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Abstract
In this paper, the existence of a solution for an anisotropic variable exponent system is
obtained and proved under general hypotheses. By considering additional
conditions, it is proved a multiplicity result. The proofs are based on an application of
appropriated L∞ estimates, a sub-supersolution argument, and the Mountain Pass
Theorem.
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1 Introduction
In this paper, we are interested in nonnegative solutions for the anisotropic system

⎧
⎪⎪⎨

⎪⎪⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = a(x)uα(x)–1 + Fu(x, u, v) in �,

–
∑N

i=1
∂

∂xi
(| ∂v

∂xi
|qi(x)–2 ∂v

∂xi
) = b(x)vβ(x)–1 + Fv(x, u, v) in �,

u = v = 0 on ∂�,

(S)

where, unless otherwise stated, � is a bounded domain in R
N (N ≥ 3) with smooth

boundary, pi, qi ∈ C(�), 2 ≤ pi(x) ≤ p+(x) < p�(x), 2 ≤ qi(x) ≤ q+(x) < q�(x), i = 1, . . . , N ,
p+(x) := max{p1(x), . . . , pN (x)}, q+(x) := max{q1(x), . . . , qN (x)} for any x ∈ � with p(x) :=
N/

∑N
i=1(1/pi(x)) and p∗(x) = Np(x)/(N – p(x)) if p(x) < N and p(x) = +∞ if N ≥ p(x),

q(x) := N/
∑N

i=1(1/qi(x)) and q∗(x) = Nq(x)/(N – q(x)) if q(x) < N and q(x) = +∞ if N ≥
q(x), α,β ∈ C(�) are nonnegative functions with 1 ≤ α(x),β(x) for all x ∈ �, F : �×R

2 →
R is a C1 function and

(H) a, b ∈ L∞(�) and a(x), b(x) > 0 a.e. in �;
(F1) There is δ > 0 with

Fs(x, s, t) ≥ (
1 – sα(x)–1)a(x), for all 0 ≤ s ≤ δ a.e. in �

and

Ft(x, s, t) ≥ (
1 – tβ(x)–1)b(x), for all 0 ≤ t ≤ δ a.e. in �.
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(F2) There is r ∈ C(�) with 1 < r(x), for all x ∈ � and

Fs(x, s, t) ≤ a(x)
(
sr(x)–1 + tr(x)–1 + 1

)
, for all 0 ≤ s, a.e. in �

and

Ft(x, s, t) ≤ b(x)
(
sr(x)–1 + tr(x)–1 + 1

)
, for all 0 ≤ t, a.e. in �.

It will be considered that a weak solution for the system (S) is a pair (u, v) ∈ Z, where

Z := W 1,
−−→
p(x)

0 (�) × W 1,
−→
q(x)

0 (�) with u(x), v(x) ≥ 0 a.e in � satisfying

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂φ

∂xi
=

∫

�

a(x)vα(x)–1ϕ + Fu(x, u, v)ϕ

and

∫

�

N∑

i=1

∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

qi(x)–2
∂v
∂xi

∂φ

∂xi
=

∫

�

b(x)uβ(x)–1ψ + Fv(x, u, v)ψ ,

for all (ϕ,ψ) ∈ Z.
Denote by ‖ · ‖∞ the norm in the space L∞(�). Through minimization and sub-

supersolutions arguments, it is obtained the existence result below.

Theorem 1.1 Suppose that the hypotheses (H), (F1)-(F2) hold. Then, there exists ν > 0 such
that the system (S) has a solution for max{‖a‖∞,‖b‖∞} < ν .

Consider the functions p∞(x) := max{p�(x), p+(x)}, p–(x) := min{p1(x), . . . , pn(x)},
q∞(x) := max{q�(x), q+(x)}, q–(x) := min{q1(x), . . . , qn(x)}, x ∈ � and denote l– := inf�l and
l+ := sup�l for a function l ∈ C(�). Under the Ambrosetti-Rabinowitz type condition,

(F3) it holds that α– > 1, α+, r+ < p–∞ with α+ < p–
– or p+

+ < α–, and there are constants
t0 > 0 and θ > p+

+ such that

0 < θF(x, t) ≤ f (x, t)t, a.e. in �, for all t ≥ t0,

we have the multiplicity result below.
(F3) It hold the inequalities r+ < min{p–∞, q–∞}, α+ < p–∞, β+ < q–∞, and there are 0 < θ < 1

p+
+

,
0 < ξ < 1

q+
+

and k0 > 0 such that

F(x, s, t) ≤ θsFs(x, s, t) + ξ tFt(x, s, t)

a.e. in � for any |(s, t)| ≥ k0 with s, t ≥ 0, where | · | denotes the Euclidean norm in
R

2 and F(x, s, t) :=
∫ s

0 Fτ (x, τ , t) dτ +
∫ t

0 Fτ (x, t, τ ) dτ .

Theorem 1.2 Suppose that the hypotheses (H), (f1)-(f3) hold. Consider that one of the con-
ditions below holds.

(i) It holds that p+
+ < α– and q+

+ < β– or β+ < q–
– .
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(ii) It holds that α+ < p–
– and β+ < q–

– or q+
+ < β–.

Then, there exists η > 0 such that system (S) has at least two solutions for max{‖a‖∞,
‖b‖∞} < η.

In the last decades, Partial Differential Equations with variable exponents have been
attracting the attention of several scientists due to their applicability in several relevant
models. The main application of this kind of equation is in the study of electrorheological
fluids. As mentioned in [1], the study of such fluids arose when fluids that stop sponta-
neously were discovered, also known as Bingham fluids. In the classical reference [2], due
to W. Winslow, it was presented one of the main properties of electrorheological fluids.
Parallel and string-like formations arise in this kind of fluid when it is considered the pres-
ence of an electrical field. This pattern is known as theWinslow effect. Moreover, the elec-
trical field can raise the viscosity of the fluid by five orders of magnitude, see reference [1].
As pointed out in the interesting work [3], several studies with electrorheological fluids
have been considered in NASA laboratories.

On the other hand, Anisotropic Partial Differential Equations can also be applied in sev-
eral models. For example, in the classical reference [4], a model was presented that was
applied for both image enhancement and denoising in terms of anisotropic problems as
well as allowed the preservation of significant image features. We also quote the applica-
bility in the study of the spread of epidemic disease in heterogeneous environments. In
Physics, such an equation can be applied to consider the dynamics of fluids with different
conductivities in different directions. We point out the references [4–7] for more details.

An important fact is that there is increasing interest in anisotropic problems with vari-
able exponents. In the paper [8], the regularity of solutions of a stationary system is
obtained, which is motivated by the theory of electrorheological fluids. In [9], a strong
maximum principle is gained in the variable exponent setting, generalizing the classi-
cal principal of the Laplacian operator. The paper [10] presents the mathematical theory,
which allows considering problems involving anisotropic operators with variable expo-
nents. Moreover, several applications were considered. We also point out the interesting
references [11–20] and the paper [21], which provides an overview concerning elliptic
variational problems with nonstandard growth conditions and refers to different kinds of
nonuniformly elliptic operators. See also [1, 22] for a complete presentation of the theory
of the Sobolev spaces with variable exponents and its applications.

The study of the system (S) is motivated by the problem considered in the reference
[23], where it was proved, in an anisotropic setting, versions of Theorems 1.1 and 1.2 with
α,β ≡ 2, and [24], where it was considered a scalar version of the system.

Regarding the remainder of the paper, we mention that in Sect. 2, it is considered some
preliminary facts regarding the theory of the anisotropic variable spaces. The proofs of
Theorems 1.1 and 1.2 are provided in Sects. 3 and 4, respectively.

2 Preliminaries
Consider p ∈ C+(�) := {p ∈ C(�); inf� p > 1}, where � ⊂R

N (N ≥ 1) is a bounded domain.
The Lebesgue space with a variable exponent is defined by

Lp(x)(�) =
{

u : � →R measurable;
∫

�

∣
∣u(x)

∣
∣p(x) < ∞

}

,
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with the Luxemburg’s norm

‖u‖p(x) := inf

{

λ > 0;
∫

�

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

≤ 1
}

.

It holds that (Lp(x)(�),‖ · ‖p(x)) is a Banach space.
In what follows, we point out some results that can be found, for example, in [25].

Proposition 2.1 Consider a function p ∈ C+(�) and define ρ(u) :=
∫

�
|u|p(x) dx. For u, un ∈

Lp(x)(�), n ∈ N, the assertions below hold.
(i) If u �= 0 in Lp(x)(�), then ‖u‖p(x) = λ ⇔ ρ( u

λ
) = 1;

(ii) If ‖u‖p(x) < 1 (>1; =1), then ρ(u) < 1 (>1; =1);
(iii) If ‖u‖p(x) > 1, then ‖u‖p–

p(x) ≤ ρ(u) ≤ ‖u‖p+

p(x);
(iv) If ‖u‖p(x) < 1, then ‖u‖p+

p(x) ≤ ρ(u) ≤ ‖u‖p–

p(x).

Theorem 2.2 Consider functions p, q ∈ C+(�). The statements below hold.
(i) If 1

q(x) + 1
p(x) = 1 in �, then | ∫

�
uv dx| ≤ ( 1

p– + 1
q– )‖u‖p(x)‖v‖q(x);

(ii) If q(x) ≤ p(x) in � and |�| < ∞, then Lp(x)(�) ↪→ Lq(x)(�).

Some results on anisotropic variable exponents [10] will be presented below. Consider
functions pi ∈ C+(�), i = 1, . . . , N . Define

−−→
p(x) :=

(
p1(x), . . . , pN (x)

) ∈ (
C+(�)

)N

and consider the functions

p+(x) := max
{

p1(x), . . . , pN (x)
}

and p–(x) := min
{

p1(x), . . . , pN (x)
}

, x ∈ �. (2.1)

The anisotropic variable exponent Sobolev space is defined by

W 1,
−−→
p(x)(�) :=

{

u ∈ Lp+(x)(�);
∂u
∂xi

∈ Lpi(x)(�), i = 1, . . . , N
}

,

which is a Banach space with the norm

‖u‖∗ := ‖u‖p+(x) +
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi(x)
. (2.2)

If p–
i > 1, i = 1, . . . , N , then it holds that W 1,

−−→
p(x)(�) is reflexive, see, for instance, [10,

Theorem 2.2].

Denote by W 1,
−−→
p(x)

0 (�) the Banach space defined by the closure of C∞
0 (�) in W 1,−→p (�)

with the norm (2.2).
Define the functions p(x) := N/

∑N
i=1(1/pi(x)) and p∗(x) = Np(x)(N – p(x)) if p(x) < N and

p(x) = +∞ if N ≥ p(x). Under the condition p(x) < p∗(x) for all x ∈ �, it holds the Poincaré
type inequality below

‖u‖p+(x) ≤ C
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi(x)
for all u ∈ W 1,

−−→
p(x)

0 (�), (2.3)
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where C is a positive constant that does not depend on u ∈ W 1,
−−→
p(x)

0 (�). Thus, it holds that
the norm defined by

‖u‖1,−→p (x) :=
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi(x)
, u ∈ W 1,

−−→
p(x)

0 (�)

is equivalent to the one given in (2.2).
An important fact is that it holds the compact embedding

W 1,
−−→
p(x)

0 (�) ↪→ Lq(x)(�) (2.4)

for a function q ∈ C+(�) with q(x) < p∞(x), for all x ∈ �, where p∞(x) := max{p�(x), p+(x)}.
The results below, which will play an important role in our arguments, can be found in

[24].

Lemma 2.3 Consider a function a ∈ L∞(�). The problem

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = a in �,

u = 0 on ∂�,

has an unique solution in W 1,
−−→
p(x)

0 (�).

Lemma 2.4 Consider functions u, v ∈ W 1,
−−→
p(x)

0 (�) such that

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) ≤ –

∑N
i=1

∂
∂xi

(| ∂v
∂xi

|pi(x)–2 ∂v
∂xi

) in �,

u ≤ v on ∂�,

where u ≤ v on ∂� means that (u – v)+ := max{0, u – v} ∈ W 1,−→p (x)
0 (�). Then it holds that

u(x) ≤ v(x) a.e. in �.

Lemma 2.5 Let uλ ∈ W 1,
−−→
p(x)

0 (�) be the unique solution to the problem

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = λ in �,

u = 0 on �,

where λ > 0 is a constant. Define σ := p–
–

2|�| 1
N

K0, where K0 is the best constant of the con-

tinuous embedding W 1,1
0 (�) ↪→ L

N
N–1 (�), which depends only on � and N . If λ < σ , then

u ∈ L∞(�) with ‖u‖L∞(�) ≤ K�λ
1

p++–1 and ‖u‖L∞(�) ≤ K�λ
1

p–––1 when λ ≥ σ , where K� and
K� are positive constants depending only on �, N and pi, i = 1, . . . , N .

3 Proof of Theorem 1.1
The proof of Theorem 1.1 will be split into some steps. The first one consists of obtaining
appropriated sub-supersolutions for the system (S). After this, the existence of solutions
for an auxiliary system will be proved, which solves (S).
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In what follows, it will be considered the definition of sub-supersolution for the system
(S) and an auxiliary lemma.

It will be considered that (u, v), (u, v) ∈ (W 1,
−−→
p(x)

0 (�) ∩ L∞(�)) × (W 1,
−→
q(x)

0 (�) ∩ L∞(�)) is a
sub-supersolution pair for the system (S) if u(x) ≤ u(x), v(x) ≤ v(x) a.e. in � and

⎧
⎨

⎩

∫

�

∑N
i=1 | ∂u

∂xi
|pi(x)–2 ∂u

∂xi
∂ϕ

∂xi
≤ ∫

�
a(x)uα(x)–1ϕ + Fu(x, u, w)ϕ for all w ∈ [v, v],

∫

�

∑N
i=1 | ∂v

∂xi
|qi(x)–2 ∂v

∂xi
∂ψ

∂xi
≤ ∫

�
b(x)vβ(x)–1ψ + Fv(x, w, v)ψ for all w ∈ [u, u]

(3.1)

and
⎧
⎨

⎩

∫

�

∑N
i=1 | ∂u

∂xi
|pi(x)–2 ∂u

∂xi
∂ϕ

∂xi
≥ ∫

�
a(x)uα(x)–1ϕ + Fu(x, u, w)ϕ for all w ∈ [v, v],

∫

�

∑N
i=1 | ∂v

∂xi
|qi(x)–2 ∂v

∂xi
∂ψ

∂xi
≥ ∫

�
b(x)vβ(x)–1ψ + Fv(x, w, v)ψ for all w ∈ [u, u],

is verified for all nonnegative functions ϕ ∈ W 1,
−−→
p(x)

0 (�), ψ ∈ W 1,
−→
q(x)

0 (�), where [u, v] := {w :
� →R measurable; u(x) ≤ w(x) ≤ v(x) a.e in �} for u, v ∈ S(�) with u(x) ≤ v(x) a.e in �.

In the next result, it is obtained appropriated sub-supersolutions for (S).

Lemma 3.1 Suppose that de hypotheses (H) and (F1) – (F2) are satisfied. Then, there exists

ρ > 0 such that the problem (S) admits a sub-supersolution pairs (u, v), (u, v) ∈ (W 1,
−−→
p(x)

0 (�)∩
L∞(�))× (W 1,

−→
q(x)

0 (�)∩L∞(�)), satisfying max{‖u‖∞,‖v‖∞} ≤ δ with δ as described in (F1),
whenever max{‖a‖∞,‖b‖∞} < ρ .

Proof The lemmas 2.3 and 2.5 imply that there are unique nonnegative solutions u, u ∈
W 1,

−−→
p(x)

0 (�) and v, v ∈ W 1,
−→
q(x)

0 (�) such that

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = a(x) in �,

u = 0 on ∂�,
⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂v

∂xi
|qi(x)–2 ∂v

∂xi
) = b(x) in �,

v = 0 on ∂�,
⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = 1 + a(x) in �,

u = 0 on ∂�,

and
⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂v

∂xi
|qi(x)–2 ∂v

∂xi
) = 1 + b(x) in �,

v = 0 on ∂�,

such that max{‖u‖∞,‖v‖∞} ≤ K max{‖a‖
1

p–––1
∞ ,‖a‖

1
p++–1
∞ ,‖b‖

1
q–––1
∞ ,‖b‖

1
q++–1
∞ }, with K > 0 being

a constant that does not depend on a and b. Consider there is ρ > 0, depending only on K ,
such that max{‖u‖∞,‖v‖∞} ≤ δ/2, when max{‖a‖∞,‖b‖∞} < ρ .

From Lemma 2.4, we have 0 < u(x) ≤ u(x), 0 < v(x) ≤ v(x) a.e. in �.
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Consider nonnegative functions ϕ ∈ W 1,
−−→
p(x)

0 (�) and ψ ∈ W 1,
−→
q(x)

0 (�). From the definition
of u and v and the hypothesis (F1), it follows that

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂ϕ

∂xi
–

∫

�

a(x)uα(x)–1ϕ –
∫

�

Fs(x, u, w)ϕ

≤
∫

�

a(x)ϕ –
∫

�

a(x)uα(x)–1ϕ –
∫

�

(
1 – uα(x)–1)a(x)ϕ

= 0,

for all w ∈ [v, v] and

∫

�

N∑

i=1

∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

qi(x)–2
∂v
∂xi

∂ψ

∂xi
–

∫

�

b(x)vβ(x)–1ψ –
∫

�

Ft(x, w, v)ψ

≤
∫

�

b(x)ψ –
∫

�

b(x)vβ(x)–1ψ –
∫

�

(
1 – vβ(x)–1)b(x)ϕ

= 0

for all w ∈ [u, u]. Using (F2), we obtain that

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂ϕ

∂xi
–

∫

�

a(x)uα(x)–1ϕ –
∫

�

Fs(x, u, w)ϕ

≥
∫

�

(
1 – C1‖a‖∞

)
ϕ, w ∈ [v, v]

(3.2)

and

∫

�

N∑

i=1

∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

qi(x)–2
∂v
∂xi

∂ψ

∂xi
–

∫

�

b(x)vβ(x)–1ψ –
∫

�

Ft(x, w, v)ψ

≥
∫

�

(
1 – C2‖b‖∞

)
ψ , w ∈ [u, u],

(3.3)

where

C1 := max
{‖u‖α+–1

∞ ,‖u‖α––1
∞

}
+ max

{‖u‖r+–1
∞ ,‖u‖r––1

∞
}

+ max
{‖v‖r+–1

∞ ,‖v‖r––1
∞

}

and

C2 := max
{‖v‖β+–1

∞ ,‖v‖β––1
∞

}
+ max

{‖v‖r+–1
∞ ,‖v‖r––1

∞
}

+ max
{‖u‖r+–1

∞ ,‖u‖r––1
∞

}
.

Considering, if necessary, ρ > 0 smaller such that max{C1‖a‖∞, C2‖b‖∞} ≤ 1, if max{‖a‖∞,
‖b‖∞} < ρ , it will follow that the right-hand sides in (3.2) and (3.3) are nonnegative, pro-
viding the result. �

Proof of Theorem 1.1 Consider the sub-supersolution pair

(u, v), (u, v) ∈ (
W 1,

−−→
p(x)

0 (�) ∩ L∞(�)
) × (

W 1,
−→
q(x)

0 (�) ∩ L∞(�)
)
,
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provided in the proof of Lemma 3.1. Define the operators T : W 1,
−−→
p(x)

0 (�) → W 1,
−−→
p(x)

0 (�) and

S : W 1,
−→
q(x)

0 (�) → W 1,
−→
q(x)

0 (�)

Tu(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

u(x), if u(x) > u(x),

u(x), if u(x) ≤ u(x) ≤ u(x)

u(x), if u(x) < u(x),

, Sv(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

v(x), if v(x) > v(x),

v(x), if v(x) ≤ v(x) ≤ v(x)

v(x), if v(x) < v(x),

and the auxiliary system

⎧
⎪⎪⎨

⎪⎪⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = Gu(x, u, v) in �,

–
∑N

i=1
∂

∂xi
(| ∂v

∂xi
|qi(x)–2 ∂v

∂xi
) = Gv(x, u, v) in �,

u = v = 0 on ∂�,

(S′)

where

Gu(x, u, v) := a(x)
(
Tu(x)

)α(x)–1 + Fu
(
x, Tu(x), Sv(x)

)
,

Gv(x, u, v) := b(x)
(
Tv(x)

)β(x)–1 + Fv
(
x, Tu(x), Sv(x)

)
.

(3.4)

Consider W := W 1,
−−→
p(x)

0 (�) × W 1,
−→
q(x)

0 (�) with the norm ‖(u, v)‖ := ‖u‖
1,

−−→
p(x)

+ ‖v‖
1,

−→
q(x)

,
which is a Banach space. The solutions of (S′) coincide with the critical points of the C1

functional defined by

J(u, v) :=
∫

�

N∑

i=1

1
pi(x)

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

+
∫

�

N∑

i=1

1
qi(x)

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

qi(x)

–
∫

�

G(x, u, v), (u, v) ∈ W , (3.5)

where G(x, s, t) :=
∫ s

0 Gτ (x, τ , t) dτ +
∫ t

0 Gτ (x, s, τ ) dτ . We have that J is a coercive and se-
quentially weakly lower semicontinuous. Consider the set

A :=
{

(u, v) ∈ W ; u(x) ≤ u(x) ≤ u(x), v(x) ≤ v(x) ≤ v(x) a.e in �
}

,

which is closed and convex and hence weakly closed in W . Thus, it follows that J|A attains
its infimum at some function u0 ∈ A. Similar reasoning with respect to the proof of [26,
Theorem 2.4] provides that J ′(u0) = 0, which proves the result. �

4 Proof of Theorem 1.2
Let u ∈ W 1,

−−→
p(x)

0 (�) and v ∈ W 1,
−→
q(x)

0 (�) be the function given in Lemma 3.1. Consider T̃ :
W 1,p(x)

0 (�) → W 1,p(x)
0 (�) and S̃ : W 1,q(x)

0 (�) → W 1,q(x)
0 (�) defined by

T̃u(x) :=

⎧
⎨

⎩

u(x), if u(x) ≤ u(x),

u(x), if u(x) < u(x),
S̃v(x) :=

⎧
⎨

⎩

v(x), if v(x) ≤ v(x),

v(x), if v(x) < v(x),
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the functions G̃u(x, u, v) := a(x)(T̃u)α(x)–1 + Fu(x, T̃u, S̃v), G̃v(x, u, v) := b(x)(̃Sv)β(x)–1 +

Fv(x, T̃u, S̃v), u ∈ W 1,
−−→
p(x)

0 (�), v ∈ W 1,
−→
q(x)

0 (�) and the problem

⎧
⎪⎪⎨

⎪⎪⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = G̃u(x, u, v) in �,

–
∑N

i=1
∂

∂xi
(| ∂v

∂xi
|qi(x)–2 ∂v

∂xi
) = G̃v(x, u, v) in �,

u = v = 0 on ∂�,

(̃S)

whose solutions are given by the critical points of the C1 functional

L(u, v) :=
∫

�

N∑

i=1

1
pi(x)

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

+
∫

�

N∑

i=1

1
qi(x)

∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

qi(x)

–
∫

�

G̃(x, u, v), (u, v) ∈ W ,

where W was defined in the proof of Theorem 1.1 and

G̃(x, s, t) :=
∫ s

0
G̃τ (x, τ , t) dτ +

∫ t

0
G̃τ (x, s, τ ) dτ .

Lemma 4.1 The Palais-Smale condition is satisfied by the functional L.

Proof Consider (un, vn) ⊂ W a sequence such that L′(un, vn) → 0 and L(un, vn) → c for
some c ∈R. With respect to the first part of (i), note that (F3) holds with θ , ξ > 0 such that
max{ 1

α– , θ} < θ < 1
p+

+
and max{ 1

β– , ξ} < ξ < 1
q+

+
. Applying (H), (F1)-(F3), Propositions 2.1,

embedding (2.4), the boundedness of the functions u and v and arguing as in the proof of
[1, Theorem 36] (see also inequality 3.2 of [24]), we obtain that there are constants Ci > 0,
i = 1, . . . , 4 such that

C1 + on(1)
∥
∥(un, vn)

∥
∥ ≥ L′(un, vn)(un, vn) – θL′(un, vn)(un, 0) – ξL′(un, vn)(0, vn)

≥ C2
(‖un‖p–

–

1,
−−→
p(x)

+ ‖vn‖q–
–

1,
−→
q(x)

)
– C3

∥
∥(un, vn)

∥
∥

+
∫

{un≥u}

(

θ –
1

α(x)

)

a(x)un
α(x)

+
∫

{vn≥v}

(

ξ –
1

β(x)

)

b(x)vn
β(x)

≥ C2
(‖un‖p–

–

1,
−−→
p(x)

+ ‖vn‖q–
–

1,
−→
q(x)

)
– C4

∥
∥(un, vn)

∥
∥,

which provide that (un, vn) is bounded in W .
With respect to the second case of (i), that is β+ < q–

–, we have constants Ci > 0, i = 1, . . . , 5
with

C1 + on(1)
∥
∥(un, vn)

∥
∥ ≥ L′(un, vn)(un, vn) – θL′(un, vn)(un, 0) – ξL′(un, vn)(0, vn)

≥ C2
(‖un‖p–

–

1,
−−→
p(x)

+ ‖vn‖q–
–

1,
−→
q(x)

)
– C4

∥
∥(un, vn)

∥
∥

– C5 max
{‖vn‖β+

β(x),‖vn‖β–

β(x)
}

,
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where θ > 0 was provided in the first part of the proof (i). Thus, the continuous embedding

W 1,
−→
q(x)

0 (�) ↪→ Lβ(x)(�), which is given by (2.4), implies that

C1 + on(1)
∥
∥(un, vn)

∥
∥ + C2

∥
∥(un, vn)

∥
∥ ≥ C3

(‖un‖p–
–

1,
−−→
p(x)

+ ‖vn‖q–
–

1,
−→
q(x)

)

– C4 max
{‖vn‖β+

1,
−→
q(x)

,‖vn‖β–

1,
−→
q(x)

}
,

for constants Ci > 0, i = 1, . . . , 5. Since β+ < q–, we obtain that the sequence (un, vn) is
bounded in W .

Thus, for a subsequence still denoted by (un, vn), we obtain that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un ⇀ u in W 1,
−−→
p(x)

0 (�),

un(x) → u(x) a.e. in �,

un → u in Lh(x)(�)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vn ⇀ v in W 1,
−→
q(x)

0 (�),

vn(x) → v(x) a.e. in �,

vn → v in Lk(x)(�),

(4.1)

for all h, k ∈ C(�) with 1 < h– ≤ h+ < (p�)–, 1 < k– ≤ k+ < (q�)– and some pair (u, v) ∈ W .
From Lebesgue’s Dominated Convergence Theorem and (4.1), it follows that

∫

�

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi–2
∂un

∂xi
–

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

)(
∂un

∂xi
–

∂u
∂xi

)

→ 0,

∫

�

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

qi–2
∂vn

∂xi
–

∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

qi–2
∂v
∂xi

)(
∂vn

∂xi
–

∂v
∂xi

)

→ 0.

Since p–
–, q–

– ≥ 2, we have the result by the inequality (see, for instance, [27, page 97])

〈|x|m–2x – |y|m–2y, x – y
〉 ≥ 1

2m–2 |x – y|m (4.2)

for all x, y ∈ R
N and m ≥ 2, where 〈·, ·〉 denotes the usual Euclidean inner product in

R
N . �

The next result provides the Mountain Pass Geometry for the functional L.

Lemma 4.2 If the hypotheses (H), (F1)-(F3) hold, then for max{‖a‖∞,‖b‖∞} small enough,
the claims below are true.

(i) There are constants R,σ > 0 with R > ‖(u, v)‖ such that

L(u, v) < 0 < σ ≤ inf
(u,v)∈∂BR(0)

L(u, v).

(ii) There is e ∈ W \ B2R(0) such that L(e) < σ .

Proof The inequalities p–
–, q–

– > 1 and (3.1) provide that L(u, v) < 0. Consider (u, v) ∈ W

with ‖(u, v)‖ ≥ 1. From the embeddings W 1,
−−→
p(x)

0 (�) ↪→ Lα(x)(�), W 1,
−→
q(x)

0 (�) ↪→ Lβ(x)(�) and
Proposition 2.1, it follows that

L(u, v) ≥ K1
∥
∥(u, v)

∥
∥ι – K2 – K3

∥
∥(u, v)

∥
∥

– ‖a‖∞K4
(
max

{‖u‖α+

1,
−−→
p(x)

,‖u‖α–

1,
−−→
p(x)

}
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+ max
{‖u‖r+

1,
−−→
p(x)

,‖u‖r–

1,
−−→
p(x)

})

– ‖b‖∞K5
(
max

{‖v‖β+

1,
−→
q(x)

,‖v‖β–

1,
−→
q(x)

}

+ max
{‖v‖r+

1,
−→
q(x)

,‖v‖r–

1,
−→
q(x)

})
,

for positive constants Ki > 0, i = 1, . . . , 5, where ι := min{p–, q–}. If necessary, decrease
max{‖a‖∞,‖b‖∞} in a such way that ‖(u, v)‖ < 1, which is possible applying the functions
ϕ = u and ψ = v in the inequality (3.1) and using Lemma 2.5. Fix σ > 0 and let R > 1 be
a constant such that K1Rι – K3R ≥ 2σ . Considering max{‖a‖∞,‖a‖∞} small enough such
that K4‖a‖∞(Rα+ + Rr+ ) + K5‖b‖∞(Rβ+ + Rr+ ) ≤ σ , it follows that L(u, v) ≥ σ for (u, v) ∈ W
with ‖(u, v)‖ = R, which provides (i).

With respect to (ii), note that the hypothesis (F3) and the inequality 1
θ

> p+
+, provide

constants Ki > 0, i = 1, . . . , 4 and t > 0 large enough such that L(tu, 0) ≤ C1tp+
+ – C2tα– –

C3t
1
θ + C4 < 0 and ‖(tu, 0)‖ > 2R. �

Proof of Theorem 1.2 Let (u, v), (u, v) ∈ W be the pairs given in Lemma 3.1. Consider
(u1, v1) ∈ W , the solution to the system (S) provided in Theorem 1.1, which minimizes
the functional J|A, where J was given in (3.5) and

A =
{

(u, v) ∈ W ; u(x) ≤ u(x) ≤ u(x), v(x) ≤ v(x) ≤ v(x) a.e. in �
}

.

The Lemmas 4.1 and 4.2 provide that the hypotheses of the Mountain Pass Theorem [28,
Theorem 2.1] are verified by the functional L. Therefore,

c := inf
γ∈�

max
t∈[0,1]

L
(
γ (t)

)
, where � :=

{
γ ∈ C

(
[0, 1], W

)
;γ (0) = (u, v),γ (1) = e

}

is a critical value of L, i.e., L′(u2, v2) = 0 and L(u2, v2) = c, for some (u2, v2) ∈ W . From
the definition of Gu and Gv provided in (3.4), we obtain that J(u, v) = L(u, v) for (u, v) ∈
{(w, z) ∈ W ; 0 ≤ w(x) ≤ u(x), 0 ≤ z(x) ≤ v(x) a.e in �}. Thus, it follows that J(u, v) = L(u, v)
and L(u1, v1) = J(u1, v1) = inf(u,v)∈A J(u, v). Recall that L(u, v) < 0. Thus, if u2(x) ≥ u(x),
v2(x) ≥ v(x) a.e. in �, then it follows that (S) has two weak solutions (u1, v1), (u2, v2) ∈ W
with L(u1, v1) ≤ L(u, v) < 0 < σ ≤ c = L(u2, v2), where σ > 0 given in Lemma 4.2.

We affirm that u2(x) ≥ u(x), v2(x) ≥ v(x) a.e. in �. In order to prove such inequality,

consider the test functions (u – u2)+ ∈ W 1,
−−→
p(x)

0 (�), (v – v2)+ ∈ W 1,
−→
q(x)

0 (�) and w ∈ [v, v],
z ∈ [u, u]. It follows from (̃S) and (3.1) that

∫

�

N∑

i=1

∣
∣
∣
∣
∂u2

∂xi

∣
∣
∣
∣

pi(x)–2
∂u2

∂xi

∂(u – u2)+

∂xi
+

∫

�

N∑

i=1

∣
∣
∣
∣
∂v2

∂xi

∣
∣
∣
∣

qi(x)–2
∂v2

∂xi

∂(v – v2)+

∂xi

=
∫

{u2<u}
a(x)uα(x)–1 + Fu(x, u2, w) +

∫

{v2<v}
b(x)vα(x)–1 + Fv(x, z, v2),

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂(u – u2)+

∂xi
+

∫

�

N∑

i=1

∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

qi(x)–2
∂v
∂xi

∂(v – v2)+

∂xi
.
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Therefore,

∫

{u>u2}

N∑

i=1

(∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

–
∣
∣
∣
∣
∂u2

∂xi

∣
∣
∣
∣

pi–2
∂u2

∂xi

)(
∂u
∂xi

–
∂u2

∂xi

)

≤ 0,

∫

{v>v2}

N∑

i=1

(∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

pi–2
∂v
∂xi

–
∣
∣
∣
∣
∂v2

∂xi

∣
∣
∣
∣

pi–2
∂v2

∂xi

)(
∂v
∂xi

–
∂v2

∂xi

)

≤ 0.

(4.3)

From inequality (4.2) and (4.3), it follows that

∫

�

∣
∣
∣
∣

∂

∂xi
(u – u2)+

∣
∣
∣
∣

pi(x)

= 0,

∫

�

∣
∣
∣
∣

∂

∂xi
(v – v2)+

∣
∣
∣
∣

qi(x)

= 0,

for i = 1, . . . , N , which provides that ∂
∂xi

(u – u2)+(x) = ∂
∂xi

(v – v2)+(x) = 0 a.e. in �. Thus, it
follows from (2.4) that (u – u2)+(x) = (v – v2)+(x) = 0 a.e. in �, which proves the claim. �
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