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1 Introduction and main results
We consider the following elliptic system with Neumann boundary:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�pu + λ1up–1 = |u|p∗–2u + α
p∗ |u|α–2|v|βu, x ∈ �,

–�pv + λ2vp–1 = |v|p∗–2v + β

p∗ |u|α|v|β–2v, x ∈ �,

u > 0, v > 0, x ∈ �,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�,

(1.1)

where α,β > 1 satisfy α + β = p∗ = Np
N–p . Meanwhile, � is a bounded domain in R

N (N ≥ 3)
which has a smooth C2 boundary.

When p = 2, the Dirichlet boundary problems for the system (1.1) are generally studied.
Due to the “loss of compactness,” a direct application of the classical method is invalid
for such problems. In [1], Brezis and Nirenberg first studied the Dirichlet problem with a
critical Sobolev exponent for the following nonlinear elliptic equation:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = |u|2∗–2u + f (x, u), x ∈ �,

u > 0, x ∈ �,

u = 0, x ∈ ∂�.

(1.2)

In order to prove the existence of a sequence satisfying the (PS)(C) condition, the authors
used a function which can achieve the best Sobolev constant as the test function to esti-
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mate the energy. This overcame the difficulties which were caused by the embedding with
the critical exponent that made the minimization sequences not compact. In recent years,
the problem of elliptic equations (systems) with critical exponents has attracted the atten-
tion of many researchers, and related theory has also made great progress, e.g., results on
the existence and nonexistence of nontrivial and multiple solutions were proved, and also
some properties of solutions (see [2–8]). At the same time, in recent years, the problem
with critical exponents in fractional elliptic equations, such as fractional Kirchhoff prob-
lems and Schrödinger–Kirchhoff-type problems involving the fractional p-Laplacian, have
also attracted the attention of researchers (see [9–11]).

The nonlinear elliptic system (1.1) arises from mathematical physics, when studying
Bose–Einstein condensation, some reaction–diffusion shadow systems, or static problems
of chemotaxis models, and any more. It also has a wide range of applications in mathemat-
ical biology, financial mathematics, and so on; more applications can be found in [12–16].
When p = 2,α = β = 0, equation (1.1) has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λu = u2∗–1, x ∈ �,

u > 0, x ∈ �,
∂u
∂n = 0, x ∈ ∂�.

(1.3)

This problem has attracted the attention of many researchers, and many interesting and
important results have been proved [17–19]. In [18], by using the minimax theorem and
mountain pass lemma, Wang proved that (1.3) has a nontrivial solution when the mini-
max is lower than the threshold value 1

2N S N
2 and λ > 0 is appropriately large. In [17], the

existence of the least energy solutions uλ is proved, under some conditions, i.e., ∃λ0 > 0
such that, when λ > λ0, Q(uλ) = Sλ and

Q(uλ) = Sλ := inf
u∈H1(�)\{0}

Q(u) = inf
u∈H1(�)\{0}

∫

�
(|∇u|2 + λu2) dx

(
∫

�
u2∗ dx)

2
2∗

.

When p = 2,α,β > 0, Yang (see [20]) used the method of the blow-up to solve the single
critical growth problem as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u + λu = α
2∗ |u|α–2u|v|β , x ∈ �,

–�v + λv = β

2∗ |u|α|v|β–2v, x ∈ �,

u, v > 0, x ∈ �,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�,

(1.4)

and the author also discussed the asymptotic behavior of the least energy solution when
μ → ∞ and λ → ∞. The concentration–compactness principles are very different when
comparing Dirichlet and Neumann boundary problems. In [21], Chabrowski and Yang
used the concentration–compactness principle under the Neumann boundary to study
the existence of the least energy solution of the above equations with a potential form,
and also discussed the concentration phenomenon.

With the in-depth study of problem (1.3), researchers have extended this kind of prob-
lem to more general p-Laplacian equations or systems. Because of the wide and practical
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application background, researchers have used the equations in pharmacology, biology,
non-Newtonian fluids, etc., and got crucial results [22–25]. In [26], Wang discussed the
following equation with Neumann boundary and critical exponent and proved that it has
positive solutions:

⎧
⎨

⎩

–�pu = up∗–1 + f (x, u), u > 0, x ∈ �,
∂u
∂n = 0, x ∈ ∂�.

(1.5)

For the p-Laplacian equation with Neumann boundary and subcritical growth expo-
nents, we can use a standard variational principle to deduce the existence results for the
solutions. However, for the problem (1.5), the corresponding energy functional loses com-
pactness, so the standard variational principles are invalid. The Dirichlet boundary prob-
lems corresponding to such equations have also been widely studied (see [1, 27, 28]). How-
ever, the method of dealing with the Dirichlet boundary problem is no longer applicable
to Neumann boundary problem owning to the best Sobolev constant of the embedding
W 1,p

0 (�) ↪→ LP∗ (�), which is only depends on N , p, and not on �. Under the following
conditions, Wang proved that (1.5) has a positive solution by virtue of the local convexity
at a point of ∂�:

lim
u→0

f (x, u)
up–1 = a(x) ≤ 0, a(x) 
= 0,

f (x, u) ≥ –Aup–1 – But–1, A > 0, B > 0, t ∈
(

p – 1,
n(p – 1)

n – p

)

.

However, the problem with a doubly critical growth involved in this paper is rarely stud-
ied. When p = 2, in [29], Peng, Peng, and Wang considered the doubly critical Dirichlet
boundary problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u = |u|2∗–2 + α
2∗ |v|β |u|α–2u, x ∈ �,

–�v = |v|2∗–2 + β

2∗ |u|α|v|β–2v, x ∈ �,

u, v > 0, x ∈ �,

u = v = 0, x ∈ ∂�.

(1.6)

In [30], the authors considered the single equation case of the above problem, for the em-
bedding D1,2(RN ) ↪→ L2∗ (RN ), and they deduced that the following radial function U(x)
achieves the best Sobolev constant:

U(x) =
(N(N – 2)) N–2

4

(1 + |x|2) N–2
2

.

With similar methods, the authors of [29] proved that the following form of the best
Sobolev constant can be achieved:

Sα,β := inf
(u,v)∈D1,2

0 �)\{(0,0)}

∫

RN (|∇u|2 + |∇v|2) dx

(
∫

RN (|u|2∗ + |v|2∗ + |u|α|v|β ) dx)
2

2∗
= f (τmin)S
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and

f (τmin) := min
τ≥0

f (τ ) = min
τ≥0

1 + τ 2

(1 + τβ + τ 2∗ )
2

2∗
< 1.

The authors derived the uniqueness result for the least energy solutions when α,β , N
satisfied some conditions, and the form of the least energy solution is (sUx0,ε , bUx0,ε). We
are interested in whether we can use this form of extremal function to research the Neu-
mann boundary problems for the p-Laplacian system whose positive solutions exist in
more general case. Therefore, we select the extremal function of the above-mentioned
form and use a similar method to that in [1], choose an extremal function as the test func-
tion for the energy estimation as in [26], and also need to make the energy corresponding
to the Palais–Smale sequence lower than the threshold. Subsequently, we overcome the
difficulties caused by the appearance of doubly critical terms |u|p∗ , |v|p∗ , |u|α|v|β in (1.1),
which leads to the emergence of noncompactness, and, naturally, the existence of a posi-
tive solution for the equations (1.1) can be obtained.

Now, the main theorem of this paper can be presented as follows:

Theorem 1.1 If the following conditions for the parameters α,β , N are satisfied:

α,β > 1, α + β = p∗ =
Np

N – p
, N ≥ p2,

then there is at least one positive solution for (1.1), when λ1,λ2 are sufficiently large.

2 Preliminary results
In this section, it is necessary to present some definitions and preliminary lemmas, which
are going to be used to prove our basic estimates and main results.

First, denote X = W 1,p(�) × W 1,p(�), where its norm is as follows:

∥
∥(u, v)

∥
∥ :=

(∫

�

(|∇u|p + up)dx +
∫

�

(|∇v|p + vp)dx
) 1

p
.

Here W 1,p(�) is a Sobolev space, and it has the following norm:

‖u‖ = (
∫

�

(|∇u|p + up dx
) 1

p .

We define its corresponding energy functional J : X →R as follows:

J(u, v) =
1
p

∫

�

(|∇u|p + λ1up + |∇v|p + λ2vp)dx

–
1
p∗

∫

�

((
u+)p∗

+
(
v+)p∗

+
(
u+)α(

v+)β)
dx.

Now, we define the weak solution:

Definition 2.1 If ∀(ϕ,ψ) ∈ X, when u > 0, v > 0, and (u, v) ∈ X, we have
∫

�

(|∇u|p–2∇u∇ϕ + λ1up–1ϕ + |∇v|p–2∇v∇ψ + λ2vp–1ψ
)

dx –
∫

�

|u|p∗–2uϕ dx
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–
∫

�

|v|p∗–2vψ dx –
α

p∗

∫

�

|u|α–1|v|βϕ dx –
β

p∗

∫

�

|u|α|v|β–1ψ dx = 0,

then (u, v) is called a weak solution of problem (1.1).

In order to prove that the least energy solution of (1.1) exists, and derive the solution’s
form, we consider the following equation:

⎧
⎨

⎩

–�pu = |u|p∗–2u, x ∈ �,

u ∈ W 1,p
0 (�).

(2.1)

From [30], we know that, when � = R
N , the function

U(x) =
(
N(N – p)

) N–p
p2 (

1 + |x| p
p–1

)– N–p
p (2.2)

is a radial function which solves (2.1). Meanwhile, the best Sobolev constant S can be
achieved by U(x) for the embedding W 1,p(RN ) ↪→ Lp∗ (RN ), where

S := inf
u∈W 1,p(RN )\{0}

‖u‖p

|u|pp∗
=

‖U‖p

|U|pp∗
. (2.3)

For x0 ∈R
N , ε > 0, we denote

Ux0,ε(x) := ε
p–N

p(p–1) U
(

x – x0

ε

)

. (2.4)

From [30], we know that the (N +2)-dimensional manifold of the following form consists
of almost all functions which can achieve the best Sobolev constant S:

M :=
{

cUx0,ε , c ∈R \ {0}, x0 ∈R
N , ε > 0

}
.

Set

Sα,β := inf
(u,v)∈X\{(0,0)}

∫

RN (|∇u|p + |∇v|p) dx

(
∫

RN (|u|p∗ + |v|p∗ + |u|α|v|β ) dx)
p

p∗
. (2.5)

Supposing (sUx0,ε , bUx0,ε) is a positive solution corresponding to the problem (1.1), we
have

(
p∗ + ατβ

)
sp∗–2 = p∗ =

(
p∗τ p∗–2 + βτβ–2)sp∗–2, b = τ s.

Therefore,

p∗ + ατβ – βτβ–2 – p∗τ p∗–2 = 0 (2.6)

and

sp∗–2 =
p∗

p∗ + ατβ
. (2.7)
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Subsequently, we find that if all of the least energy solutions of (1.1) have the form
(sUx0,ε , bUx0,ε), where s, b are constants, then we know

Sα,β =
1 + τ p

(1+τβ + τ p∗ )
p

p∗
S.

Setting f (τ ) := 1+τp

(1+τβ +τp∗ )
p

p∗
, it is easy to see that

f (τmin) := min
τmin≥0

f (τ ) ≤ 1.

By a similar method as that in [29], under the assumptions of Theorem 1.1, we derive
that the following form is suitable for the least energy solutions of (1.1), which can be
found in [29]:

Lemma 2.1 (The special case p = 2; see [29]) Assume � = R
N , N ≥ p2, and parameters

α > 1,β > 1, satisfy α + β = p∗. If (u0, v0) is the least energy solution of (1.6), then ∃!τmin > 0,
satisfying f (τmin) := minτ≥0 f (τ ) = minτ≥0

1+τ2

(1+τβ +τ2∗ )
2

2∗
< 1, and

(u0, v0) = (sUx0,ε , bUx0,ε),

where b = sτmin, x0 ∈ R
N , ε > 0, and s satisfies (2.7).

Lemma 2.2 For ∀x0 ∈ R
N , denote D̃ = B1(x0) ∩ {xN > h(x′)}, and let B1(x0) be the unit

ball centered at x0, with h(x′) being a C1 function defined in the set {x′ ∈ R
N–1 : |x′ – x′

0| <
1} where (x0)N = h((x0)1, . . . , (x0)N–1), and ∇h vanishes at x′

0 = ((x0)1, . . . , (x0)N–1) (that is,
∇h = 0 at this point). If u, v ∈ W 1,p(B1(x0)), supp u ⊂ B1(x0), supp v ⊂ B1(x0), then there is a
constant C(δ), which depends on δ, such that the following conclusions hold:

(1) When h ≡ 0,

∫

D̃

(|∇u|p + |∇v|p)dx ≥ 2– p
N Sα,β

(∫

D̃

(|u|p∗
+ |v|p∗

+ |u|α|v|β)
dx

) p
p∗

. (2.8)

(2) For ∀ε > 0,∃δ(ε), ∇h ≤ δ, such that

∫

D̃

(|∇u|p + |∇v|p)dx ≥ (
2– p

N Sα,β – ε
)
(∫

D̃

(|u|p∗
+ |v|p∗

+ |u|α|v|β)
dx

) p
p∗

. (2.9)

Proof (1) We estimate

∫

D̃

(|∇u|p + |∇v|p)dx =
1
2

∫

B1(x0)

(|∇u|p + |∇u|p)dx

≥ 1
2

Sα,β

(∫

B1(x0)

(|u|p∗
+ |v|p∗

+ |u|α|v|β)
dx

) p
p∗

= 2– p
N Sα,β

(∫

D̃

(|u|p∗
+ |v|p∗

+ |u|α|v|β)
dx

) p
p∗

.
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(2) By a translation transformation, letting y′ = x′, yn = xn – h(x′) > 0, we straighten the
boundary of D̃, and complete the proof. �

First of all, we have the following result which is necessary to verify that the equations
(1.1) satisfy the mountain pass lemma:

Lemma 2.3 When the assumptions of Theorem 1.1 are satisfied, the following conclusions
hold:

(1) If r > 0, δ > 0, ‖(u, v)‖ = r, then J(u, v) ≥ δ > 0;
(2) ∃(u0, v0) ∈ X, such that ‖(u0, v0)‖ > r, J(u0, v0) < 0 hold.

Proof (1) Because W 1,p(�) ↪→ Lp∗ (�) is continuous, by Hölder inequality, we have:

(∫

�

up∗
dx

) 1
p∗

≤ C1‖u‖W 1,p ,

(∫

�

vp∗
dx

) 1
p∗

≤ C2‖v‖W 1,p ,

∫

�

|u|α|v|β dx ≤
(∫

�

up∗
dx

) α
p∗ (∫

�

vp∗
dx

) β
p∗

≤ C3

(∫

�

|∇u|p + |u|p dx
) α

2
(∫

�

|∇v|p + |v|p dx
) β

2

= C3‖u‖α

W 1,p‖v‖β

W 1,p .

(2.10)

Hence,

J(u, v) =
1
p

∫

�

(|∇u|p + λ1up + |∇v|p + λ2vp)dx

–
1
p∗

∫

�

((
u+)p∗

+
(
v+)p∗

+
(
u+)α(

v+)β)
dx

≥ 1
p

C4
∥
∥(u, v)

∥
∥p –

1
p∗ C1‖u‖p∗

W 1,p(�) –
1
p∗ C2‖v‖p∗

W 1,p(�)

–
1
p∗ C3‖u‖α

W 1,p(�)‖v‖β

W 1,p(�)

≥ 1
p

C4
∥
∥(u, v)

∥
∥p –

1
p∗ C5

∥
∥(u, v)

∥
∥p∗

As a consequence of 1
p – 1

p∗ = 1
N > 0, choosing ‖(u, v)‖ = r small enough, we obtain the

desired result J(u, v) ≥ δ > 0.
(2) Now we estimate

J(tu, tv) =
tp

p

∫

�

(|∇u|p + λ1up + |∇v|p + λ2vp)dx

–
tp∗

p∗

∫

�

((
u+)p∗

+
(
v+)p∗

+
(
u+)α(

v+)β)
dx

≥ tp

p
C6

∥
∥(u, v)

∥
∥p –

tp∗

p∗ C7
∥
∥(u, v)

∥
∥p∗

.
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Hence, letting t tend to infinity,

lim
t→∞ J(tu, tv) = –∞,

so we can choose t0 ∈R, such that ‖(t0u, t0v)‖ > r, J(t0u, t0v) < 0, and then, setting (u0, v0) =
(t0u, t0v), the proof is completed. �

Next, we introduce the following lemmas (see [31]), which are useful in verifying that
the energy functional is lower than the threshold, and whose functional corresponds to
the Palais–Smale sequence.

Lemma 2.4 If {un} is a bounded sequence in Lp(�) such that un → u a.e., then

lim
n→∞

(∫

�

|un|p dx –
∫

�

|un – u|p dx
)

=
∫

�

|u|p dx. (2.11)

Lemma 2.5 If

un ⇀ u in W 1,p(�),

vn ⇀ v in W 1,p(�)

then

lim
n→∞

(∫

�

|un|α|vn|β dx –
∫

�

|un – u|α|vn – v|β dx
)

=
∫

�

|u|α|v|β dx. (2.12)

Lemma 2.6 (see [32]) Assume {un} is the (PS) sequence corresponding to Jλ,p, and un ⇀ u,
then it has finitely many points in �, we denote them by x1, x2, . . . , xk ∈ �, which make
un → u hold in W 1,p

loc (� \ {x1, x2, . . . , xk}).

Denote

Sλ1,λ2 := inf
u,v∈W 1,p(�)\{0}

∫

�
(|∇u|p + λ1up + |∇v|p + λ2vp) dx

[
∫

�
(up∗ + vp∗ + uαvβ ) dx]

p
p∗

.

Lemma 2.7 Suppose {(un, vn)} is a sequence in X, satisfying

J(un, vn) → c, J(un, vn) → 0, (2.13)

and

c < min

{
1
N

S
N
p
λ1,λ2

,
1

2N
S

N
p
α,β

}

. (2.14)

Then the system (1.1) has a solution (u, v) ∈ X and J(u, v) ≤ c.

Proof By Lemma 2.3, ∃(un, vn) which satisfies (2.13). Let

c = inf
γ∈�

sup
t∈[0,1]

J
(
γ (t)

)
,



Kou and An Boundary Value Problems         (2022) 2022:22 Page 9 of 24

� =
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = (0, 0), J

(
γ (1)

)
< 0

}
.

As a consequence, we can see that

c + o(1) = J(un, vn)

=
1
p

∫

�

|∇un|p + λ1up
n + |∇vn|p + λ2vp

n dx

–
1
p∗

∫

�

(
u+

n
)p∗

+
(
v+

n
)p∗

+
(
u+

n
)α(

v+
n
)β dx,

(2.15)

o(1)
∥
∥
(‖ϕ,ψ)

∥
∥
)

=
〈
J ′(un, vn), (ϕ,ψ)

〉

=
∫

�

|∇un|p–2∇un∇ϕ + λ1up–1
n ϕ + |∇vn|p–2∇vn∇ψ + λ2vp–1

n ψ dx

–
∫

�

(
u+

n
)p∗–1

ϕ +
(
v+

n
)p∗–1

ψ dx –
α

p∗

∫

�

(
u+

n
)α–1(v+

n
)β

ϕ dx

–
β

p∗

∫

�

(
u+

n
)α(

v+
n
)β–1

ψ dx, ∀(ϕ,ψ) ∈ X.

(2.16)

Setting (ϕ,ψ) = (un, vn) and substituting it into equation (2.16), we then have

o(1)
∥
∥
(‖ϕ,ψ)

∥
∥
)

=
〈
J ′(un, vn), (ϕ,ψ)

〉

=
∫

�

|∇un|p + λ1up
n + |∇vn|p + λ2vp

n dx

–
∫

�

(
u+

n
)p∗

+
(
v+

n
)p∗

+
(
u+

n
)α(

v+
n
)β dx.

(2.17)

Combining (2.17) with (2.15), we obtain

c + o(1) ≥ J(un, vn) –
1
p∗

〈
J ′(un, vn), (un, vn)

〉

=
(

1
p

–
1
p∗

)∫

�

|∇un|p + λ1up
n + |∇vn|p + λ2vp

n dx

≥ 1
N

C4
∥
∥(un, vn)

∥
∥.

This implies that (un, vn) is bounded, hence, ∃C such that ‖(un, vn)‖ ≤ C, ‖un‖W 1,p(�) ≤ C,
and ‖vn‖W 1,p(�) ≤ C. Moreover, there exist u ∈ W 1,p(�), v ∈ W 1,p(�) such that (un, vn) ⇀

(u, v) in X. By Lemma 2.6, we have the following results:

un ⇀ u, vn ⇀ v in W 1,p(�),

un → u, vn → v in W 1,p
loc

(
� \ {x1, x2, . . . , xk}

)
,

un → u, vn → v in Lp(�),

un ⇀ u, vn ⇀ v in Lp∗
(�),

∇un → ∇u, ∇vn → ∇v in Lp
loc

(
� \ {x1, x2, . . . , xk}

)
,
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un ⇀ u, vn ⇀ v a.e. in �.

By calculating the limit of both sides of (2.16), we obtain

0 = lim
n→∞

〈
J ′(un, vn), (ϕ,ψ)

〉

=
∫

�

|∇u|p–2∇u∇ϕ + λ1up–1ϕ + |∇v|p–2∇v∇ψ + λ2vp–1ψ dx

–
∫

�

(
u+)p∗–1

ϕ +
(
v+)p∗–1

ψ dx –
α

p∗

∫

�

(
u+)α–1(v+)β

ϕ dx

–
β

p∗

∫

�

(
u+)α(

v+)β–1
ψ dx ∀(ϕ,ψ) ∈ X.

(2.18)

By Definition 2.1, we know that (u, v) is a weak solution of (1.1). We need to verify that
(u, v) is a nontrivial solution in the following. Let ω̃n = un – u, σ̃n = vn – v, then by Lemmas
2.4, 2.5, and 2.6, we see that

∫

�

(
u+

n
)p∗

dx =
∫

�

(
u+)p∗

dx +
∫

�

(
ω̃+

n
)p∗

dx + o(1),
∫

�

(
v+

n
)p∗

dx =
∫

�

(
v+)p∗

dx +
∫

�

(
σ̃ +

n
)p∗

dx + o(1),
∫

�

(
u+

n
)α(

v+
n
)β dx =

∫

�

(
u+)α(

v+)β dx +
∫

�

(
ω̃+

n
)α(

σ̃ +
n
)β dx + o(1),

∫

�

|∇un|p dx =
∫

�

|∇u|p dx +
∫

�

|∇ω̃n|p dx + o(1),
∫

�

|∇vn|p dx =
∫

�

|∇v|p dx +
∫

�

|∇σ̃n|p dx + o(1),
∫

�

(ω̃n)p = o(1),
∫

�

(σ̃n)p = o(1).

By (2.15) and the fact J(un, vn) → c, J ′(un, vn) → 0, where (un, vn) ⊂ X, we have

c + o(1) = J(u, v) +
1
p

∫

�

|∇ω̃n|p dx + |∇σ̃n|p dx

–
1
p∗

∫

�

(
ω̃+

n
)p∗

+
(
σ̃ +

n
)p∗

+
(
ω̃+

n
)α(

σ̃ +
n
)β dx,

(2.19)

∫

�

|∇ω̃n|p dx + |∇σ̃n|p dx –
∫

�

(
ω̃+

n
)p∗

+
(
σ̃ +

n
)p∗

+
(
ω̃+

n
)α(

σ̃ +
n
)β dx = 0. (2.20)

Hence,

lim
n→∞

∫

�

|∇ω̃n|p dx + |∇σ̃n|p dx = lim
n→∞

∫

�

(
ω̃+

n
)p∗

+
(
σ̃ +

n
)p∗

+
(
ω̃+

n
)α(

σ̃ +
n
)β dx

= l ≥ 0.

For ∀ε > 0, where ε is a small suitable positive constant, we denote by (φi)m
i=1 a partition

of unity on �̄, satisfying ∀i, diam(suppφi) ≤ ρ , where diam(D) means the diameter of the
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domain D. Therefore, by Lemma 2.2, provided that ρ is small enough, we have

∫

�

∣
∣∇(uφi)

∣
∣p +

∣
∣∇(vφi)

∣
∣p dx

≥ (
2– p

N Sα,β – ε
)
(∫

�

∣
∣(uφi)

∣
∣p∗

+
∣
∣(vφi)

∣
∣p∗

+
∣
∣(uφi)

∣
∣α

∣
∣(vφi)

∣
∣β dx

) p
p∗

.

Employing Young inequality with ε, for ∀1 ≤ i ≤ m, u, v ∈ W 1,p(�), we have

(∫

�

(
ω̃+

n
)p∗

+
(
σ̃ +

n
)p∗

+
(
ω̃+

n
)α(

σ̃ +
n
)β dx

) p
p∗

≤
(∫

�

m∑

i=1

φi
p∗
p

[(
ω̃+

n
)p∗

+
(
σ̃ +

n
)p∗

+
(
ω̃+

n
)α(

σ̃ +
n
)β]

dx

) p
p∗

≤
m∑

i=1

(∫

�

(
φi

1
p ω̃+

n
)p∗

+
(
φi

1
p σ̃ +

n
)p∗

+
(
φi

1
p ω̃+

n
)α(

φi
1
p σ̃ +

n
)β

dx
) p

p∗

≤ (
2– p

N Sα,β – ε
)–1

m∑

i=1

∫

�

∣
∣∇(

ω̃nφi
1
p
)∣
∣
p

+
∣
∣∇(

σ̃nφi
1
p
)∣
∣
p

dx

≤ (
2– p

N Sα,β – ε
)–1

×
[

(1 + ε)
∫

�

|∇ω̃n|p + |∇σ̃n|p dx + C(ε)
∫

�

(ω̃n)p + (σ̃n)p dx
]

.

(2.21)

Hence, l ≥ ( 2– p
N Sα,β –ε

1+ε
)l

p
p∗ , and we discuss the following two cases:

If l = 0, then it is easy to see that (un, vn) → (u, v) in X, so (u, v) 
≡ (0, 0). If u 
≡ 0, v ≡ 0,
then

c =
1
p

∫

�

|∇u|p + λ1up dx –
1
p∗

∫

�

(
u+)p∗

dx ≥ 1
N

S
N
p
λ1,0.

Similarly, if u ≡ 0, v 
≡ 0, then

c =
1
p

∫

�

|∇v|p + λ2vp dx –
1
p∗

∫

�

(
v+)p∗

dx ≥ 1
N

S
N
p

0,λ2
.

This contradicts c < min{ 1
N S

N
p
λ1,λ2

, 1
2N S

N
p
α,β}. Thus, the solutions of system (1.1) are not

semitrivial solutions.
If l 
= 0, that is, l ≥ 1

2 S
N
p
α,β , then we only need to verify u 
≡ 0, v 
≡ 0.

(i) Assume one of u, v equals zero. It is natural to suppose u 
≡ 0, v ≡ 0.
From 〈J ′(un, vn), (un, vn)〉 → 0, it is easy to obtain

∫

�

|∇u|p + λ1up dx –
∫

�

(
u+)p∗

dx = 0.



Kou and An Boundary Value Problems         (2022) 2022:22 Page 12 of 24

Due to (2.19) and l ≥ 1
2 S

N
p
α,β , we see

c =
(

1
p

–
1
p∗

)

l +
1
p

∫

�

|∇u|p + λ1up dx –
1
p∗

∫

�

(
u+)p∗

dx

=
(

1
p

–
1
p∗

)

l +
(

1
p

–
1
p∗

)∫

�

|∇u|p + λ1up dx

≥
(

1
p

–
1
p∗

)

l ≥ 1
2N

S
N
p
α,β .

Similarly, this is a contradiction to c < min{ 1
N S

N
p
λ1,λ2

, 1
2N S

N
p
α,β}.

(ii) u ≡ 0, v ≡ 0.

Now we can find c = ( 1
p – 1

p∗ )c ≥ 1
2N S

N
p
α,β , which is also a contradiction. In summary, (u, v)

is a nontrivial solution of system (1.1).
Combining (2.19) and (2.20), the following result can be obtained:

J(u, v) = c –
1
N

∫

�

(
ω̃+

n
)p∗

+
(
σ̃ +

n
)p∗

dx + o(1),

implying J(u, v) ≤ c. �

3 Basic estimates
For each ε > 0, the extremal function of the best Sobolev constant has the following form:

uε(x) =
ε

N–p
p2

(ε + |x| p
p–1 )

N–p
p

. (3.1)

Suppose the ball centered at x̃ ∈ � is such that B(̃x, R) ⊂ � and ∂B(̃x, R) ∩ � 
= ∅.
Choosing x0 ∈ ∂B(̃x, R) ∩ �, the principal curvatures of ∂� at x0 can be presented by
γ1,γ2, . . . ,γN–1. Obviously, � ⊂ {xn > 0}, that is, � ⊂ R

N
+ , whereRN

+ = {x = (x1, x2, . . . , xN , ) ∈
R

N |xN > 0}. Hence, the mean curvature of ∂� at x0 is
∑N–1

i=1 γi, and we can represent the
boundary near the origin by the following:

xN = h
(
x′) =

1
2

N–1∑

i=1

γix2
i + o

(∣
∣x′∣∣2),

where h(x′) is as defined in Lemma 2.2, x′ = (x1, x2, . . . , xN–1) ∈ Dδ(0), and (0) = Bδ(0) ∩
{xN = 0}.

Set

K1(ε) =
∫

�

|∇uε|p dx, K2(ε) =
∫

�

|uε|p∗
dx,

K3(ε) =
∫

�

|uε|p dx, g
(
x′) =

1
2

N–1∑

i=1

γix2
i .

Next, K1(ε), K2(ε), and K3(ε) will be estimated.
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Lemma 3.1

K1(ε) =
∫

�

|∇uε|p dx =
∫

R
N
+

|∇uε|p dx – Iε + o
(
ε

p–1
p

)
, (3.2)

K2(ε) =
∫

�

|uε|p∗
dx =

∫

R
N
+

|uε|p∗
dx – IIε + o

(
ε

p–1
p

)
, (3.3)

K3(ε) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O(ε
N–p

p ln ε) = O(εp–1 ln ε), N = p2,

O(ε
N–p

p ) = O(ε
(p–1)2

p ), N = p2 – p + 1,

O(εp–1), N > p2,

(3.4)

where

Iε =
∫

RN–1
dx′

∫ g(x′)

0
|∇uε|p dxN , (3.5)

IIε =
∫

RN–1
dx′

∫ g(x′)

0
up∗

ε dxN , (3.6)

and

lim
ε→0

ε
– p–1

p Iε =
(

N – p
p – 1

)p ∫

RN–1

|y′| p
p–1 g(y′)

(1 + |y′| p
p–1 )

N dy′, (3.7)

lim
ε→0

ε
– p–1

p IIε =
∫

RN–1

g(y′)

(1 + |y′| p
p–1 )

N dy′. (3.8)

Proof By (3.1) and using g(x′) = 1
2
∑N–1

i=1 γix2
i , we see that xN = h(x′) = g(x′) + o(|x′|2), and

|∇uε| =
( N–p

p–1 )|x| 1
p–1 ε

N–p
p2

(ε + |x| p
p–1 )

N
p

. (3.9)

(1) The estimate for K1(ε).
First, based on spherical coordinate transformation, we have

∣
∣
∣
∣

∫

�

|∇uε|p dx –
∫

R
N
+

|∇uε|p dx +
∫

Dδ (0)
dx′

∫ h(x′)

0
|∇uε|p dxN

∣
∣
∣
∣

=
∣
∣
∣
∣–

∫

R
N
+ \�

|∇uε|p dx +
∫

Dδ (0)
dx′

∫ h(x′)

0
|∇uε|p dxN

∣
∣
∣
∣

≤
∫

R
N
+ \B+

R(0)
|∇uε|p dx

=
∫

R
N
+ \B+

R(0)

( N–p
p–1 )p|x| p

p–1 ε
N–p

p

(ε + |x| p
p–1 )N

dx (3.10)

=
1
2

∫ +∞

R

( N–p
p–1 )

p
ε

N–p
p r

p
p–1 ωN rN–1

(ε + r
p

p–1 )N
dr
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≤ Cε
N–p

p

∫ +∞

R

1

r
N–1
p–1

dr

= O
(
ε

N–p
p

)
.

Secondly,

∫

RN–1
dx′

∫ g(x′)

0
|∇uε|p dxN –

∫

Dδ (0)
dx′

∫ g(x′)

0
|∇uε|p dxN

=
∫

RN–1\Dδ (0)
dx′

∫ g(x′)

0
|∇uε|p dxN

=
∫

RN–1\Dδ (0)
dx′

∫ g(x′)

0

( N–p
p–1 )p

ε
N–p

p |x| p
p–1

(ε + |x| p
p–1 )

N dxN .

(3.11)

Continuing the above calculation, we get

(3.11) ≤
∫

RN–1\Dδ (0)
dx′

∫ g(x′)

0

( N–p
p–1 )

p
ε

N–p
p |x′| p

p–1

(ε + |x′| p
p–1 )

N dxN

=
∫

RN–1\Dδ (0)

( N–p
p–1 )

p
ε

N–p
p |x′| p

p–1 g(x′)

(ε + |x′| p
p–1 )

N dx′

=
∫

RN–1\Dδ (0)

( N–p
p–1 )p

ε
N–p

p |x′| p
p–1 1

2
∑N–1

i=1 γix2
i

(ε + |x′| p
p–1 )

N dx′.

Performing the spherical coordinate transformation yields

(3.11) ≤ 1
2

N–1∑

i=1

γi
1

N – 1

∫

RN–1\Dδ (0)

( N–p
p–1 )

p
ε

N–p
p |x′| p

p–1 +2

(ε + |x′| p
p–1 )

N dx′

=
1
2

N–1∑

i=1

γi
( N–p

p–1 )
p
ε

N–p
p ωN–1

N – 1

∫ +∞

δ

rN–2r
p

p–1 +2

(ε + |r| p
p–1 )

N dr

= Cε
N–p

p

∫ +∞

δ

1

|r| N–p
p–1

dr

= O
(
ε

N–p
p

)
.

Additionally,

∫

R
N
+

|∇uε|p dx –
∫

Dδ (0)
dx′

∫ h(x′)

0
|∇uε|p dxN + O

(
ε

N–p
p

)

=
∫

R
N
+

|∇uε|p dx –
∫

Dδ (0)
dx′

∫ g(x′)

0
|∇uε|p dxN
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–
∫

Dδ (0)
dx′

∫ h(x′)

g(x′)
|∇uε|p dxN + O

(
ε

N–p
p

)

=
∫

R
N
+

|∇uε|p dx –
∫

RN–1
dx′

∫ g(x′)

0
|∇uε|p dxN

(3.12)

–
∫

Dδ (0)
dx′

∫ h(x′)

g(x′)
|∇uε|p dxN +

∫

RN–1
dx′

∫ g(x′)

0
|∇uε|p dxN

–
∫

Dδ (0)
dx′

∫ g(x′)

0
|∇uε|p dxN + O

(
ε

N–p
p

)
.

By (3.5) and (3.11), and denoting I1
ε =

∫

Dδ (0) dx′ ∫ h(x′)
g(x′) |∇uε|p dxN , we see that

K1(ε) =
∫

�

|∇uε|p dx =
∫

R
N
+

|∇uε|p dx – Iε – I1
ε + O

(
ε

N–p
p

)
.

In order to prove Lemma 3.1, we now estimate I1
ε as follows:

∣
∣I1

ε

∣
∣ =

∣
∣
∣
∣

∫

Dδ (0)
dx′

∫ h(x′)

g(x′)
|∇uε|p dxN

∣
∣
∣
∣

=
∣
∣
∣
∣

(
N – p
p – 1

)p

ε
N–p

p

∫

Dδ (0)
dx′

∫ h(x′)

g(x′)

|x| p
p–1

(ε + |x| p
p–1 )

N dxN

∣
∣
∣
∣

≤
∣
∣
∣
∣

(
N – p
p – 1

)p

ε
N–p

p

∫

Dδ (0)
dx′

∫ h(x′)

g(x′)

ε + |x| p
p–1

(ε + |x| p
p–1 )

N dxN

∣
∣
∣
∣

≤
(

N – p
p – 1

)p

ε
N–p

p

∫

Dδ (0)

|h(x′) – g(x′)|
(ε + |x′| p

p–1 )
N–1 dx′.

(3.13)

For ∀θ > 0, using h(x′) = g(x′) + o(|x′|2), we know that ∃C(θ ) > 0 such that

∣
∣h

(
x′) – g

(
x′)∣∣ ≤ θ

∣
∣x′∣∣2 + C(θ )

∣
∣x′∣∣ 5

2 .

By the above inequalities, we can estimate (3.13) as follows:

∣
∣I1

ε

∣
∣ ≤

(
N – p
p – 1

)p

ε
N–p

p

∫

Dδ (0)

θ |x′|2 + C(θ )|x′| 5
2

(ε + |x| p
p–1 )

N–1 dx′

≤ C
(
ε

p–1
p θ + ε

p–1
p ε

p–1
2p C(θ )

)

= Cε
p–1

p
(
θ + ε

p–1
2p C(θ )

)
,

therefore I1
ε = o(ε

p–1
p ).

(2) The estimate of K2(ε).



Kou and An Boundary Value Problems         (2022) 2022:22 Page 16 of 24

By similar calculations as for K1(ε), we obtain

∣
∣
∣
∣

∫

�

up∗
ε dx –

∫

R
N
+

up∗
ε dx +

∫

Dδ (0)
dx′

∫ h(x′)

0
uε

p∗
dxN

∣
∣
∣
∣

=
∣
∣
∣
∣–

∫

R
N
+ \�

|uε|p∗
dx +

∫

Dδ (0)
dx′

∫ h(x′)

0
|∇uε|p dxN

∣
∣
∣
∣

≤
∫

R
N
+ \B+

R(0)
|uε|p∗

dx

=
∫

R
N
+ \B+

R(0)

ε
N
p

(ε + |x| p
p–1 )

N

≤ Cε
N
p

∫ +∞

R

1

r
N+p–1

p–1
dr

= O
(
ε

N
p
)
.

(3.14)

Similarly as for (3.11),

∫

RN–1
dx′

∫ g(x′)

0
up∗

ε dxN –
∫

Dδ (0)
dx′

∫ g(x′)

0
uε

p∗
dxN

=
∫

RN–1\Dδ (0)
dx′

∫ g(x′)

0
up∗

ε dxN

≤
∫

RN–1\Dδ (0)
dx′

∫ g(x′)

0

ε
N
p

(ε + |x′| p
p–1 )

N dxN

=
∫

RN–1\Dδ (0)

ε
N
p g(x′)

(ε + |x′| p
p–1 )

N dx′

=
∫

RN–1\Dδ (0)

ε
N
p 1

2
∑N–1

i=1 γix2
i

(ε + |x′| p
p–1 )

N dx′.

(3.15)

As before, performing a spherical coordinate transformation, we get

(3.15) ≤ 1
2

N–1∑

i=1

γi
1

N – 1

∫

RN–1\Dδ (0)

ε
N
p |x′|2

(ε + |x′| p
p–1 )

N dx′

=
1
2

N–1∑

i=1

γi
1

N – 1
ε

N
p ωN–1

∫ +∞

δ

r2rN–2

(ε + r
p

p–1 )
N dr

≤ Cε
N
p

and

∫

�

up∗
ε� dx =

∫

R
N
+

up∗
ε dx –

∫

Dδ (0)
dx′

∫ h(x′)

0
uε

p∗
dxN + O

(
ε

N
p
)

=
∫

R
N
+

up∗
ε dx –

∫

Dδ (0)
dx′

∫ g(x′)

0
uε

p∗
dxN
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–
∫

Dδ (0)
dx′

∫ h(x′)

g(x′)
uε

p∗
dxN + O

(
ε

N
p
)

=
∫

R
N
+

up∗
ε dx –

∫

RN–1
dx′

∫ g(x′)

0
uε

p∗
dxN

(3.16)

–
∫

Dδ (0)
dx′

∫ h(x′)

g(x′)
uε

p∗
dxN +

∫

RN–1
dx′

∫ g(x′)

0
uε

p∗
dxN

–
∫

Dδ (0)
dx′

∫ g(x′)

0
uε

p∗
dxN + O

(
ε

N
p
)
.

Denoting II2
ε =

∫

Dδ (0) dx′ ∫ h(x′)
g(x′) uε

p∗ dxN , we have

K2(ε) =
∫

�

up∗
ε dx =

∫

R
N
+

up∗
ε dx – IIε – II2

ε + O
(
ε

N
p
)
.

Estimating II2
ε gives

∣
∣II2

ε

∣
∣ =

∣
∣
∣
∣

∫

Dδ (0)
dx′

∫ h(x′)

0
uε

p∗
dxN

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Dδ (0)
dx′

∫ h(x′)

g(x′)

ε
N
p

(ε + |x′| p
p–1 )

N dxN

∣
∣
∣
∣

≤ ε
N
p

∫

Dδ (0)

θ |x′|2 + C(θ )|x′| 5
2

(ε + |x′| p
p–1 )

N dx′

≤ ε
N
p ωN–1

∫ δ

0

θrN + C(θ )rN+ 1
2

(ε + |x| p
p–1 )

N dr

≤ C
(
ε

p–1
p θ + ε

p–1
p ε

p–1
2p C(θ )

)

≤ Cε
p–1

p
(
θ + ε

p–1
2p C(θ )

)

= o
(
ε

p–1
p

)
.

(3.17)

(3) The estimate of K3(ε).
Due to � being bounded, there must exist R > 0 such that � ⊂ BR(0), hence we can write

∫

�

up
ε dx =

∫

�

ε
N–p

p

(ε + |x| p
p–1 )

N–p dx

=
∫

BR(0)

ε
N–p

p

(ε + |x| p
p–1 )

N–p dx

≤ ε
N–p

p

∫

BR(0)

(r
p

p–1 )
p–1

p (N–1)

(ε + r
p

p–1 )
N–p ωN dr

(3.18)
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=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O(ε
N–p

p ) = O(ε
(p–1)2

p ), N = p2 – p + 1,

O(ε
N–p

p ln ε) = O(εp–1 ln ε), N = p2,

O(εp–1), N ≥ p2 + 1.

(4) The estimates of Iε and IIε .
Setting x = ε

p–1
p y, by direct calculation, we derive

Iε =
∫

RN–1
dx′

∫ g(x′)

0
|∇uε|p dxN

=
(

N – p
p – 1

)p

ε
N–p

p

∫

RN–1
dx′

∫ g(x′)

0

|x| p
p–1

(ε + |x| p
p–1 )

N dxN

=
(

N – p
p – 1

)p

ε
N–p

p

∫

RN–1

(
ε

p–1
p

)N–1 dy′
∫ ε

p–1
p g(y′)

0

|y| p
p–1

(1 + |y| p
p–1 )

N ε
1+ p–1

p –N dyN

=
(

N – p
p – 1

)p ∫

RN–1
dy′

∫ ε
p–1

p g(y′)

0

|y| p
p–1

(1 + |y| p
p–1 )

N dyN

=
(

N – p
p – 1

)p ∫

RN–1

ε
p–1

p g(y′)(|y′| p
p–1 + ε|g(y′)| p

p–1 )

(1 + |y′| p
p–1 + ε|g(y′)| p

p–1 )
N dy′.

(3.19)

Hence,

lim
ε→0

ε
– p–1

p Iε =
(

N – p
p – 1

)p ∫

RN–1

|y′| p
p–1 g(y′)

(1 + |y′| p
p–1 )

N dy′.

Similarly,

IIε =
∫

RN–1
dx′

∫ g(x′)

0
up∗

ε dxN

=
∫

RN–1
dx′

∫ g(x′)

0

ε
N
p

(ε + |x| p
p–1 )

N dxN

=
∫

RN–1

(
ε

p–1
p

)N–1 dy′
∫ ε

p–1
p g(y′)

0

ε
N
p

(ε + ε|y| p
p–1 )

N ε
p–1

p dyN

=
∫

RN–1
dy′

∫ ε
p–1

p g(y′)

0

1

(1 + |y| p
p–1 )

N dyN

=
∫

RN–1

ε
p–1

p g(y′)

(1 + |y′| p
p–1 + ε|g(y′)| p

p–1 )
N dy′,

(3.20)

and so we have proved (3.8). �
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Making the same variable substitution and setting K1 =
∫

RN |∇uε|p, we see that

K1 =
∫

RN
|∇uε|p

=
(

N – p
p – 1

)p

ε
N–p

p

∫

RN

|x| p
p–1

(ε + |x| p
p–1 )

N dx

=
(

N – p
p – 1

)p

ε
N–p

p

∫

RN

ε|y| p
p–1

(ε + ε|y| p
p–1 )

N

(
ε

p–1
p

)N dy

=
(

N – p
p – 1

)p ∫

RN

|y| p
p–1

(1 + |y| p
p–1 )

N dy.

(3.21)

Setting K2 =
∫

RN up∗
ε dx, by the same calculation,

K2 =
∫

RN
up∗

ε =
∫

RN

1

(1 + |y| p
p–1 )

N dy. (3.22)

Therefore, we can immediately deduce the following lemma from the above calculation.

Lemma 3.2

K1

K
p

p∗
2

=
K1

K
N–p

N
2

= S. (3.23)

4 Proof of the main results
In this section, we will give the proof of Theorem 1.1, but we first give a lemma.

Lemma 4.1 Under the conditions of Theorem 1.1, there exists at least one nonnegative
function (u, v) ∈ X \ (0, 0) such that

sup
t≥0

J
(
t(u, v)

)
<

1
2N

S
N
p
α,β . (4.1)

Proof By Lemma 2.1, we only need to verify that ∀ε > 0 small enough,

sup
t≥0

J
(
t(suε , kuε)

)
<

1
2N

S
N
p
α,β . (4.2)

Because

sup
t≥0

J
(
t(suε , kuε)

)

= sup
t≥0

[
tp

p

∫

�

∣
∣∇(suε)

∣
∣p + λ1(suε)p +

∣
∣∇(kuε)

∣
∣p + λ2(kuε)p dx

–
tp∗

p∗

∫

�

(suε)p∗
+ (kuε)p∗

+ (suε)α(kuε)β dx
]
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≤ sup
t≥0

[
tp

p

∫

�

∣
∣∇(suε)

∣
∣p +

∣
∣∇(kuε)

∣
∣p dx

–
tp∗

p∗

∫

�

(suε)p∗
+ (kuε)p∗

+ (suε)α(kuε)β dx
]

+ o
(
ε

p–1
p

)

= sup
t≥0

[
tp

p

∫

�

(
sp + kp)∣∣∇(uε)

∣
∣p dx

–
tp∗

p∗

∫

�

(
sp∗

+ kp∗
+ sαkβ

)
(uε)p∗

dx
]

+ o
(
ε

p–1
p

)

= sup
t≥0

[
tp

p
(
sp + kp)K1(ε) –

tp∗

p∗
(
sp∗ + kp∗ + sαkβ

)
K2(ε)

]

+ o
(
ε

p–1
p

)

=
1
N

[
sp + kp

(sp∗ + kp∗ + sαkβ )
p

p∗
· K1(ε)

(K2(ε))
p

p∗

] N
p

+ o
(
ε

p–1
p

)

=
1
N

[

f (τmin) · K1(ε)

(K2(ε))
p

p∗

] N
p

+ o
(
ε

p–1
p

)
.

Therefore, we need to prove

K1(ε)

[K2(ε)]
p

p∗
<

(
1
2

) p
N

S + o
(
ε

p–1
p

)
=

1
2 K1

( 1
2 K2)

p
p∗

+ o
(
ε

p–1
p

)
, (4.3)

which is equivalent to

[
1
2

K1 – Iε + o
(
ε

p–1
p

)
](

1
2

K2

) p
p∗

<
1
2

K1

[
1
2

K2 – IIε + o
(
ε

p–1
p

)
] p

p∗
+ o

(
ε

p–1
p

)
, (4.4)

where

[
1
2

K2 – IIε + o
(
ε

p–1
p

)
] p

p∗

≤
(

1
2

K2 – IIε

) p
p∗

+ o
(
ε

p–1
p

)

≤
(

1
2

K2

) p
p∗

–
p
p∗

(
1
2

K2

) p
p∗ –1

IIε + o
(
ε

p–1
p

)

=
(

1
2

K2

) p
p∗

–
p
p∗

(
1
2

K2

)– p
N

IIε + o
(
ε

p–1
p

)
.

(4.5)

Substituting into (4.4) yields

Iε
IIε

>
K1

K2
· N – p

N
+ o(1). (4.6)

This implies that it is necessary to prove (4.6) before we verify (4.1). In fact,

lim
ε→0

Iε
IIε

= lim
ε→0

ε
– p–1

p Iε

ε
– p–1

p IIε
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=
(

N – p
p – 1

)p

∫

RN–1
g(y′)|y′|

p
p–1

(1+|y′|
p

p–1 )
N dy′

∫

RN–1
g(y′)

(1+|y′|
p

p–1 )
N dy′

=
(

N – p
p – 1

)p
1

2(N–1)
∑N–1

i=1 γi
∫

RN–1
|y′|

p
p–1 +2

(1+|y′|
p

p–1 )
N dy′

1
2(N–1)

∑N–1
i=1 γi

∫

RN–1
|y′|2

(1+|y′|
p

p–1 )
N dy′

Performing a spherical coordinate transformation, we obtain

lim
ε→0

Iε
IIε

=
(

N – p
p – 1

)p

∫ +∞
0

r
p

p–1 +2
ωN–1rN–2

(1+r
p

p–1 )
N dr

∫ +∞
0

r2ωN–1rN–2

(1+r
p

p–1 )
N dr

=
(

N – p
p – 1

)p

∫ +∞
0

r
p

p–1 +N

(1+r
p

p–1 )
N dr

∫ +∞
0

rN

(1+r
p

p–1 )
N dr

.

For all k, p
p–1 ≤ k ≤ p

p–1 N , integrating by parts, we have

∫ +∞

0

rk– p
p–1

(1 + r
p

p–1 )
N–1 dr =

p(N – 1)
(p – 1)k – 1

∫ +∞

0

rk

(1 + r
p

p–1 )
N dr

and

∫ +∞

0

rk

(1 + r
p

p–1 )
N dr =

∫ +∞

0

rk– p
p–1

(1 + r
p

p–1 )
N–1 dr –

∫ +∞

0

rk– p
p–1

(1 + r
p

p–1 )
N dr.

Hence,

∫ +∞

0

rk

(1 + r
p

p–1 )
N dr =

(p – 1)k – 1
pN – (p – 1) – (p – 1)k

∫ +∞

0

rk– p
p–1

(1 + r
p

p–1 )
N dr.

Choosing k = N + p
p–1 gives

∫ +∞
0

r
p

p–1 +N

(1+r
p

p–1 )
N dr

∫ +∞
0

rN

(1+r
p

p–1 )
N dr

=
(p – 1)(N + 1)
N – (2p – 1)

,

thus we obtain

lim
ε→0

Iε
IIε

=
(N – p)p(N + 1)

(p – 1)p–1(N – (2p – 1))
. (4.7)



Kou and An Boundary Value Problems         (2022) 2022:22 Page 22 of 24

On the other hand,

N – p
N

K1

K2
=

N – p
N

(
N – p
p – 1

)p

∫

RN
|y′|

p
p–1

(1+|y|
p

p–1 )
N dy

∫

RN
1

(1+|y′|
p

p–1 )
N dy′

=
N – p

N

(
N – p
p – 1

)p

∫ +∞
0

r
p

p–1 +N–1

(1+r
p

p–1 )
N dr

∫ +∞
0

rN–1

(1+r
p

p–1 )
N dr

.

Choosing k = N + p
p–1 – 1, we then have

N – p
N

K1

K2
=

(N – p)p

(p – 1)p–1 , (4.8)

thus, under the condition N ≥ p2 in Theorem 1.1, there must exist N > 2p – 1, and then
the proofs of (4.4) and Theorem 4.1 are completed. �

Finally, we will complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Set

c∗ = inf
(u,v)∈X

{
sup
t≥0

J
(
t(u, v)

)|u, v ≥ 0, (u, v) 
= (0, 0)
}

,

where c∗ > c, and c represents the mountain pass level. Hence, we only need to verify

c < min

{
1
N

S
N
p
λ1,λ2

,
1

2N
S

N
p
α,β

}

.

By Lemmas 4.1 and 2.7, we know that system (1.1) has a nontrivial solution (u, v) ∈
X, J(u, v) < c.

Assume (u, v) = (u1, v1) is the constant solution of equation (1.1), then

⎧
⎪⎪⎨

⎪⎪⎩

λ1u1 = up∗–1
1 + α

p∗ uα–1
1 vβ

1 , x ∈ �,

λ2v1 = vp∗–1
1 + β

p∗ uα
1 vβ–1

1 , x ∈ �,

u1, v1 > 0, x ∈ �.

Therefore,

⎧
⎨

⎩

λ1 = up∗–2
1 + α

p∗ uα–2
1 vβ

1 , x ∈ �,

λ2 = vp∗–2
1 + β

p∗ uα
1 vβ–2

1 , x ∈ �,
(4.9)

v
1– (2–α)(2–β)

αβ

1 ≥ 2
2

αβ , u
1– (2–α)(2–β)

αβ

1 ≥ 2
2

αβ . (4.10)

However, 1 – (2–α)(2–β)
αβ

> 0, that is, (4.10) cannot be satisfied, which is a contradiction.
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The functional which corresponds to system (1.1) is

J(u1, v1) =
1
p

∫

�

(
λ1up

1 + λ2vp
1
)

dx –
1
p∗

∫

�

(
up∗

1 + vp∗
1 + uα

1 vβ
1
)

dx

=
1
N

∫

�

(
λ1up

1 + λ2vp
1
)

dx

= C(N ,λ1,λ2) meas(�).

When λ1,λ2 are large enough, we can obtain J(u1, v1) > c, which creates a contradiction.
And also because

〈
J ′(u, v),

(
u–, v–)〉

= 0,

we get ‖(u–, v–)‖2 = 0 and (u–, v–) = (0, 0). This implies that (u, v) is a nonnegative solution
of system (1.1). By the strong maximum principle, we have u > 0, v > 0, and then the proof
is finished. �
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