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Abstract
In this paper, a modified cross-diffusion Leslie–Gower predator–prey model with the
Beddington–DeAngelis functional response is studied. We use the linear stability
analysis on constant steady states to obtain sufficient conditions for the occurrence of
Turing instability and Hopf bifurcation. We show that the Turing instability and
associated patterns are induced by the variation of parameters in the cross-diffusion
term. Some numerical simulations are given to illustrate our results.
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1 Introduction
In this paper, we consider the modified Leslie–Gower predator–prey model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – �((1 + αv)u) = ru(1 – u
k ) – auv

m+bu+cv , (x, t) ∈ � × (0,∞),

vt – �((μ + 1
1+βu )v) = dv(1 – ev

m+bu ), (x, t) ∈ � × (0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �,

∂νu = ∂νv = 0, (x, t) ∈ ∂� × (0,∞),

(1.1)

where � is a bounded domain in R
N with smooth boundary ∂�, u and v represent the

densities of the prey and the predator, � is the Laplacian operator, and ν is the outward
unit normal vector on ∂�. Also r is the growth rate of the prey in the absence of the
predator, k is the carrying capacity of the prey in the absence of the predator population,
d is the intrinsic growth rate of the predator species, e is the maximum rate of death of
the predator population, and μ > 0 is the linear diffusion coefficient. The nonlinear cross
diffusion term α�(uv) describes a tendency such that the prey species keep away from
high-density areas of the predator species and �( v

1+βu ) models a situation in which the
population pressure of the predator species weakens in the high density place of the prey
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species. This model is called the modified Leslie–Gower predator–prey model. For more
information about the Leslie–Gower predator-prey model, we refer the reader to [9–11].
The term

p(u, v) =
au

m + bu + cv

is called the Beddington–DeAngelis functional response. Here a, b, c, and m are the con-
sumption rate, the saturation constant for an alternative prey, the predator interference,
and the coefficient of environmental protection for the prey, respectively. To find more
details on the background of this functional response, see [1, 4]. In this paper we assume
that all constants a, b, c, d, e, k, m, r,α, and β are positive.

As far as we know, there are few contributions on the cross-diffusion prey–predator
model with the nonlinear cross diffusion term �( v

1+βu ). For example, in [3] the authors
considered the following predator–prey model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u1
∂t = �((1 + αu2)u1) – u1(a – u1 – cu2

1+mu1
), x ∈ �, t > 0,

∂u2
∂t = �((μ + 1

1+βu1
)u2) + u2(b – u2 + du1

1+mu1
), x ∈ �, t > 0,

u1(x, 0) = u2(x, 0) ≥ 0, x ∈ �,
∂u1
∂t = ∂u1

∂t = 0, x ∈ ∂�, t > 0.

(1.2)

They investigated the existence of the steady-state bifurcation and the Turing instabil-
ity using the Lyapunov–Schmidt reduction. In [22], the authors proved the existence and
multiplicity of positive steady state solutions for system (1.2). They also established the
uniqueness of positive solution in a special domain. Yan and Guo in [20] discussed the
direction and stability of the Hopf bifurcation for a Lotka–Volterra model with delay and
cross-diffusion by the Lyapunov–Schmidt reduction method. Further, the effect of de-
lay on the stability and Turing instability of equilibrium points for the Crowley–Martin
predator-prey model was studied in [6]. In [12], the existence of a positive periodic solu-
tion for a nonautonomous Leslie–Gower reaction-diffusion model has been proved. The
authors used the comparison theory of differential equations to get their results. Suren-
dar et al. [17] studied the local stability of positive equilibrium and the existence of a Hopf
bifurcation for a diffusive Holling–Tanner predator-prey system with the stoichiometric
density dependence. The authors in [2] derived the Hopf bifurcation and its properties
for a class of system of reaction-diffusion equations with two discrete time delays. In [21],
Yi et al. studied the Turing instability and the Hopf bifurcation for the Lengyel–Epstein
system. Many research works have been devoted to the Hopf bifurcation for ODE prey-
predator models. For instance, Rihan et al. studied the stability of the Hopf bifurcation for
a fractional-order delay prey-predator system in [15]. Sivasamy et al. in [16] analyzed the
direction and stability of a Hopf bifurcation for a modified Leslie–Gower prey-predator
model with gestation delay. In [13] the authors discussed the local and global stability of
the interior equilibrium point and the Hopf bifurcation for a prey-predator model with
Hassell–Varley functional response.

The main purpose of this paper is to investigate the effect of the cross-diffusion term
on the stability and pattern formation in system (1.1). The existence of a periodic solution
in the instability region and the Hopf bifurcation for the ODE and PDE models are also
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studied. We discuss the stability and direction of periodic solutions for the ODE system
by the Poincare–Andronov–Hopf bifurcation theorem. For the PDE system, we use the
center manifold theorem and the normal form theory. Our numerical results show that a
Turing pattern is emerged by the variation of cross-diffusion parameters.

The organization of the rest of the paper is as follows: In Sect. 2, we analyze the asymp-
totic behavior of stationary solutions and the Hopf bifurcation for the ODE system. In
Sect. 3, the Turing instability, the stability of bifurcating periodic solutions, and the bi-
furcation direction are investigated for system (1.1). Some numerical simulations are pre-
sented in Sect. 4.

2 Stability analysis and Hopf bifurcation for the ODE system
The ODE system corresponding to system (1.1) is as follows:

⎧
⎨

⎩

du
dt = ru(1 – u

k ) – auv
m+bu+cv , t > 0,

dv
dt = dv(1 – ev

m+bu ), t > 0.
(2.1)

We consider d as the bifurcation parameter. System (2.1) has the following equilibrium
points:

(0, 0), (k, 0),
(

0,
m
e

)

,

U∗ := (u∗, v∗) =
(

k
(

1 –
a

r(e + c)

)

,
(m + bk)r(e + c) – abk

er(e + c)

)

.

We can rewrite v∗ as

v∗ =
m
e

+
bk
e

(

1 –
a

r(e + c)

)

.

Hence a sufficient condition for the positivity of u∗ and v∗ is

a
r(e + c)

< 1. (2.2)

From now on we assume that (2.2) is satisfied. The Jacobian matrix of system (2.1) at U∗
is

J(U∗) :=

(
r(1 – 2u∗

k ) – av∗(m+cv∗)
(m+bu∗+cv∗)2 – au∗(m+bu∗)

(m+bu∗+cv∗)2
dbev2∗

(m+bu∗)2 d – 2edv∗
m+bu∗

)

, (2.3)

and the characteristic equation of J is given by

λ2 – T0λ + D0 = 0, (2.4)

where T0 = trac(J(U∗)) and D0 = det(J(U∗)). Since (u∗, v∗) is an equilibrium of system (2.1),
we can simplify T0 and D0 as follows:

T0 = r
(

1 –
2u∗

k

)

–
av∗(m + cv∗)

(m + bu∗ + cv∗)2 – d
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= –
ru∗
k

+
bu∗r2(k – u∗)2

ak2v∗
– d,

D0 =
dru∗

k
.

Then the roots of (2.4) are λ = α0(d) ± iβ0(d) where

α0(d) =
T0

2
,

β0(d) =

√

T2
0 – 4D0

2
.

The root of the equation T0(d) = 0 is

d0 :=
–r(re + rc – a)(r(m + bk)(e + c)2 – abk(2e + c))

(e + c)2((m + bk)r(e + c) – abk)
.

Under the condition

kab(2e + c) > r(m + bk)(e + c)2, (2.5)

d0 is positive. Therefore, by the fact that D0 > 0, we conclude that J(U∗) has a pair of imag-
inary eigenvalues at d = d0 as

β0 = ±i
√

d0ru∗
k

.

Also,

α′
0(d0) = –

1
2

< 0. (2.6)

Then, by the Hopf theorem [8], system (2.1) has a Hopf bifurcation at U∗ when d = d0.
Furthermore, T0 = d0 – d, then T0 > 0 for 0 < d < d0, which implies that the characteristic
equation (2.4) has a root with positive real part. So the equilibrium solution U∗ is unstable.
Also T0 < 0 for d0 < d, therefore both roots of (2.4) have negative real parts. Hence, the
equilibrium solution U∗ is locally asymptotically stable.

In the sequel, we detail the direction of Hopf bifurcation and the stability of bifurcating
periodic solutions for system (2.1). First, we translate U∗ to the origin. After this transla-
tion, we obtain the following system:

(
du
dt
dv
dt

)

= J
(

u
v

)

+

(
f1(u, v, d)
f2(u, v, d)

)

, (2.7)

where

f1(u, v, d) =
1
2

(
–2r

k
+

2abv∗(m + cv∗)
(m + bu∗ + cv∗)3

)

u2 +
1
2

(
2acu∗(m + bu∗)
(m + bu∗ + cv∗)3

)

v2

+
(

–am(m + bu∗ + cv∗) – 2abcu∗v∗
(m + bu∗ + cv∗)3

)

uv



Farshid and Jalilian Boundary Value Problems         (2022) 2022:20 Page 5 of 20

+
1
2

(
2abm(m + bu∗ + cv∗) – 2abcv∗(m + cv∗) + 4ab2cu∗v∗

(m + bu∗ + cv∗)4

)

u2v

+
1
2

(
2acm(m + bu∗ + cv∗) – 2abcu∗(m + bu∗) + 4abc2u∗v∗

(m + bu∗ + cv∗)4

)

v2u

+
1
6

(
–6ab2v∗(m + cv∗)
(m + bu∗ + cv∗)4

)

u3 +
1
6

(
–6ac2u∗(m + bu∗)
(m + bu∗ + cv∗)4

)

v3

+ O
(|U|	), (2.8)

f2(u, v, d) =
1
2

(
–2db2

e2v∗

)

u2 +
1
2

(
–2d
v∗

)

v2 +
(

2db
ev∗

)

uv +
1
2

(
–4db2

e2v2∗

)

u2v

+
1
2

(
2db
ev2∗

)

v2u +
1
6

(
6db3

e3v2∗

)

u3 + O
(|u|4, |u|3|v|, |u|2|v|2), (2.9)

where 	 is a multi-index with |	| = 4. Set

P :=

(
eβ0
db

e(d+α0)
db

0 1

)

.

Consider the following transformation:

(
u
v

)

= P
(

x
y

)

.

Then

u =
eβ0

db
x +

e(d + α0)
db

y =: Mx + Ny,

v = y.

So the Jordan canonical form of system (2.7) is as follows:

(
du
dt
dv
dt

)

= J0(d)
(

x
y

)

+
(

F1

F2

)

, (2.10)

where

J0(d) := P–1J(d)P =

(
Re(λ) – Im(λ)
Im(λ) Re(λ)

)

and

F1(x, y, d) =
db
eβ0

[
1
2

(
–2r

k
+

2abv∗(m + cv∗)
(m + bu∗ + cv∗)3

)
(
M2x2 + 2MNxy + N2y2)

+
1
2

(
2acu∗(m + bu∗)
(m + bu∗ + cv∗)3

)

y2

+
(

–am(m + bu∗ + cv∗) – 2abcu∗v∗
(m + bu∗ + cv∗)3

)
(
Mxy + Ny2)
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+
1
2

(
2abm(m + bu∗ + cv∗) – 2abcv∗(m + cv∗) + 4ab2cu∗v∗

(m + bu∗ + cv∗)4

)

× (
M2x2y + 2MNxy2 + N2y3)

+
1
2

(
2acm(m + bu∗ + cv∗) – 2abcu∗(m + bu∗) + 4abc2u∗v∗

(m + bu∗ + cv∗)4

)

× (
Mxy2 + Ny3)

+
1
6

(
–6ab2v∗(m + cv∗)
(m + bu∗ + cv∗)4

)

× (
M3x3 + 3M2Nx2y + 3MN2xy2 + N3y3)

+
1
6

(
–6ac2u∗(m + bu∗)
(m + bu∗ + cv∗)4

)

y3
]

–
(d + α0)

β0

[
1
2

(
–2db2

e2v∗

)
(
M2x2 + 2MNxy + N2y2)

+
1
2

(
–2d
v∗

)

y2 +
(

2db
ev∗

)
(
Mxy + Ny2)

+
1
2

(
–4db2

e2v2∗

)
(
M2x2y + 2MNxy2 + N2y3)

+
1
2

(
2db
ev2∗

)
(
Mxy2 + Ny3)

+
1
6

(
6db3

e3v2∗

)
(
M3x3 + 3M2Nx2y + 3MN2xy2 + N3y3)

]

,

F2(x, y, d) =
(

–db2

e2v∗

)
(
M2x2 + 2MNxy + N2y2) +

(
–d
v∗

)

y2 +
(

2db
ev∗

)
(
Mxy + Ny2)

+
(

–2db2

e2v2∗

)
(
M2x2y + 2MNxy2 + N2y3) +

(
db
ev2∗

)
(
Mxy2 + Ny3)

+
(

db3

e3v2∗

)
(
M3x3 + 3M2Nx2y + 3MN2xy2 + N3y3).

After transforming (2.10) into the normal form and rewriting it in the polar coordinates,
we obtain the following equations:

ṙ = α0(d)r + a(d)r3 + O
(
r5),

θ̇ = β0(d) + b(d)r2 + O
(
r2).

(2.11)

For more details about the normal form in polar coordinates (2.11), see Sect. 19.2 of [19].
Using Taylor expansion of the coefficients in (2.11) about d = d0, we get

ṙ = α′
0(d0)(d – d0)r + a(d0)r3 + O

(
(d – d0)2r, (d – d0)r3, r5),

θ̇ = β0(d0) + β ′
0(d0)(d – d0) + b(d0)r2 + O

(
(d – d0)2, (d – d0)r2, r4).
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By Lemma 20.2.2 in [19], the sign of a(d0) determines the stability of the periodic orbit.
The coefficient a(d0) is given by

a(d0) :=
1

16
(
F1

xxx + F1
xyy + F2

xxy + F2
yyy

)
(0, 0, d0)

+
1

16β0(d0)
(
F1

xy
(
F1

xx + F1
yy

)
– F2

xy
(
F2

xx + F2
yy

)
– F1

xxF2
xx + F1

yyF2
yy

)
(0, 0, d0).

By calculation, we have

F1
xx(0, 0, d0) =

eβ0

d0b

(
–2r

k
+

2abv∗(m + cv∗)
(m + bu∗ + cv∗)3

)

+
2β0

v∗
,

F1
xy(0, 0, d0) = –

2re
kb

+
am

(m + bu∗ + cv∗)2 ,

F1
yy(0, 0, d0) = –

2red0

kbβ0
,

F1
xxx(0, 0, d0) = –

6av∗(m + cv∗)
(m + bu∗ + cv∗)4

(
e2β2

0
d2

0

)

–
6β2

0
d0v2∗

,

F1
xyy(0, 0, d0) = –

2am
v∗(m + bu∗ + cv∗)2 ,

F2
xy(0, 0, d0) = F2

yy(0, 0, d0) = F2
yyy(0, 0, d0) = 0,

F2
xx(0, 0, d0) = –

2β2
0

d0v∗
,

F2
xxy(0, 0, d0) =

2β2
0

d0v2∗
.

Then we get

a(d0) =
1

16

[

–
6av∗(m + cv∗)

(m + bu∗ + cv∗)4

(
e2β2

0
d2

0

)

–
2am

(m + bu∗ + cv∗)2

(
re

kbd0
+

red0

kbβ2
0

)

–
4av∗(m + cv∗)

(m + bu∗ + cv∗)3

(
erm

kbd0v∗

)

+
4a2mv∗(m + cv∗)
(m + bu∗ + cv∗)5

(
e

d0

)

+
4r2em

k2b2d0v∗
+

4r2emd0

k2b2β2
0 v∗

]

.

Set

X1 := –
2am

(m + bu∗ + cv∗)2

(
re

kbd0
+

red0

kbβ2
0

)

+
2a2mv∗(m + cv∗)
(m + bu∗ + cv∗)5

(
e

d0

)

=
2kbme5r3a2

(–(bk + m)r(e + c)2 + abk(2e + c))(–(bk + m)r(e + c) + abk)3 , (2.12)

X2 := –
4av∗(m + cv∗)

(m + bu∗ + cv∗)4

(
e2β2

0
d2

0

)

+
4r2em

k2b2d0v∗
+

4r2emd0

k2b2β2
0 v∗

–
4av∗(m + cv∗)

(m + bu∗ + cv∗)3

(
erm

kbd0v∗

)

=
4kcbar2e4(a – r(e + c))

(e + c)(–(bk + m)r(e + c)2 + abk(2e + c))(–(bk + m)r(e + c) + abk)2 , (2.13)
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X3 := –
2av∗(m + cv∗)

(m + bu∗ + cv∗)4

(
e2β2

0
d2

0

)

+
2a2mv∗(m + cv∗)
(m + bu∗ + cv∗)5

(
e

d0

)

. (2.14)

Then

a(d0) =
X1 + X2 + X3

16
.

If

(bk + m)
(
r(e + c) – a

)2 – ma2 > 0, (2.15)

then by (2.2) and (2.5), X1, X2, and X3 are negative. So a(d0) < 0. By the above calculation
and the Poincare–Andronov–Hopf bifurcation theorem [19], we obtain the following re-
sult.

Theorem 2.1 Assume that (2.2) and (2.5) are satisfied. Then
(i) the equilibrium solution U∗ is unstable for (2.1) when 0 < d < d0 and asymptotically

stable when d0 < d;
(ii) system (2.1) has a Hopf bifurcation at U∗ when d = d0. The direction of Hopf

bifurcation is subcritical and the bifurcating periodic solutions are asymptotically
orbitally stable when a(d0) < 0, and the direction of Hopf bifurcation is supercritical
and the bifurcating periodic solutions are unstable when a(d0) > 0.

According to Theorem 2.1, system (2.1) has periodic solutions bifurcating from the Hopf
bifurcation. In the next theorem, we show that system (2.1) has at least one stable periodic
solution for d < d0.

Theorem 2.2 Let a < rc and (2.5) be satisfied. For d < d0, system (2.1) has at least one
stable periodic solution U(t) = (u(t), v(t)) such that ε < u(t) < k and m

e < v(t) < m+bk
e for

0 < ε <
(

1 –
a
rc

)

k. (2.16)

Proof We construct a trapping region satisfying the conditions of the Poincare–Bendixson
theorem. To do this, let

C1 :=
{

(u, v) : ε ≤ u ≤ k, v =
m
e

}

,

C2 :=
{

(u, v) : u = k,
m
e

≤ v ≤ m + bk
e

}

,

C3 :=
{

(u, v) : ε ≤ u ≤ k, v =
m + bk

e

}

,

C4 :=
{

(u, v) : u = ε,
m
e

≤ v ≤ m + bk
e

}

.

The segments C1, C2, C3, and C4 form a Jordan curve C . Denote the interior of C by D.
One can see U∗ = (u∗, v∗) is the only positive equilibrium point in D. On the other hand,
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dv
dt |(u,v)∈C1 > 0, du

dt |(u,v)∈C2 < 0, and dv
dt |(u,v)∈C3 < 0. Also, by (2.16), for (u, v) ∈ C4, we have

1 –
ε

k
>

a
rc

>
av

rc( m
c + εb

c + v)
.

Hence du
dt |(u,v)∈C4 > 0. Therefore on the boundary of D the vector filed points inwards

the set. This implies that a trajectory will stay in D for all t once it has entered the set.
Since U∗ = (u∗, v∗) ∈D is unstable, by the Poincare–Bendixson theorem, system (2.1) has
at least one stable periodic solution in D. �

3 Turing instability of the PDE system
In this section, we obtain a condition under which the cross-diffusion system (1.1) loses
stability and the stable positive equilibrium becomes Turing unstable.

Let {μn}∞n=0 be the eigenvalues of –� in � with zero Neumann boundary conditions.
The linearized system of (1.1) at U∗ = (u∗, v∗) is

(
ut

vt

)

=
(
D� + J(U∗)

)
(

u
v

)

,

where J is defined by (2.3) and

D :=

(
(1 + αv∗) αu∗
– βv∗

(1+βu∗)2 (μ + 1
1+βu∗ )

)

. (3.1)

Then λ is an eigenvalue of L := D� + J(U∗) on

X =
{

(u, v) ∈ H
2(�) ×H

2(�) : ∂νu = ∂νv = 0
}

,

if and only if λ is an eigenvalue of the matrix –μnD + J(U∗) for n ≥ 0. Therefore λ satisfies
the characteristic equation

λ2 – Tn(d)λ + Dn(d) = 0, (3.2)

where

T0(d) = –
ru∗
k

+
bu∗r2(k – u∗)2

ak2v∗
– d,

Tn(d) = –
[

(1 + αv∗) + μ +
1

1 + βu∗

]

μn + T0 (3.3)

= –
(

1 + αv∗ + μ +
1

1 + βu∗

)

μn +
(

–
ru∗
k

+
bu∗r2(k – u∗)2

ak2v∗
– d

)

,

D0(d) =
dru∗

k
,

Dn(d) =
[(

μ +
1

1 + βu∗

)

(1 + αv∗) +
αβu∗v∗

(1 + βu∗)2

]

μ2
n +

[

d(1 + αv∗)

–
(

μ +
1

1 + βu∗

)

(T0 + d) +
αdbu∗

e
+

er2βu∗(k – u∗)2

ak2(1 + βu∗)2

]

μn + D0
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=
[(

μ +
1

1 + βu∗

)

(1 + αv∗) +
αβu∗v∗

(1 + βu∗)2

]

μ2
n +

[

d(1 + αv∗) +
er2βu∗(k – u∗)2

ak2(1 + βu∗)2

–
(

μ +
1

1 + βu∗

)(

–
ru∗
k

+
bu∗r2(k – u∗)2

ak2v∗

)

+
αdbu∗

e

]

μn +
rdu∗

k
. (3.4)

Let

Mn :=
[

μ +
1

1 + βu∗

]

μ2
n +

[

d –
(

μ +
1

1 + βu∗

)(

–
ru∗
k

+
bu∗r2(k – u∗)2

ak2v∗

)

+
er2βu∗(k – u∗)2

ak2(1 + βu∗)2

]

μn +
rdu∗

k
,

Nn :=
(

μ +
1

1 + βu∗
+

βu∗
(1 + βu∗)2

)

μ2
n +

(

d +
dbu∗
ev∗

)

μn.

According to (3.4),

Dn(d) = αv∗Nn + Mn.

In the next theorem, we summarized the asymptotic behavior of the equilibrium U∗ for
system (1.1).

Theorem 3.1 Assume d > d0 and let (2.2) and (2.5) be satisfied. Then
(i) U∗ is unstable for system (1.1) if

0 < α <
–M1

v∗N1
. (3.5)

(ii) U∗ is locally asymptotically stable for system (1.1) if
(1) 0 < μ < βm–b

b(1+βu∗)2 ,
or

(2) α > –M1
v∗N1

> 0 and

μ2
1

(

μ +
1

1 + βu∗

)

+ M1 –
rdu∗

k
> 0. (3.6)

(iii) Under condition (1) in (ii) system (1.1) has a Hopf bifurcation at U∗ when d = d0.

Proof (i). According to (3.3), Tn(d) > Tn+1(d) for n ∈ N ∪ {0}. Since T0(d) < 0 for d > d0,
we conclude that Tn(d) < 0 for n ∈ N ∪ {0}. By (3.4) and condition (3.5), we have D1 =
αv∗N1 + M1 < 0. So equation (3.2) has at least one root with positive real part. Then U∗ is
unstable for system (1.1).

(ii). Since ev∗
m+bu∗ = 1, from (1) we conclude

A := μ +
1

1 + βu∗
–

βev∗
b(1 + βu∗)2 = μ –

β(m + bu∗)
b(1 + βu∗)2 +

1
1 + βu∗

= μ –
βm – b

b(1 + βu∗)2 < 0. (3.7)
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Furthermore, D0(d) > 0 for d > 0, and we can rewrite Dn(d) as

Dn(d) = αv∗
[(

μ +
1

1 + βu∗
+

βu∗
(1 + βu∗)2

)

μ2
n +

(

d +
bdu∗
ev∗

)

μn

]

+
(

μ +
1

1 + βu∗

)

μ2
n +

[

d +
ru∗
k

(

μ +
1

1 + βu∗

)

–
bu∗r2(k – u∗)2

ak2v∗
A

]

μn +
dru∗

k
. (3.8)

By (3.7), we have Dn(d) > 0 for n ∈ N and d > 0. Since Tn(d) < 0 for n ∈ N ∪ {0} when
d > d0, we deduce that the real part of every eigenvalue of L is negative. Therefore, U∗ is
locally asymptotically stable for system (1.1).

Now, let (2) be satisfied. Then D1 = αv∗N1 + M1 > 0. Also, we can rewrite Mn as

Mn =
(

μ +
1

1 + βu∗

)
(
μ2

n – μnμ1
)

+
M1μn

μ1
–

rdu∗
k

(
μn

μ1
– 1

)

= μn

(

μ +
1

1 + βu∗

)

(μn – μ1) –
rdu∗
kμ1

(μn – μ1) +
M1μn

μ1
.

Hence, for n = 2, 3, . . . , using condition (3.6) we have

Mn – M1 =
(

μ +
1

1 + βu∗

)

μn(μn – μ1) +
M1(μn – μ1)

μ1
–

rdu∗
kμ1

(μn – μ1)

≥ (μn – μ1)
μ1

(

μ2
1

(

μ +
1

1 + βu∗

)

+ M1 –
rdu∗

k

)

> 0.

Since Nn+1 ≥ Nn for n ∈ N, the above inequalities imply Dn(d) ≥ D1(d) > 0 for n ≥ 2
and d > d0. Again using Tn(d) < 0 for n ∈ N, we conclude that all roots of the character-
istic equation (3.2) have negative real part for n ≥ 0 when d > d0. Therefore U∗ is locally
asymptotically stable for system (1.1).

(iii) Under condition (1) in (ii), inequality (3.7) is stratified. Then from (3.8) we get
Dn(d0) > 0 for n ∈ N. Also D0(d0) > 0. On the other hand, T0(d0) = 0, then by (3.3) we
have Tn(d0) < 0 for n ∈ N. Therefore, all roots of the characteristic equation (3.2) have
negative real part for n ≥ 1 when d = d0. Finally from (2.6) we conclude that system (1.1)
has a Hopf bifurcation at U∗ when d = d0. �

Now, we determine the direction and stability of the Hopf bifurcation for system (1.1)
in � = (0, lπ ) for l ∈R

+, i.e., the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – ((1 + αv)u)xx = ru(1 – u
k ) – auv

m+bu+cv , x ∈ �, t > 0,

vt – ((μ + 1
1+βu )v)xx = dv(1 – ev

m+bu ), x ∈ �, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �,

∂νu = ∂νv = 0, x ∈ ∂�, t > 0.

(3.9)
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The eigenvalues and the corresponding eigenfunctions of the operator u −→ –uxx with
zero Neumann boundary conditions on (0, lπ ) are given by

μn =
n2

l2 , ϕn(x) = cos

(
nx
l

)

, for n = 0, 1, 2, . . . .

The linearized system of (3.9) at U∗ has the following form:

(
ut

vt

)

= L
(

u
v

)

= D

(
uxx

vxx

)

+ J
(

u
v

)

, (3.10)

where J and D are defined by (2.3) and (3.1) respectively and

L =

(
–(1 + αv∗)μn + r(1 – 2u∗

k ) – av∗(m+cv∗)
(m+bu∗+cv∗)2 –αu∗μn – au∗(m+bu∗)

(m+bu∗+cv∗)2
βv∗μn

(1+βu∗)2 + bd
e –(μ + 1

1+βu∗ )μn – d

)

. (3.11)

Similarly, by transferring the equilibrium point U∗ to the origin, system (3.9) becomes

(
ut

vt

)

= D

(
uxx

vxx

)

+ J
(

u
v

)

+

(
f1(u, v, d)
f2(u, v, d)

)

, (3.12)

where f1 and f2 are defined by (2.8) and (2.9). Define the operator L∗ by

L∗
(

u
v

)

:= D

(
uxx

vxx

)

+ J∗
(

u
v

)

, (3.13)

where J∗ is the conjugate of J . Then L∗ is the adjoint operator of L. Set

q =

(
e(d0+iβ0)

bd0

1

)

, q∗ =
1

2lπ

(
bd0
eβ0

i
– d0

β0
i + 1

)

,

where β0(d0) =
√

ru∗d0
k and i is the imaginary unit. Then

Lq = iβ0(d0)q, L∗q∗ = –iβ0(d0)q∗,
〈
q∗, q

〉
= 1,

〈
q∗, q̄

〉
= 0,

where 〈f , g〉 =
∫ lπ

0 f̄ T g dx is the inner product in L
2(0, lπ ) ×L

2(0, lπ ). We decompose X as
X = Xc ⊕ Xs where

Xc = {zq + z̄q̄ : z ∈C}, Xs =
{

w ∈ X :
〈
q∗, w

〉
= 0

}
.

According to [8], for every UT = (u, v) ∈ X, we have

(
u
v

)

= zq + z̄q̄ +
(

w1

w2

)

, z =
〈
q∗, (u, v)T 〉

,

where zq + z̄q̄ ∈ Xc and wT = (w1, w2) ∈ Xs. Then

z =
〈
q∗, U

〉
,
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w = U –
〈
q∗, U

〉
q –

〈
q̄∗, U

〉
q̄.

Thus system (3.12) in (z, w) coordinates is as follows:

⎧
⎨

⎩

dz
dt = iβ0(d0)z + 〈q∗, f ∨〉,
dw
dt = Lw + H(z, z̄, w),

(3.14)

where f ∨ = (f1, f2)T is defined by (2.8)–(2.9) and

H(z, z̄, w) := f ∨ –
〈
q∗, f ∨〉

q –
〈
q̄∗, f ∨〉

q̄.

By calculation, we obtain

〈
q∗, f ∨〉

q =

(
e(d0+iβ0)

bd0
(– bd0i

2eβ0
f1 + d0i

2β0
f2 + f2

2 )
– bd0i

2eβ0
f1 + d0i

2β0
f2 + f2

2

)

,

〈
q̄∗, f ∨〉

q̄ =

(
e(d0–iβ0)

bd0
( bd0i

2eβ0
f1 – d0i

2β0
f2 + f2

2 )
bd0i
2eβ0

f1 – d0i
2β0

f2 + f2
2

)

,

〈
q∗, f ∨〉

q –
〈
q̄∗, f ∨〉

q̄ =

(
f1

f2

)

.

Then H(z, z̄, w) = 0. Besides, the center manifold of system (3.14) is illustrated as follows:

w =
(

w20

2

)

z2 + w11zz̄ +
(

w02

2

)

z̄2 + O
(|z|3).

Then we get

⎧
⎪⎪⎨

⎪⎪⎩

w20 = (2iβ0(d0)I – L)–1H20,

w11 = (–L)–1H11,

w02 = (–2iβ0(d0)I – L)–1H02.

So w20 = w02 = w11 = 0. Therefore, the restriction of (3.14) to the center manifold in z and
z̄ coordinates is given by

dz
dt

= iβ0(d0)z +
〈
q∗, f ∨〉

= iβ0(d0)z +
h20

2
z2 + h11zz̄ +

h02

2
z̄2 + O

(|z|3), (3.15)

where

h20 =
〈
q∗, B(q, q)

〉

=
re

kbd0β0

(
d2

0i – 2β0d0 – β2
0 i

)
+

β0d0i + β2
0

v∗d0

+
am(m + bu∗ + cv∗) + abcu∗v∗

(m + bu∗ + cv∗)3

(
β0i
d0

)

+
am

(m + bu∗ + cv∗)2 , (3.16)
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h11 =
〈
q∗, B(q, q̄)

〉

=
re

kbd0β0

(
d2

0i + β2
0 i

)
–

β0d0i + β2
0

v∗d0

+
am(m + bu∗ + cv∗) + abcu∗v∗

(m + bu∗ + cv∗)3

(

–
β0i
d0

)

, (3.17)

h21 =
〈
q∗, C(q, q, q̄)

〉
=

3ab2e2v∗(m + cv∗)
(m + bu∗ + cv∗)4

(
d3

0i – β3
0 – β0d2

0 + β2
0 d0i

b2d2
0β0

)

+
(

abm(m + bu∗ + cv∗) + 2ab2cu∗v∗ – abcv∗(m + cv∗)
(m + bu∗ + cv∗)4

)

(3.18)

×
(

e(–3d2
0i – β2

0 i + 2β0d0)
bβ0d0

)

+
(

acm(m + bu∗ + cv∗) + 2abc2u∗v∗ – abcu∗(m + bu∗)
(m + bu∗ + cv∗)4

)(
–3d0i + β0

β0

)

+
3ac2u∗(m + bu∗)
(m + bu∗ + cv∗)4

(
bd0i
eβ0

)

+
3β3

0 i + β2
0 d0

v2∗d2
0

(

1 +
d0i
β0

)

, (3.19)

B(u, v) =
(

B1(u, v)
B2(u, v)

)

, C(q, q, q̄) =
(

C1(q, q, q̄)
C2(q, q, q̄)

)

,

B1(q, q) = –
2re2(d0 + iβ0)2

kb2d2
0

+
2av∗(m + cv∗)

(m + bu∗ + cv∗)3

(
e2(iβ0d0 – β2

0 )
bd2

0

)

–
abcu∗v∗

(m + bu∗ + cv∗)3

(
2eβ0i
bd0

)

,

B2(q, q) =
2β2

0
v∗d0

,

B1(q, q̄) = –
2re2(d2

0 + β2
0 )

kb2d2
0

+
2av∗(m + cv∗)

(m + bu∗ + cv∗)3

(
e2β2

0
bd2

0

)

,

B2(q, q̄) = –
2β2

0
v∗d0

,

C1(q, q, q̄) = –
6ab2e3v∗(m + cv∗)
(m + bu∗ + cv∗)4

(
d3

0 + β3
0 i + β0d2

0i + β2
0 d0

b3d3
0

)

–
6ac2u∗(m + bu∗)
(m + bu∗ + cv∗)4

+
(

2abm(m + bu∗ + cv∗) + 4ab2cu∗v∗ – 2abcv∗(m + cv∗)
(m + bu∗ + cv∗)4

)

×
(

e2(3d2
0 + β2

0 + 2β0d0i)
b2d2

0

)

+
(

2acm(m + bu∗ + cv∗) + 4abc2u∗v∗ – 2abcu∗(m + bu∗)
(m + bu∗ + cv∗)4

)

×
(

e(3d0 + β0i)
bd0

)

,

C2(q, q, q̄) =
6β3

0 i + 2β2
0 d0

v2∗d2
0

.
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According to [8],

Re
(
c1(0)

)
= Re

(
i

2β0(d0)

(

h20h11 – 2|h11|2 –
1
3
|h02|2

)

+
h21

2

)

= –
1

2β0(d0)
Im(h20h11) +

1
2

Re(h21).

Then from (3.16)–(3.18), we have

Re c1(0) =
1
4

[

–
6av∗(m + cv∗)

(m + bu∗ + cv∗)4

(
e2β2

0
d2

0

)

–
2am

(m + bu∗ + cv∗)2

(
re

kbd0
+

red0

kbβ2
0

)

–
4av∗(m + cv∗)

(m + bu∗ + cv∗)3

(
erm

kbd0v∗

)

+
4a2mv∗(m + cv∗)
(m + bu∗ + cv∗)5

(
e

d0

)

+
4r2em

k2b2d0v∗

+
4r2emd0

k2b2β2
0 v∗

]

.

Now we summarized the above results as follows.

Theorem 3.2 Assume that (2.2) and (2.5) are satisfied and let d = d0. Then system (3.9) has
a Hopf bifurcation at U∗. The direction of Hopf bifurcation is subcritical and the bifurcating
periodic solutions are asymptotically orbitally stable when Re c1(0) < 0. The direction of
Hopf bifurcation is supercritical and the bifurcating periodic solutions are unstable when
Re c1(0) > 0.

4 Numerical simulations
In this section, we provide some numerical examples to illustrate our results. We use Flex-
PDE [5] to solve our PDE models. FlexPDE is a software for solving PDEs via finite ele-
ments methods.

Since the distributions of prey and predator are of the same type, we only give the nu-
merical simulation of the prey.

Example 4.1 Consider the ODE model (2.1) with

r = 4, e = 1.9, c = 1.1, a = 11,

k = 0.3, b = 63, m = 0.8.
(4.1)

Then the positive equilibrium and the critical value of bifurcation parameter are

(u∗, v∗) = (0.025, 1.25), d0 = 1.2066.

By calculation, we obtain a(d0) = –0.0153. According to Theorem 2.1, system (2.1) with
the mentioned parameters has a Hopf bifurcation at (u∗, v∗). The direction of bifurcation
is subcritical and the bifurcating periodic solutions are asymptotically stable. Besides, for
d = 1.3 > d0, the equilibrium (u∗, v∗) is stable and the solution goes to (u∗, v∗). We can see
this result in Fig. 1(a) where the initial condition is considered as (u0, v0) = (0.03, 1.3). In
addition, for d = 1.18 < d0, by Theorem 2.1, (u∗, v∗) is unstable and by Theorem 2.2, this
ODE system has a stable periodic orbit. In this case the solution goes to a limit cycle. One
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Figure 1 Phase portrait of system (2.1) with parameters in (4.1): (a) the equilibrium is asymptotically stable
where d = 1.3 > d0; (b) the equilibriumis unstable and the periodic solution is stable where d = 1.18 < d0

can see the mentioned result in Fig. 1(b) where the initial conditions are taken at (0.03, 1.3)
and (0.05, 1.4). In [7], we can see the description of periodic orbits by using the fractal-like
behavior of prime numbers (also, see [14, 18]).

Now, consider system (1.1) in � = (0, 16π ) × (0, 16π ) with parameters defined by (4.1)
and

μ = 103, β = 87. (4.2)

If we choose d = 1.3 > d0 = 1.2066, then –M1
N1

= 4.5. Let α = 0.5 and

(u0, v0) =
(
0.025 + 10–4(sin(2x) + cos(2y)

)
, 1.25 + 10–2(sin(x) + cos(y)

))
.

Using Theorem 3.1(i), system (1.1) with the mentioned parameters has a Turing insta-
bility at (u∗, v∗) = (0.025, 1.25). This instability is induced by the cross-diffusion term.
Figure 2 presents the process of formation of Turing pattern for system (1.1) at times
t = 5, 20, 100, 200, where the involved constants are considered as d = 1.3, α = 0.5, (4.1),
and (4.2).

Example 4.2 For the ODE model (2.1), we choose

r = 0.7, e = 2.3, c = 0.1, a = 1.5,

k = 4, b = 27, m = 0.9.
(4.3)

Then the positive equilibrium and the critical value of bifurcation parameter are

(u∗, v∗) = (0.4285, 5.4223), d0 = 0.4807.

Also, we derive a(d0) = –0.0002. By Theorem 2.1, the positive equilibrium (u∗, v∗) is
asymptotically stable when d > d0 and unstable when d < d0. Moreover, a Hopf bifurcation
occurs at d = d0. The direction of Hopf bifurcation is subcritical and the bifurcating peri-
odic solutions are asymptotically orbitally stable. For d = 0.5 > d0, the equilibrium (u∗, v∗)
is asymptotically stable and the solution goes to (u∗, v∗). This result is shown in Fig. 3(a)
where the initial condition is taken at (0.4, 5.5). In Fig. 3(b), we choose d = 0.45 < d0, and
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Figure 2 The process of Turing pattern for system (1.1) with parametersin (4.1), (4.2) and d = 1.3 > d0 = 1.2066

Figure 3 Phase portrait of system (2.1) with parameters in (4.3): (a) the equilibrium is asymptotically stable
where d = 0.5 > d0; (b)the equilibriumis unstable and the periodic solution is stable where d = 0.45 < d0
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Figure 4 Numerical simulation of system (1.1) with parameters in (4.3), (4.4) and d = 0.5 > d0 = 0.4807

the initial conditions are taken at (0.4, 5.5) and (0.2, 6). As we can see in this figure, the
equilibrium (u∗, v∗) is unstable and the solution goes to a stable limit cycle.

Now consider the PDE model (1.1) in � = (0, 32π ) × (0, 32π ) with (4.3) and

μ = 8 × 10–4, β = 45, α = 0.2, (4.4)

μ = 90, β = 45, α = 0.2. (4.5)
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Figure 5 The process of Turing pattern for system (1.1) with parameters in (4.3), (4.4) and d = 0.5 > d0 = 0.4807

By Theorem 3.1(ii), system (1.1) with (4.4) and d = 0.5 > d0 has a stable solution at (u∗, v∗) =
(0.4285, 5.4223). In Fig. 4, we can see that the effect of the initial condition disappears over
time and the solution returns to (u∗, v∗). In this figure the initial condition is taken at

(u0, v0) =
(
0.4285 + 10–4 sin(4x), 5.4223 + 10–2 sin(4x)

)
.

On the other hand, under (4.3) and (4.5), system (1.1) has a Turing instability at (u∗, v∗) =
(0.4285, 5.4223). Figure 5, illustrates the process of formation of Turing pattern for system
(1.1) with d = 0.5, (4.3), and (4.5).
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