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Abstract

In this paper, a nonhomogeneous elliptic equation of the form

…A(x,|u|Lr(x)) div(a(|� u|p(x))|� u|p(x)…2� u)

= f(x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x)

on a bounded domain� in RN (N> 1) withC2 boundary, with a Dirichlet boundary
condition is considered. Using the sub-supersolution method, the existence of at
least one positive weak solution is proved. As an application, the existence of at least
one solution of a generalized version of the logistic equation and a sublinear
equation are shown.
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1 Introduction
Partial di�erential equations involving thep(x)-Laplacian arise, for instance, in nonlinear

elasticity, ”uid mechanics, non-Newtonian ”uids and image processing. Because of the

broad set of applications, several studies related to thep-Laplacian, or in general thep(x)-

Laplacian, operator have been reported (see for instance [4, 6, 16…18, 20…27, 29, 31, 32]

and the references therein). One of the approaches to study the existence of solutions

of elliptic partial di�erential equations is the sub-supersolution method. Some problems

such as

�
�

�
…� pu = |u|� (x)

Lq(x) in � ,

u = 0 on �� ,
�
�

�
…a(

�
� |u|� )� u = f� (x,u) in � ,

u = 0 on �� ,
and
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�
�

�
…a(

�
� |u|q)� u = h1(x,u)f (

�
� |u|p) + h2(x,u)g(

�
� |u|r ) in � ,

u = 0 on �� ,

have been studied via the sub-supersolution method (see [1, 11, 33]). Also, one may refer

to [5, 7, 8, 10, 12…14, 28] for other similar model problems.

Recently, the existence of solutions for nonlocal problems involving thep(x)-Laplacian

operator

�
���

���

…A(x,|u|Lr(x) )div(|� u|p(x)…2� u)

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on �� ,

(1.1)

where …� p(x)u := …div(|� u|p(x)…2� u), has been studied [14,15] via a new sub-supersolution

method. In [14], the problem (1.1) for p(x) � 2 (i.e., …� p(x) = …� ) is considered. They study

the existence of a weak solution for three problems (the sublinear problem, the concave…

convex problem and the logistic equation). Their arguments are mainly based on the ex-

istence of the “rst eigenvalue of the Laplacian operator (…� ,H1
0(� )). The p(x)-Laplacian

operator, in general, has no “rst eigenvalue, that is, the in“mum of the eigenvalues equals

0 (see [19]).

The lack of the existence of the “rst eigenvalue implies a considerable di�culty when

dealing with boundary value problems involving thep(x)-Laplacian by using the sub-

supersolution method. Papers that consider such problems by using the mentioned

method are rare in the literature. Among such works we mention papers such as [2, 3,

24, 34].

In this paper, we are interested in the nonlocal problem

�
���

���

…A(x,|u|Lr(x) )div(a(|� u|p(x))|� u|p(x)…2� u)

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on �� ,

(1.2)

where� is a bounded domain inRN (N > 1) with C2 boundary,|.|Lm(x) is the norm of the

spaceLm(x)(� ), r,q,s,� , � : � � [0,� ) are measurable functions andA ,f ,g : � × R �

R are continuous functions satisfying certain conditions. To be more speci“c about the

structure of the operator in (1.2), we deal with functiona : R+ � R+ of classC1 satisfying

the following conditions:

(a1) There exist constantsk1,k2,k3,k4 � 0, 1 <p � l < N such that

k1tp + k2t l � a
�
tp�

tp � k3tp + k4t l , for all t � 0.

(a2) The function

t �� A
�
tp�

is strictly convex,

whereA(t) =
� t

0 a(s)ds.
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(a3) The function

t �� a
�
tp�

tp…2 is increasing.

Various operators occurring in applications are included as models for the boundary

value problem (1.2), as one can see from the next examples.

Example1.1 The following operators satisfying (a1)…(a3):

(i) If a(t) = 1, we obtain the p-Laplacian that is

�
�

�
…A(x,|u|Lr(x) )� p(x)u = f (x,u)|� u|� (x)

Lq(x) + g(x,u)|� u|� (x)
Ls(x) in � ,

u = 0 on � � ,

where k1 = k2 = k3 = k4 = 1.
(ii) If a(t) = 1 + t

l…p
p we obtain the (p, l)-Laplacian or p&l-Laplacian with 1 <p � l < � ,

that is

�
���

���

…A(x,|u|Lr(x) )(� p(x)u + � l(x)u)

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on � � .

(iii) If a(t) = 1 + t

(1+t2)
1
2

we obtain the p-Laplacian with 1 <p < � , that is

�
����

����

…A(x,|u|Lr(x) )div((1 + |� u|p

(1+|� u|2p)
1
2

)|� u|p…2� u)

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on � � ,

with l = p, k1 + k2 = 2 and k3 + k4 = 1.
(iv) If a(t) = (1 + 1

t
2
p

)
p…2

2 with p � 2 we obtain the generalized p-mean curvature

operator, that is

�
���

���

…A(x,|u|Lr(x) )div((1 + |� u|2)
p…2

2 )� u)

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on � � .

(v) If a(t) = 1 + 1

(1+t)
p…2
p

with p � 2 we obtain

�
����

����

…A(x,|u|Lr(x) )div(|� u|p…2� u + |� u|p…2� u

(1+|� u|p)
p…2
p

)

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on � � ,

with l = p, k1 + k2 = 1 and k3 + k4 = 2.
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(vi) If a(t) = 1 + t
l…p
p + 1

(1+t)
p…2
p

with p � 2

�
����

����

…A(x,|u|Lr(x) )(� pu + � lu + div( |� u|p…2� u

(1+|� u|p)
p…2
p

))

= f (x,u)|� u|� (x)
Lq(x) + g(x,u)|� u|� (x)

Ls(x) in � ,

u = 0 on � � ,

where k1 = k2 = k4 = 1 and k3 = 2.

The main aim of this paper is to prove the existence of a weak positive solution for (1.2)

via the sub-supersolution method.

In the next section we present some preliminaries to construct a function space where

the solution of (1.2) makes sense.

2 Function spaces
To study the solution of problem (1.2), we need to introduce a suitable function space,

where the solution makes sense. To do this, we recall some facts about the known spaces

Lp(x)(� ), W 1,p(x)(� ) and W 1,p(x)
0 (� ) (see [18, 30] and the references therein for more de-

tails).

Let � 	 IRN (N � 1) be a bounded domain and

S(� ) := {u : � � R : u is measurable}.

For p 
 L�
+ (� ), the generalized Lebesgue space and its norm are de“ned by

Lp(x)(� ) =:
	

u 
 S(� ) :



�

�
�u(x)

�
�p(x)

dx < �
�

, and

|u|p(x) := inf

	
� > 0;




�

�
�
�
�
u(x)

�

�
�
�
�

p(x)

dx � 1
�

,

respectively. It is easy to see that the space (Lp(x)(� ),|.|Lp(x) ) is a Banach space.

Set

m+ := ess sup
�

m(x) and m…:= ess inf
�

m(x),

wherem 
 L� (� ).

Proposition 2.1 Let � (u) :=
�

� |u|p(x) dx. For all u,un 
 Lp(x)(� ), n 
 N, the following as-

sertions hold:

(i) Let u �= 0 in Lp(x)(� ), then |u|Lp(x) = � � � ( u
� ) = 1.

(ii) If |u|Lp(x) < 1(= 1;> 1), then � (u) < 1(= 1;> 1).
(iii) If |u|Lp(x) > 1, then |u|p

…

Lp(x) � � (u) � | u|p
+

Lp(x) .
(iv) If |u|Lp(x) < 1, then |u|p

+

Lp(x) � � (u) � | u|p
…

Lp(x) .
(v) |un|Lp(x) � 0 � � (un) � 0, and |un|Lp(x) � � � � (un) � � .
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Theorem 2.2 Let p,q 
 L�
+ (� ). The following statements hold:

(i) If p…> 1 and 1
q(x) + 1

p(x) = 1 a.e. in � , then

�
�
�
�




�
uv dx

�
�
�
� �


1
p…

+
1
q…

�
|u|Lp(x) |v|Lq(x) .

(ii) If q(x) � p(x), a.e. in � and |� | < � , then Lp(x)(� ) 	� Lq(x)(� ).

One can de“ne the generalized Sobolev space

W 1,p(x)(� ) :=
	

u 
 Lp(x)(� ) :
� u
� xj


 Lp(x)(� ), j = 1, . . . ,N
�

,

with the norm  u � = |u|Lp(x) +
� N

j=1 | � u
� xj

|Lp(x) , u 
 W 1,p(x)(� ). The spaceW 1,p(x)
0 (� ) is de-

“ned as the closure ofC�
0 (� ) with respect to the norm . � .

Theorem 2.3 If p…> 1,then W1,p(x)(� ) is a Banach, separable and re”exive space.

Proposition 2.4 Let � 	 RN be a bounded domain and consider p,q 
 C(� ). De“ne the
function p� (x) = Np(x)

N…p(x) if p(x) < N and p� (x) = � if N � p(x). The following statements
hold:

(i) (Poincaré inequality) If p…> 1, then there is a constant C > 0 such that
|u|Lp(x) � C|� u|Lp(x) for all u 
 W 1,p(x)

0 (� ).
(ii) If p…,q…> 1 and q(x) < p� (x) for all x 
 � , the embedding W 1,p(x)(� ) 	� Lq(x)(� ) is

continuous and compact.

Note that  u := |� u|Lp(x) de“nes a norm in W 1,p(x)
0 (� ) that is equivalent to the norm

 . � (by (i) of Proposition2.4).

Definition 2.5 Consideru,v 
 W 1,p(x)(� ). It is called

…� p(x)u � …� p(x)v,

if



�
|� u|p(x)…2� u� 
 �




�
|� v|p(x)…2� v� 
 ,

for all 
 
 W 1,p(x)
0 (� ) with 
 � 0.

The following result is contained in [21, Lemma 2.2] and [16, Proposition 2.3].

Proposition 2.6 Consider u,v 
 W 1,p(x)(� ). If …� p(x)u � …� p(x)v and u � v on �� , (i .e.,
(u …v)+ 
 W 1,p(x)

0 (� )), then u � v in � . If u,v 
 C(� ) and S= {x 
 � : u(x) = v(x)} is a
compact set of� , then S= � .

Lemma 2.7 ([16, Lemma 2.1]) Let � > 0 be the unique solution of problem

�
�

�
…� p(x)z� = � in � ,

u = 0 on �� .
(2.1)
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De“ne � 0 = p…

2|� |
1
N C0

. If � � � 0, then |z� |L� � C� M
1

p……1 and |z� |L� � C� M
1

p+…1 if � < � 0.

Here, C� and C� are positive constants dependent only on p+, p…, N, |� | and C0, where C0

is the best constant of the embedding W1,1
0 (� ) 	� L

N
N…1(� ).

Regarding the functionz� of the previous result, it follows from [17, Theorem 1.2] and

[21, Theorem 1] thatz� 
 C1(� ) with z� > 0 in � .

3 Weak positive solution
In this section we prove the existence of a weak positive solution of problem (1.2), via the

sub-supersolution method. In fact, we prove there existsu 
 [u,u] as the weak solution of

(1.2), whereu and u are subsolution and supersolution, respectively. To do this, we state

the de“nition of a solution of the problem (1.2).

Definition 3.1 We say thatu 
 W 1,p(x)
0 (� ) � L� (� ) is a (weak) solution of (1.2) if




�
a
�
|� u|p(x)� |� u|p(x)…2� u� 
 =




�

 f (x,u)|u|� (x)
Lq(x)

A (x,|u|Lr(x) )
+

g(x,u)|u|� (x)
Ls(x)

A (x,|u|Lr(x) )

�

 ,

for all 
 
 W 1,p(x)
0 (� ).

For u,v 
 S(� ), we writeu � v if u(x) � v(x) a.e. in� and

[u,v] :=
�
w 
 S(� ) : u(x) � w(x) � v(x) a.e. in�

�
.

Definition 3.2 We say that (u,u) is a sub-supersolution pair for (1.2) if u 
 W 1,p(x)
0 (� ) �

L� (� ), u 
 W 1,p(x)(� ) � L� (� ) are such thatu � u, u � 0 � u on �� and if, for all 
 


W 1,p(x)
0 (� ) with 
 � 0, the following inequalities hold




�
a
�
|� u|p(x)� |� u|p(x)…2� u� 
 �




�

 f (x,u)|u|� (x)
Lq(x)

A (x,|w|Lr(x) )
+

g(x,u)|u|� (x)
Ls(x)

A (x,|w|Lr(x) )

�

 (3.1)

and




�
a
�
|� u|p(x)� |� u|p(x)…2� u� 
 �




�

 f (x,u)|u|� (x)
Lq(x)

A (x,|w|Lr(x) )
+

g(x,u)|u|� (x)
Ls(x)

A (x,|w|Lr(x) )

�

 , (3.2)

for all w 
 [u,u].

We will assume that the functionsr, p, q, s, � and � satisfy the following hypotheses:

(H0) p 
 C1(� ), r,q,s
 L�
+ (� ), where

L�
+ (� ) =

�
m 
 L� (� ) with ess inf m(x) � 1

�
,

and � , � 
 L� (� ) satisfy

1 <p…:= inf
�

p(x) � p+ := sup
�

p(x) < N and � (x),� (x) � 0 a.e. in � .
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The main result of this section is to prove the existence of at least one solution of (1.2).

Theorem 3.3 Suppose that r, p, q, s, � and � satisfy(H0), a : R+ � R+ is a C1 func-

tion satisfying(a1)…(a3), (u,u) is a pair of sub-supersolution for(1.2) with u > 0 a.e. in � ,

f (x,t),g(x,t) � 0 in � × [0,|u|L� ] are continuous functions andA : � × (0,� ) � R is con-

tinuous with A(x,t) > 0 in � × [|u|Lr(x) , |u|Lr(x) ]. Then, (1.2) has at least one weak positive
solution u
 [u,u].

To prove this theorem, we need to prove some facts in the series of lemmas.

First, we study the existence and uniqueness of the solution

�
�

�
…div

�
a
�
|� u|p(x)

�
|� u|p(x)…2� u

�
= G(v) in � ,

u = 0 on �� .
(3.3)

Lemma 3.4 Let � 	 RN , N � 2,be a smooth bounded domain and a: R+ Š� R+ be a C1

function satisfying(a1), (a2) and (a3). Assume G: Lp(x)(� ) � Lp�(x)(� ) is continuous and

there exists K0 > 0 such that |G(v)| � K0, for all v 
 Lp(x)(� ), where p�(x) = p(x)
p(x)…1. Then,

problem(3.3) has a unique solution u
 W 1,l(x)
0 (� ).

Proof Consider the functionalI : W 1,l(x)
0 (� ) Š� R given by

I(u) =
1
p




�
A

�
|� u|p(x)� dx …




�
G(v)udx. (3.4)

From (a1) the functional (3.4) is well de“ned and thusI 
 C1(W 1,q
0 (� ),R). Also,I is strictly

convex and weakly lower semicontinuous by (a2). Note that (a1), |G(v)| � K0 and Hölder•s
inequality imply

I(u) �
k1

p…
 u p(x)

W1,p(x)
0 (� )

+
k2

l…
 u l(x)

W1,l(x)
0 (� )

…K0C u
W1,l(x)

0 (� )

for some constantC > 0 and allu 
 W 1,l(x)
0 (� ) with � (|� u|) � 1, which shows thatI is

coercive. Hence,I has a unique critical point (a global minimizer), which is the unique

solution to (3.3). �

Lemma 3.5 Under the hypotheses of Theorem3.3, de“ne the operator T: Lp(x)(� ) �
L� (� ) by

(Tu)(x) =

�
���

���

u(x) if u(x) � u(x),

u(x) if u(x) � u(x) � u(x),

u(x) if u(x) � u(x).

where u,u 
 L� (� ) and Tu 
 [u,u]. Moreover, let the operator H: [u,u] � Lp�(x)(� ) be

de“ned by

H(v)(x) =
f (x,v(x))|v|� (x)

Lq(x)

A (x,|v|Lr(x) )
+

g(x,v(x))|v|� (x)
Ls(x)

A (x,|v|Lr(x) )
,
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where p�(x) = p(x)
p(x)…1and |.|Lm(x) denotes the norm of Lm(x)(� ). Then, the operators T, H and

u �� HoT(u) are well de“ned and u�� HoT(u) is continuous.

Proof Similar to [14] one can show the operatorsH andu �� HoT(u) are well de“ned and

u �� HoT(u) is continuous. �

Lemma 3.6 Fix v 
 Lp(x)(� ) and de“ne the operator S: Lp(x)(� ) � Lp(x)(� ), given by S(v) =

u, where u
 W 1,p(x)
0 (� ) is the unique solution of(3.3). Then, S is compact and continuous.

Proof Assume (vn) is a bounded sequence inLp(x)(� ) and de“neun := S(vn), n 
 N. Then,




�
a
�
|� un|p(x)� |� un|p(x)…2� un� 
 =




�
H(Tvn)
 ,

for all n 
 N and 
 
 W 1,p(x)
0 (� ). Consider the test function
 = un, by the inclusionTvn 


[u,u], one can obtain




�
a
�
|� un|p(x)� |� un|p(x) � K0




�
|un|,

for all n 
 N, whereK0 is an upper bound forHoT.

The embeddingLp(x)(� ) 	� L1(� ) and Poincaré•s inequality show that




�
a
�
|� un|p(x)� |� un|p(x) � C un ,

for all n 
 N, whereC is a constant that does not depend onn 
 N.

If  un > 1, by Proposition2.1we have

 un p…
� C un ,

for all n 
 N, where the constantC does not depend onn 
 N. Therefore, the sequence

(un) is bounded inW 1,p(x)
0 (� ). Thus, up to a subsequence, we haveun � u in W 1,p(x)

0 (� )

for someu 
 W 1,p(x)
0 (� ). Since the embeddingW 1,p(x)

0 (� ) 	� Lp(x)(� ) is compact, we have

un � u in Lp(x)(� ). Therefore,Sis a compact operator.

Now, we show thatS is continuous. Assume (vn) is a sequence inLp(x)(� ) with vn � v

in Lp(x)(� ) for v 
 Lp(x)(� ). De“ne un := S(vn) andu := S(v). Note that




�
a
�
|� un|p(x)� |� un|p(x)|� un|p(x)…2� un� 
 =




�
H(Tvn)


and




�
a
�
|� u|p(x)� |� u|p(x)…2� u� 
 =




�
H(Tv)
 ,

for all 
 
 W 1,p(x)
0 (� ). Such equations with
 = un …u provide




�

�
a
�
|� un|p(x)� |� un|p(x)…2� un …a

�
|� u|p(x)� |� u|p(x)…2� u,� (un …u)

�
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=



�

�
H(Tvn) …H(Tv)

�
(un …u).

Thus, the sequence (un) is bounded inLp(x)(� ) and by Hölder•s inequality, we have

�
�
�
�




�

�
H(Tvn) …H(Tv)

�
(un …u)

�
�
�
� � C

�
�(HoT)(vn) … (HoT)(v)

�
�
Lp�(x) ,

where the constantC does not depend onn 
 N. The continuity of HoT shows




�

�
a
�
|� un|p(x)� |� un|p(x)…2� un …a

�
|� u|p(x)� |� u|p(x)…2� u,� (un …u)

�
� 0,

which implies the continuity ofS. �

We recall a special case of the far-reaching Leray…Schauder theorem called Schaefer•s

Fixed Point Theorem.

Theorem 3.7 Let S be a continuous and compact mapping of a Banach space X into itself,

such that the set

{x 
 X : x = � Sx for some0 � � � 1}

is bounded. Then, S has a “xed point.

Lemma 3.8 S has a “xed point in Lp(x)(� ), i .e., there exists u
 Lp(x)(� ) such that S(u) = u.

Proof Since we can apply Theorem3.7, we need to show that there existsR> 0 such that

if u = � S(u) with � 
 [0, 1], then|u|Lp(x) < R. In fact, if � = 0, thenu = 0. Suppose that� �= 0.

In this case, we haveS(u) = u
� and such an equality implies the identity




�
a
 �

�
�
�


u
�

� �
�
�
�

p(x)� �
�
�
��


u
�

� �
�
�
�

p(x)…2

�


u
�

�
� 
 =




�
H(Tu)
 ,

for all 
 
 W 1,p(x)
0 (� ). Using the test function
 = u

� and by the embeddingLp(x)(� ) 	�

L1(� ), we obtain




�
a
 �

�
�
�


u
�

� �
�
�
�

p(x)� �
�
�
��


u
�

� �
�
�
�

p(x)

� K0




�

|u|
�

�
C
�

|u|Lp(x) ,

whereC > 0 is a constant that does not depend onu and� . If |� u|Lp(x) > 1, by Poincaré•s in-

equality and Proposition2.1, |u|p……1
Lp(x) � � p……1C, whereC is a constant that does not depend

on u and � . �

Now, we can prove Theorem3.3.

Proof Lemma 3.5 shows the operatorsH and u �� HoT(u) are well de“ned andu ��

HoT(u) is continuous.
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Fix v 
 Lp(x)(� ). Since (HoT)(v) 
 L� (� ), by Lemma3.4problem (3.3) has a unique so-

lution. Note that by Lemma3.6the operatorS: Lp(x)(� ) � Lp(x)(� ) is compact and con-

tinuous. Also, Lemma3.8shows that there exists au 
 Lp(x)(� ) such thatu = S(u), then




�
a
�
|� u|p(x)� |� u|p(x)…2� u� 


=



�

 f (x,Tu)|Tu|� (x)
Lq(x)

A (x,|Tu|Lr(x) )
+

g(x,Tu)|Tu|� (x)
Ls(x)

A (x,|Tu|Lr(x) )

�

 ,

(3.5)

for all 
 
 W 1,p(x)
0 (� ).

We claim that u 
 [u,u]. Consideringw = Tu in (3.1) and subtracting from (3.5), we

obtain




�

�
a
�
|� u|p(x)� |� u|p(x)…2� u …a

�
|� u|p(x)� |� u|p(x)…2� u,� 


�

�



�

 f (x,u)|u|� (x)
Lq(x) …f (x,Tu)|Tu|� (x)

Lq(x)

A (x,|Tu|Lr(x) )

�



+



�

 g(x,u)|u|� (x)
Ls(x) …g(x,Tu)|Tu|� (x)

Ls(x)

A (x,|Tu|Lr(x) )

�

 ,

for all 
 
 W 1,p(x)
0 (� ) with 
 � 0.

Using the test function
 := (u …u)+ = max{u …u,0}, and using thatf ,g � 0 in [0,|u|L� ],

Tu = u in {u � u} := {x 
 � : u(x) � u(x)}, we obtain




{u� u}

�
a
�
|� u|p(x)� |� u|p(x)…2� u …a

�
|� u|p(x)� |� u|p(x)…2� u,� (u …u)

�

�



{u� u}

f (x,u)(|u|� (x)
Lq(x) …|Tu|� (x)

Lq(x) )

A (x,|Tu|Lr(x) )

 +




{u� u}

g(x,u)(|u|� (x)
Ls(x) …|Tu|� (x)

Ls(x) )

A (x,|Tu|Lr(x) )



� 0,

which imply that u � u. A similar reasoning provides the inequalityu � u and the proof

is complete. �

4 Applications
The main goal of this section is to apply Theorem3.3to some classes of nonlocal problems.

4.1 A generalization of the logistic equation
Here, we study a generalization of the classic logistic equation as follows:

�
�

�
…A(x,|u|Lr(x) )div(a(|� u|p(x))|� u|p(x)…2� u) = � f (u)|u|� (x)

Lq(x) in � ,

u = 0 on �� .
(4.1)

where the functionA(x,t) satis“es

A(x,0)� 0, lim
t � 0+

A (x,t) = � and lim
t � +�

A (x,t) = ±� .
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We suppose that there exists a number > 0 such that the functionf : [0,� ) � R satis“es

the conditions:

(f1) f 
 C0([0, ],R),
(f2) f (0) = f ( ) = 0, f (t) > 0 in (0, ).

Problem (4.1) is a generalization of the problems studied in [9, 14]. The next result gener-

alizes [14, Theorem 5].

Theorem 4.1 Suppose that r, p, q, � satisfy(H0). Assume a: R+ � R+ is a C1 function

satisfying(a1)…(a3),f satis“es(f1), (f2) and A(x,t) > 0 in � × (0,| |Lr(x) ]. Then, there exists

� 0 > 0 such that� � � 0, (4.1) has a positive solution u� 
 [0, ].

Proof Consider the function�f (t) = f (t) for t 
 [0,� ], and�f (t) = 0, for t 
 R \ [0, ]. The

functional

J� (u) =



�

1
p(x)

A
�
|� u|p(x)� dx …�




�

�F(u)dx, u 
 W 1,p(x)
0 (� ),

whereA(t) =
� t

0 a(s)dsand�F(t) =
� t

0
�f (s)dsis of classC1(W 1,p(x)

0 (� ),R). Since|�f (t)| � C for

t 
 R, we have thatJ is coercive. Thus,J has a minimumz� , which is a weak solution of

the problem

�
�

�
…div(a(|� z|p(x))|� z|p(x)…2� z) = � �f (z) in � ,

z = 0 on �� .

Consider a function
 0 
 W 1,p(x)
0 (� ) such that �F(
 0) > 0. De“ne z0 := z�� 0

, where�� 0 > 0

satis“es




�

1
p(x)

A
�
|� 
 0|p(x)� dx <�� 0




�

�F(
 0)dx.

Thus, J�� 0
(z0) � J�� 0

(
 0) < 0. SinceJ�� 0
(0) = 0, we havez0 �= 0. By [20, Theorem 4.1], we have

z0 
 W 1,p(x)
0 (� ) � L� (� ), and using [17, Theorem 1.2], we obtain thatz0 
 C1,� (� ). Con-

sidering the test function
 = z…
0 := min{z0, 0}, we obtainz0 = z+

0 � 0. By Proposition2.6,

we havez0 > 0.

Considering the test function
 = (z0 … )+ 
 W 1,p(x)
0 (� ), we have




�
a
�
|� z0|p(x)� |� z0|p(x)…2� z0� (z0 … )+ dx

=�� 0




{z0> }

�f (z0)(z0 … )dx

= 0.

Therefore




{z0> }

�
a
�
|� z0|p(x)� |� z0|p(x)…2� z0 …a

�
|�  |p(x)� |�  |p(x)…2�  , � (z0 … )

�
dx = 0,

which implies (z0 … )+ = 0 in � . Thus, 0 <z0 �  .
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Note that there is a constantC > 0 such that|z0|� (x)
Lq(x) � C. De“ne

�
�

�
A 0 := max{A (x,t) : (x,t) 
 � × [|z0|Lr(x) , | |Lr(x) ]} and

µ 0 := A0
C .

Then,

…div
�
a
�
|� z0|p(x)� |� z0|p(x)…2� z0

�
= �� 0f (z0)

=
1

A 0

�� 0µ 0f (z0)|z0|� (x)
Lq(x)

A 0

µ 0|z0|� (x)
Lq(x)

�
1

A 0

�� 0µ 0f (z0)|z0|� (x)
Lq(x) .

Thus, for each� � �� 0µ 0 andw 
 [
 ,  ], we obtain

…div
�
a
�
|� z0|p(x)� |� z0|p(x)…2� z0

�
�

1
A (x,|w|Lr(x) )

� f (z0)|z0|� (x)
Lq(x) .

Sincef ( ) = 0, it follows that (z0, ) is the sub-supersolution pair for (4.1) and the result is
proved. �

4.2 A sublinear problem
Here, we use Theorem3.3to study the nonlocal problem

�
�

�
…A(x,|u|Lr(x) )(� p(x)u + � u) = u� (x)|u|� (x)

Lq(x) in � ,

u = 0 on �� .
(4.2)

The above problem in the casep(x) � 2, was considered recently in [14]. The result of this
section generalizes [14, Theorem 3] and [15, Theorem 4.1].

Theorem 4.2 Suppose that r, p, q, � satisfy(H0), � 
 L� (� ) is a nonnegative function,
� + + � + < p…… 1and a0 > 0 is a positive constant. Assume one of the conditions holds:

(A1) A (x,t) � a0 in � × [0,� ),
(A2) 0 <A(x,t) � a0 in � × (0,� ), and limt � +� A (x,t) = a� > 0 uniformly in � .

Then, (4.2) has a positive solution.

Proof Suppose (A1) holds, that is,A (x,t) � a0 in � × [0,+� ). We will start by construct-
ing u. Let � > 0 andz� 
 W 1,p(x)

0 (� ) � L� (� ) be the unique solution of (2.1), where� will
be chosen later.

For � > 0 su�ciently large, by Lemma2.7there is a constantK > 1 that does not depend
on � such that

0 <z� (x) � K�
1

p……1 in � . (4.3)

Since� + + � + < p…… 1, we can choose� > 1 such that (4.3) occurs and

1
a0

K� +
�

� ++� +
p……1 max

�
|K|�

…

Lq(x) , |K|�
+

Lq(x)

�
� � . (4.4)
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From (4.3) and (4.4), we obtain

1
a0

z� (x)
� |z� |� (x)

Lq(x) � � .

Therefore,

�
�

�

…(� p(x)z� + � z� ) � 1
A(x,|w|Lr(x) ) z

� (x)
� |z� |� (x)

Lq(x) in � ,

z� = 0 on �� ,

for all w 
 L� (� ).
De“ne A � := max{A (x,t) : (x,t) 
 � × [0,|z� |Lr(x) ]}. We have

a0 � A
�
x,|w|Lr(x)

�
� A � in � ,

for all w 
 [0,z� ].
Now, we constructu. Since�� is C2, there is a constant� > 0 such thatd 
 C2(� 3� ) and

|� d(x)| � 1, whered(x) := dist(x,�� ) and� 3� := {x 
 � ;d(x) � 3� }. From [24, page 12], we
have, for� 
 (0,� ) su�ciently small, the function � = � (k,� ) de“ned by

� (x) =

�
���

���

ekd(x) … 1 ifd(x) < � ,

ek� … 1 +
� d(x)

� kek� ( 2� …t
2� …� )

2
p……1dt if � � d(x) < 2� ,

ek� … 1 +
� 2�

� kek� ( 2� …t
2� …� )

2
p……1dt if 2� � d(x),

belongs toC1
0(� ), wherek > 0 is an arbitrary number, and

…� p(x)(µ� ) =

�
������������

������������

…k(kµekd(x))p(x)…1[(p(x) … 1) + (d(x)

+ ln kµ
k )� p(x)� d(x) + � d(x)

k ] if d(x) < � ,

{ 1
2� …�

2(p(x)…1)
p……1 … (2� …d(x)

2� …� )[ln kµek�

× (2� …d(x)
2� …� )

2
p……1� p(x)� d(x) + � d(x)]}

× (kµek� )p(x)…1(2� …d(x)
2� …� )

2(p(x)…1)
p……1 …1 if � < d(x) < 2� ,

0 if 2� < d(x),

for all µ > 0.
From the above, one can write

…� (µ� ) =

�
���

���

…k(kµekd(x))[1 + � d(x)
k ] if d(x) < � ,

{ 1
2� …� 2 … (2� …d(x)

2� …� )� d(x)}(kµek� )( 2� …d(x)
2� …� ) if � < d(x) < 2� ,

0 if 2� < d(x),

for all µ > 0.
Let � = 1

k ln 2
1

p+ and µ = e…ak, wherea = p……1
max� |� p|+1 . Then,ek� = 2

1
p+ and kµ � 1 if k > 0

is su�ciently large. From [24, page 12], ford(x) < � or 2� < d(x) we obtain

…� p(x)(µ� ) …� (µ� ) � 0 <
1

A �
(µ� )� (x)|µ� |� (x)

Lq(x)
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and for � < d(x) < 2� we obtain

…� p(x)(µ� ) …� (µ� ) � �C(kµ )p……1| ln kµ | + �C(kµ )| ln kµ |. (4.5)

Since� + + � + < p…… 1, an application of L•Hospital•s rule implies that

lim
k� +�

�Ckp……1+ �Ck
eak(p……1…(� ++� +))

�
�
�
�ln

k
eak

�
�
�
� = 0. (4.6)

If � � d(x) < 2� , we have� (x) � 2
1

p+ … 1 for allk > 0, becauseek� = 2
1

p+ . Thus, there is a
constantC0 > 0 that does not depend onk such that|� |� (x)

Lq(x) � C0 if � � d(x) < 2� . By (4.6),
we can choosek > 0 large enough such that

C1kp……1+ �Ck
eak[(p……1)…(� ++� +)]

�
�
�
�ln

k
eak

�
�
�
� �

C0

A �

�
2

1
p+ … 1

� � +
. (4.7)

It is possible to choosek > 0 large such thatµ� (x) � 1 for all x 
 � satisfying� < d(x) < � .
Therefore, from (4.5) and (4.7), we have

…� p(x)(µ� ) …� (µ� ) �
1

A �
(µ� )� (x)|µ� |� (x)

Lq(x) if � < d(x) < 2� ,

for k > 0 large enough. Fixk > 0 satisfying the above property, and the inequality

…� p(x)(µ� ) …� (µ� ) � 1.

For � > 1, we have

…� p(x)(µ� ) …� (µ� ) � …� p(x)(z� ) …� (z� ).

Therefore,µ� � z� . The “rst part of the result is proved.
Now, suppose that 0 <A(x,t) � a0 in � × (0,� ). Let � , � , µ , a, � , z� and� be as before.

From the previous arguments, there existk > 0 large enough andµ > 0 su�ciently small
such that

…� p(x)(µ� ) …� (µ� ) � 1 and

…� p(x)(µ� ) …� (µ� )� �
1
a0

(µ� )� (x)|µ� |� (x)
Lq(x) in � .

In particular, for w 
 L� (� ) with µ� � w, we have

…� p(x)(µ� ) …� (µ� ) �
1

A (x,|w|Lr(x) )
(µ� )� (x)|µ� |� (x)

Lq(x) in � . (4.8)

Sincelimt �� A (x,t) = a� > 0 uniformly in � , there is a constanta1 > 0 such thatA (x,t) �
a�
2 in � × (a1,� ). De“ne

�
�

�
mk := min{A (x,t) : � × [|µ� |Lr(x) ,a1]} > 0 and

A k := min{mk, a�
2 }.

Then, A (x,t) � A k in � × [|µ� |Lr(x) , � ).
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Fix k > 0 satisfying (4.8). Let � > 1 such that (4.3) occurs and

1
A k

K� +
�

� ++� +
p……1 max

�
|K|�

…

Lq(x) , |K|�
+

Lq(x)

�
� � ,

whereK > 1 is a constant that does not depend onk and � (see Lemma2.7). Thus, for all
w 
 [µ� ,z� ], we have

…� p(x)(z� ) …� (z� ) �
1

A (x,|w|Lr(x) )
z� (x)

� |z� |� (x)
Lq(x) in � .

From the weak comparison principle, we haveµ� � z� . Therefore, (µ� ,z� ) is a sub-
supersolution pair for (4.2). �
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