(θ )

∣
∣ ≤ ∣

∣f
(
θ ,κ(θ ),Fκ(θ )

)
– f

(
θ , κ̃(θ ),Fκ̃(θ )

)∣
∣

≤ L1
∣
∣
κ(θ ) – κ̃(θ )

∣
∣ + L1

∣
∣Fκ(θ ) – Fκ̃(θ )

∣
∣.

Thus

∣
∣Fκ(θ ) – Fκ̃(θ )

∣
∣ ≤ L1

1 – L1

∣
∣
κ(θ ) – κ̃(θ )

∣
∣. (3.17)

By replacing (3.17) in (3.16), we get

∣
∣
κ(θ ) – κ̃(θ )

∣
∣ ≤ |A|

(

|κ0 – κ̃0| +
L1

1 – L1

m∑

k=1

|βk|AB
I
�

0,τk

∣
∣
κ(θ ) – κ̃(θ )

∣
∣

)

+
L1

1 – L1

AB
I
�

0,θ
∣
∣
κ(θ ) – κ̃(θ )

∣
∣

≤ |A||κ0 – κ̃0| +
L1

1 – L1
|A|

m∑

k=1

|βk|1 – �

N(�)
‖κ – κ̃‖

+
L1

1 – L1
|A|

m∑

k=1

|βk| τ
�

k
N(�)	(�)

‖κ – κ̃‖

+
L1

1 – L1

1 – �

N(�)
‖κ – κ̃‖ +

L1

1 – L1

θ�

N(�)	(�)
‖κ – κ̃‖

≤ |A||κ0 – κ̃0| +
L1

1 – L1

(1 – �)(|A|∑m
k=1 |βk| + 1)

N(�)
‖κ – κ̃‖

+
L1

1 – L1

|A|∑m
k=1 |βk|τ�

k + θ�

N(�)	(�)
‖κ – κ̃‖

≤ |A||κ0 – κ̃0| +
L1

1 – L1

[
(|A|∑m

k=1 |βk| + 1)(1 – �)
N(�)

+
|A|∑m

k=1 |βk|τk
� + χ�

N(�)	(�)

]
∥
∥
κ – κ

∗∥∥.

Since ϒ < 1, we get

‖κ – κ̃‖ ≤ |A|
1 – ϒ

|κ0 – κ̃0| <
|A|

1 – ϒ
δ = ε. �

Definition 3.6 The solution κ ∈ C[0,χ ] of ABC-type nonlocal problem (1.1)–(1.2) is
called continuously dependent on the coefficients

∑m
k=1 βk if, for every ε > 0, there ex-

ists δ(ε) > 0 such that
∑m

k=1 |βk – β̃k| < δ implies ‖κ – κ̃‖ < ε, where κ̃ is the solution of
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equation (1.1) with the nonlocal condition

m∑

k=1

β̃kκ(τk) = κ0, τk ∈ (0,χ ). (3.18)

Theorem 3.7 Assume that the hypotheses of Theorem 3.3 hold. Then the solution of ABC-
type nonlocal problem (1.1)–(1.2) depends continuously on the coefficients

∑m
k=1 βk , pro-

vided that
∣
∣
∣
∣

1
∑m

k=1 βk
∑m

k=1 β̃k

∣
∣
∣
∣ ≤ 1, (3.19)

�1 := L1

(

1 + |Ã|
m∑

k=1

|β̃k| τ
�

k
N(�)	(�)

)

< 1,

and

�2 :=

(

|A|
m∑

k=1

|βk| + 1

)(
1 – �

N(�)
+

|A|∑m
k=1 |βk|τ�

k + χ�

N(�)	(�)

)
L1

1 – L1
< 1,

where Ã = 1∑m
k=1 β̃k

and
∑m

k=1 β̃k �= 0.

Proof In view of Lemma 3.1, the solution of ABC-type nonlocal problem (1.1)–(1.2) is

κ(θ ) = A
(

κ0 –
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk)

)

+ AB
I
�

0,θFκ(θ ),

and the solution of ABC-type nonlocal problem (1.1)–(3.18) is

κ̃(θ ) = Ã
(

κ0 –
m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk)

)

+ AB
I
�

0,θFκ̃(θ ),

where Fκ and Fκ̃ are the solutions of

Fκ(θ ) = f

(

θ ,Aκ0 – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) + AB

I
�

0,θFκ(θ ),Fκ(θ )

)

,

Fκ̃(θ ) = f

(

θ , Ãκ0 – Ã
m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk) + AB

I
�

0,θFκ̃(θ ),Fκ̃(θ )

)

.

Hence,

κ(θ ) – κ̃(θ ) = κ0(A – Ã) – A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk)

+ Ã
m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk) + AB

I
�

0,θ
(
Fκ(θ ) – Fκ̃(θ )

)

= κ0(A – Ã) – J + J̃ + AB
I
�

0,θ
(
Fκ(θ ) – Fκ̃(θ )

)
. (3.20)
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Since

J – J̃ = A
m∑

k=1

βk
AB
I
�

0,τk
Fκ(τk) – Ã

m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk)

= A
m∑

k=1

βk
AB
I
�
0,τk

Fκ(τk) – A
m∑

k=1

βk
AB
I
�
0,τk

Fκ̃(τk)

+ A
m∑

k=1

βk
AB
I
�

0,τk
Fκ̃(τk) – A

m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk)

+ A
m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk) – Ã

m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk)

= A
m∑

k=1

βk
AB
I
�

0,τk

(
Fκ(τk) – Fκ̃(τk)

)

+ A
m∑

k=1

(βk – β̃k)AB
I
�

0,τk
Fκ̃(τk) + (A–Ã)

m∑

k=1

β̃k
AB
I
�

0,τk
Fκ̃(τk). (3.21)

Substituting from (3.21) in (3.20), we get

κ(θ ) – κ̃(θ ) = κ0(A – Ã) – A
m∑

k=1

βk
AB
I
�

0,τk

(
Fκ(τk) – Fκ̃(τk)

)

– A
m∑

k=1

(βk – β̃k)AB
I
�
0,τk

Fκ̃(τk) – (A–Ã)
m∑

k=1

β̃k
AB
I
�
0,τk

Fκ̃(τk)

+ AB
I
�

0,θ
(
Fκ(θ ) – Fκ̃(θ )

)
.

Then

‖κ – κ̃‖

≤ |κ0||A – Ã| + |A|
∣
∣
∣
∣
∣

m∑

k=1

βk

∣
∣
∣
∣
∣

(
1 – �

N(�)
‖Fκ – Fκ̃‖

+
�

N(�)
1

	(�)

∫ τk

0
(τk – σ )�–1‖Fκ – Fκ̃‖dσ

)

+ |A|
∣
∣
∣
∣
∣

m∑

k=1

(βk – β̃k)

∣
∣
∣
∣
∣

(
1 – �

N(�)
‖Fκ̃‖ +

�

N(�)
1

	(�)

∫ τk

0
(τk – σ )�–1‖Fκ̃‖dσ

)

+ |A–Ã|
∣
∣
∣
∣
∣

m∑

k=1

β̃k

∣
∣
∣
∣
∣

(
1 – �

N(�)
‖Fκ̃‖ +

�

N(�)
1

	(�)

∫ τk

0
(τk – σ )�–1‖Fκ̃‖dσ

)

+
1 – �

N(�)
‖Fκ – Fκ̃‖ +

�

N(�)
1

	(�)

∫ θ

0
(θ – σ )�–1‖Fκ – Fκ̃‖dσ

≤ |κ0||A – Ã| +

(

|A|
m∑

k=1

|βk| + 1

)(
1 – �

N(�)
+

|A|∑m
k=1 |βk|τ�

k + θ�

N(�)	(�)

)

‖Fκ – Fκ̃‖

+

(

|A|
∣
∣
∣
∣
∣

m∑

k=1

(βk – β̃k)

∣
∣
∣
∣
∣

+ |A–Ã|
∣
∣
∣
∣
∣

m∑

k=1

β̃k

∣
∣
∣
∣
∣

)(
1 – �

N(�)
+

τ
�

k
N(�)	(�)

)

‖Fκ̃‖. (3.22)
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Now, we have from (3.19) that

|A – Ã| =
∣
∣
∣
∣

1
∑m

k=1 βk
–

1
∑m

k=1 β̃k

∣
∣
∣
∣ =

∣
∣
∣
∣

∑m
k=1 β̃k – βk

∑m
k=1 βk

∑m
k=1 β̃k

∣
∣
∣
∣ ≤

m∑

k=1

|βk – β̃k| ≤ δ. (3.23)

By (H1), we obtain

‖Fκ – Fκ̃‖ ≤ L1

1 – L1
‖κ – κ̃‖ (3.24)

and

‖Fκ̃‖ ≤ L1‖κ̃‖ + ‖F0‖
1 – L1

≤ L1|Ãκ0| + ‖F0‖
1 – L1

+
L1|Ã∑m

k=1 β̃k
τ
�

k
N(�)	(�) |

1 – L1
‖Fκ̃‖,

which gives

‖Fκ̃‖ ≤ L1|Ã||κ0| + ‖F0‖
1 – �1

, (3.25)

where ‖F0‖ = maxθ∈[0,χ ] |f (θ , 0, 0)|. By replacing (3.23), (3.24), and (3.25) in (3.22), we ob-
tain

‖κ – κ̃‖ ≤ |κ0|δ + �2‖κ – κ̃‖ +

(

|A|
∣
∣
∣
∣
∣

m∑

k=1

(βk – β̃k)

∣
∣
∣
∣
∣

+ |A–Ã|
∣
∣
∣
∣
∣

m∑

k=1

β̃k

∣
∣
∣
∣
∣

)

×
(

1 – �

N(�)
+

τ
�

k
N(�)	(�)

)
(L1|Ã||κ0| + ‖F0‖)

(1 – �1)
= |κ0|δ + �2‖κ – κ̃‖ + �3,

which implies

‖κ – κ̃‖ ≤ |κ0|δ + �3

1 – �2
= ε,

where

�3 : =

(

|A|
∣
∣
∣
∣
∣

m∑

k=1

(βk – β̃k)

∣
∣
∣
∣
∣

+ |A–Ã|
∣
∣
∣
∣
∣

m∑

k=1

β̃k

∣
∣
∣
∣
∣

)

×
(

1 – �

N(�)
+

τ
�

k
N(�)	(�)

)
(L1|Ã||κ0| + ‖F0‖)

(1 – �1)
. �

4 Examples
Example 4.1 Let us consider the following ABC-type nonlocal problem:

ABC
D

1
3
0+κ(θ ) =

θ2

8

(

1 +
|κ(θ )| + |ABC

D

1
3
0+κ(θ )|

1 + |κ(θ )| + |ABC
D

1
3
0+κ(θ )|

)

, θ ∈
[

0,
1
2

]

(4.1)
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with nonlocal conditions

1
8
κ

(
1
6

)

+
3
8
κ

(
1
4

)

+
1
2
κ

(
1
3

)

= 1, (4.2)

where 0 < (τ1 = 1
6 , τ2 = 1

4 , τ3 = 1
3 ) < 1

2 , (β1 = 1
8 ,β2 = 3

8 ,β3 = 1
2 ) > 0 (k = 1, 2, 3) (m = 3), � = 1

3 .
Notice that (4.1)–(4.2) is a particular case of (1.1)–(1.2).
Set f (θ ,κ, v) = θ2

8 (1 + κ

(1+κ+v) + v
(1+κ+v) ) for (θ ,κ, v) ∈ [0, 1

2 ] × R
2. Clearly, the function

f (0,κ(0), v(0)) = 0. Let κ,κ∗, v, v∗ ∈R and θ ∈ [0, 1
2 ]. Then we have

∣
∣f (θ ,κ, v)

∣
∣ ≤ θ2

8

(

1 +
|κ|

(1 + |κ| + |v|) +
|v|

(1 + |κ| + |v|)
)

≤ 1
8
(
1 + |κ| + |v|).

Hence condition (H2) is satisfied with κ = 1
8 . By choosing N( 1

3 ) = 1, we can find that
η1 ≈ 0.23 < 1. It follows from Theorem 3.2 that ABC-type nonlocal problem (4.3)–(4.4)
has a solution on [0, 1

2 ].

Example 4.2 Consider the ABC-type nonlocal problem

ABC
D

1
2
0+κ(θ ) =

θ

(8 + eθ )(1 + |κ(θ )| + |ABC
D

1
2
0+κ(θ )|)

, θ ∈ [0, 1] (4.3)

with nonlocal conditions

1
4
κ

(
1
3

)

+
3
4
κ

(
1
2

)

= κ0 ∈R, (4.4)

where 0 < (τ1 = 1
3 , τ2 = 1

2 ) < 1, (β1 = 1
4 ,β2 = 3

4 ) > 0 (k = 1, 2; m = 2), and � = 1
2 .

Notice that (4.3)–(4.4) is a particular case of (1.1)–(1.2).
Set f (θ ,κ, v) = θ

8+eθ
1

(1+κ+v) for (θ ,κ, v) ∈ [0, 1] × R
2. Clearly, the function f (0,κ(0),

v(0)) = 0. Let κ,κ∗, v, v∗ ∈R and θ ∈ [0, 1]. Then we have

∣
∣f (θ ,κ, v) – f

(
θ ,κ∗, v∗)∣∣ =

θ

8 + eθ

∣
∣
∣
∣

1
(1 + κ + v)

–
1

(1 + κ
∗ + v∗)

∣
∣
∣
∣

≤ θ

8 + eθ

( |κ – κ
∗| + |v – v∗|

(1 + κ + v)(1 + κ
∗ + v∗)

)

≤ 1
8
[∣
∣
κ – κ

∗∣∣ +
∣
∣v – v∗∣∣].

Hence condition (H1) is satisfied with L1 = 1
8 . By choosing N( 1

2 ) = 1, we can find that
ϒ ≈ 0.28. Also, we have 1

A = 1 �= 0. It follows from Theorem 3.3 that problem (4.3)–(4.4)
has a unique solution on [0, 1].

By Theorems 3.5 and 3.7, the solution of problem (4.3)–(4.4) depends continuously on
the coefficients κ0 and

∑m
k=1 βk .
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5 Concluding remarks
We can conclude that the main outcomes of this manuscript have been effectively accom-
plished. The existence and uniqueness of solutions for the nonlocal Cauchy problem for a
nonlinear implicit FDE involving the ABC fractional derivative have been proved through
some fixed point techniques (Theorems 2.8, 2.7) and some outcomes related to AB opera-
tors. Then, as an application, the continuous dependence of solution to such equations on
arbitrary data involved therein was discussed. This paper adds and contributes to growth
FDEs, particularly in the case of nonlocal implicit FDEs involving a novel fractional deriva-
tive presented recently by Atangana and Baleanu [11]. There are some works that carried
out reported studies on the existence and continuous dependence of solutions of classi-
cal FDEs, and one of the destinations of this paper is to contribute with the goal that it
can have a more prominent degree of studies identified with FDEs involving generalized
fractional operators.

As a future direction, the studied problem would be interesting if it were studied on gen-
eralized fractional operators of variable order recently introduced by Yang and Machado
[8] and its generalization by Sousa and Oliveira [47].
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