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Abstract
In this paper, we prove the existence and uniqueness of solutions for the nonlocal
boundary value problem (BVP) using Caputo fractional derivative (CFD). We derive
Green’s function and give some estimation for it to derive our main results. The main
principles applied to investigate our results are based on the Banach contraction fixed
point theorem and Schauder fixed point approach. We dwell in detail on some results
concerning the Hyers-Ulam (H-U) type and generalized H-U (g-H-U) type stability also
for problem we are considering. We justify our results with an illustrative example.
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1 Introduction
Fractional differential equations (FDEs) refer to the generalization of integer-order differ-
ential equations. They appear in various scientific and engineering fields, for instance, the
mathematical modeling of different dynamical processes in epidemiology [1–4], chem-
istry, physics [5], psychology [6], biology, signal and image processing, control theory,
ecology [7], etc. As a result, the concept of non-integer order differential equations is con-
tinuously getting more consequences and relevancy. For instances and details, see [8–11]
and the given references therein. After all, even though the BVPs theory for nonlinear and
nonclassical differential equations is still in its infancy, many directions of this literature
need to be expanded further.

The topic of multi-point nonlocal BVPs has been raised by various researchers (we refer
[12–15]). The multi-point boundary constraints arise in various problems of physics, fluid
mechanics, and wave propagation (we refer to [16, 17] for interest). For instance, in con-
trollers, the multi-point boundary constraints may be found such that the controllers at
the endpoints spread or add energy with related sensors placed at middle-level positions.
In the same line, the third-order differential equations in which differentiation of acceler-
ation is involved are called jerk equations, where the time derivative of acceleration occurs
(see details in [18, 19]). The said equations are important for engineers and physicists, and
they try to plan the vehicles in a way that jerks may be minimal. The third-order differen-
tial equations are special cases of FDEs with orders between 2 and 3. The fractional order
goes through three, the considered equation possibly corresponds to the jerk equation.

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-022-01606-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-022-01606-0&domain=pdf
https://orcid.org/0000-0002-8889-3768
mailto:tabdeljawad@psu.edu.sa


Ertürk et al. Boundary Value Problems         (2022) 2022:25 Page 2 of 15

The results related to investigating the existence and uniqueness of solutions for non-
linear multi-point BVPs have been studied by a number of researchers. For example, au-
thors in [20, 21], and references therein have investigated various classes of BVPs of FDEs.
Authors [22] have proved the existence of a solution for non-integer order BVP with non-
local multi-point boundary constraints using Schaefer’s and Krasnoselskii’s fixed point
theorems. On the other hand, stability results are important to be investigated in most
cases to demonstrate the authenticity and validity of numerical algorithms, methods, and
procedures. In this regard, valuable work has been done in the last many decades. Vari-
ous concepts of stability have been introduced, including exponential, Mittag-Leffler, and
Lyapunov types. The stability aspects are very important from the optimization and nu-
merical point of view. So far, we know, a huge amount of work has been done [23–27]. An-
other version of stability introduced by Ulam and explained by Hyers attracted the atten-
tion of researchers very well. The said version is easy and understandable for approximate
solutions. For functional equations, this kind of stability has been investigated very well
(see details in a few articles as [28–30]). The mentioned stability has been very well stud-
ied for ordinary differential problems. In the last few decades, this aspect has been given
more attention and investigated for different classes of initial value problems of FDEs (see
[31–34]). However, for simple BVPs, the concerned stability has also been well studied.
However, in the case of nonlocal BVPs, it is very rarely investigated, especially for jerk-like
problems. In this regard, we refer to [35–38].

Inspired by the above work, we will extend the results of the following problem [39] to
fractional order as

y′′′ + �(t, y) = 0, t ∈ [c, d], (1.1)

y(c) = y′(c) = 0, y(d) = ky(β). (1.2)

Here β ∈ (c, d), k ∈R, � ∈ C([c, d]×R,R), and �(t, 0) �= 0. In our work, we intend to extend
the above (1.1) and (1.2) by taking the Caputo fractional order derivative instead of ordi-
nary (we refer the reader to see [40] for definitions and basic consequences on non-integer
order calculus) in the place of the classical operator y′′′. Here, we prove the existence and
uniqueness of the solution for the following non-integer order BVP of FDEs as

cDζ
0+y(t) + �(t, y) = 0, t ∈ [c, d], (1.3)

y(c) = y′(c) = 0, y(d) = ky(β), (1.4)

where 2 < ζ ≤ 3, by assuming that � : [c, d] ×R →R is a continuous mapping and follows
a uniform Lipschitz inequality with respect to y on [c, d] × R, such that there exists a
constant L > 0, where for every (t, y), (t, z) ∈ [c, d] ×R, we have

∣
∣�(t, y) – �(t, z)

∣
∣ ≤ L|y – z|.

If (d – c)2 �= k(c – β)2 with c �= β , c �= d and (d – c) is as small such that

(d – c)3

3
+

|k|
3

(d – c)5

|(d – c)2 – k(β – c)2| <
1
L

.
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Under the said condition, a unique solution to Problem (1.3) and (1.4) exists. This result
will be investigated using fixed point techniques. After that, we will also evaluate the pro-
posed stability analysis for our considered Problem (1.3) and (1.4). Also, H-U and g-H-U
stability results are developed for the considered problem using some sophisticated pro-
cedure of nonlinear analysis.

The remaining article is arranged as follows: In Sect. 2, we recall some basic definitions
and results. In Sect. 3, we compute fractional Green’s function. In Sect. 4, some results
about Green’s function and its estimation are given. Section 5 is devoted to existing results.
In Sect. 6, we elaborate on stability results. Also, we have given an example to demonstrate
our results in Sect. 7. The conclusion is given in Sect. 7.

2 Elementary results
Here, we recall some basic results of fractional integral and derivative found in [40].

Definition 2.1 The fractional integral of order ζ > 0, for an absolutely continuous func-
tion y : (0,∞) → R is defined as

Iζ
+0y(t) =

1
�(ζ )

∫ t

0
(t – s)ζ–1y(s) ds, (2.1)

provided the integral converges at the right sides over (0,∞).

Definition 2.2 The Caputo fractional derivative of order ζ > 0, for an absolutely contin-
uous function y ∈ Cn[c, d] is defined as

cDζ
0+y(t) =

1
�(n – ζ )

∫ t

0
(t – s)n–ζ–1 dn

dtn y(s) ds, n – 1 < ζ ≤ n, t ∈ [c, d],

where n = [ζ ] + 1, (2.2)

provided that the right side is point wise defined on (0,∞).

Lemma 2.1 ([40]) Let ζ > 0 and if y is absolutely continuous function, then we have

Iζ
+0

[cDζ
+0y(t)

]

= y(t) + C0 + C1t + · · · + Cn–1tζ–n, (2.3)

for some constants Ci ∈R, i = 0, 1, 2, . . . , n – 1.

3 Computation and estimation of Green’s function
Now, let us establish Green’s function for the following two-point BVP

cDζ
+0u(t) + h(t) = 0, t ∈ [c, d], (3.1)

u(c) = u′(c) = 0, u(d) = 0 (3.2)

with c �= β , c �= d and afterwards, supposing that the solution of the following three-point
BVP

cDζ
+0y(t) + h(t) = 0, t ∈ [c, d], (3.3)
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y(c) = y′(c) = 0, y(d) = ky(β) (3.4)

can be stated as follows

y(t) = u(t) +
(

λ0 + λ1t + λ2t2)u(β),

where λ0, λ1, and λ2 are constants that will be specified later. We will estimate Green’s
function for (3.3) and (3.4), respectively.

Proposition 3.1 If h : [c, d] → R is continuous mapping, then BVP (3.1) and (3.2) has a
unique solution given by

u(t) =
∫ t

c

[
(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 –
(t – s)ζ–1

�(ζ )

]

h(s) ds +
∫ d

t

[
(c – t)2(d – s)ζ–1

�(ζ )(c – d)2

]

h(s) ds,

which can be expressed in compact form as

u(t) =
∫ d

c
R(t, s)h(s) ds,

where

R(t, s) =

⎧

⎨

⎩

(c–t)2(d–s)ζ–1

�(ζ )(c–d)2 – (t–s)ζ–1

�(ζ ) , c ≤ s ≤ t ≤ d,
(c–t)2(d–s)ζ–1

�(ζ )(c–d)2 , c ≤ t ≤ s ≤ d.
(3.5)

Proof It is well known that Problem (3.1) and (3.2) is similar to solving the integral equa-
tion

u(t) = c1 + c2(t – c) + c3(t – c)2 –
1

�(ζ )

∫ t

c
(t – s)ζ–1h(s) ds,

where c1, c2, and c3 are some real constants. Using boundary conditions given in (1.4), we
can obtain

c1 =
c2

�(ζ )(c – d)2

∫ d

c
(d – s)ζ–1h(s) ds,

c2 = –
2c

�(ζ )(c – d)2

∫ d

c
(d – s)ζ–1h(s) ds,

c3 =
1

�(ζ )(c – d)2

∫ d

c
(d – s)ζ–1h(s) ds.

Thus, we get

u(t) =
∫ d

c

(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 h(s) ds –
∫ t

c

(t – s)ζ–1

�(ζ )
h(s) ds

=
∫ t

c

(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 h(s) ds +
∫ d

t

(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 h(s) ds

–
∫ t

c

(t – s)ζ–1

�(ζ )
h(s) ds
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=
∫ t

c

[
(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 –
(t – s)ζ–1

�(ζ )

]

h(s) ds

+
∫ d

t

[
(c – t)2(d – s)ζ–1

�(ζ )(c – d)2

]

h(s) ds. (3.6)

�

The unique result exists from the assumption that the completely homogeneous BVP
has only the trivial solution. So Proposition 3.1 has been proved.

Proposition 3.2 Let h : [c, d] → R be a continuous mapping, if k(c – β)2 �= (c – d)2 and
c �= β , c �= d, then BVP (3.3) and (3.4) has a unique solution given by

y(t) = u(t) +
k(c – t)2

(c – d)2 – k(c – β)2 u(β).

The solution can be written further as

y(t) =
∫ d

c
G(t, s)h(s) ds,

where

G(t, s) = R(t, s) +
k(c – t)2

(c – d)2 – k(c – β)2 R(β , s). (3.7)

Proof Let

y(t) = u(t) +
(

λ0 + λ1t + λ2t2)u(β),

where λ0, λ1, λ2 are constants that will be determined using boundary conditions given in
(3.4) and

u(t) =
∫ d

c
R(t, s)h(s) ds.

Therefore, to compute λ0, λ1, λ2, we proceed as

y(c) = u(c) +
(

λ0 + λ1c + λ2c2)u(β) =
(

λ0 + λ1c + λ2c2)u(β),

y′(c) = u′(c) + (λ1 + 2λ2c)u(β) = (λ1 + 2λ2c)u(β),

y(d) = u(d) +
(

λ0 + λ1d + λ2d2)u(β) =
(

λ0 + λ1d + λ2d2)u(β),

y(β) = u(β) +
(

λ0 + λ1β + λ2β
2)u(β) = u(β)

(

λ0 + λ1β + λ2β
2 + 1

)

.

We get

(

λ0 + λ1c + λ2c2)u(β) = 0,

(λ1 + 2λ2c)u(β) = 0,
(

λ0 + λ1d + λ2d2)u(β) = ku(β)
(

λ0 + λ1β + λ2β
2 + 1

)

,



Ertürk et al. Boundary Value Problems         (2022) 2022:25 Page 6 of 15

or

λ0 + λ1c + λ2c2 = 0,

(λ1 + 2λ2c) = 0,

(1 – k)λ0 + (d – kβ)λ1 +
(

d2 – kβ2)λ2 = k.

Solving the system, we get the corresponding values as

λ0 =
c2k

(c – d)2 – k(c – β)2 , λ1 =
–2ck

(c – d)2 – k(c – β)2 ,

λ2 =
k

(c – d)2 – k(c – β)2 .

Therefore, the final solution becomes

y(t) = u(t) +
(

c2k
(c – d)2 – k(c – β)2 –

2ckt
(c – d)2 – k(c – β)2 +

kt2

(c – d)2 – k(c – β)2

)

u(β)

= u(t) +
k(c – t)2

(c – d)2 – k(c – β)2 u(β).

Now we derive the proof of the uniqueness. Let z be also a solution to (3.3) and (3.4), that
is

cDζ
+0z(t) + h(t) = 0, t ∈ [c, d], (3.8)

z(c) = z′(d) = 0, z(d) = kz(β). (3.9)

Let �(t) = z(t) – y(t), t ∈ [c, d]. Due to linearity property of the Caputo non-integer order
derivative, we have

cDζ
+0�(t) = cDζ

+0z(t) –c Dζ
+0y(t) = –h(t) + h(t) = 0, t ∈ [c, d].

Therefore, �(t) = c1 + c2t + c3t2, where c1, c2, and c3 are constants that will be computed
later. We have

�(c) = z(c) – y(c),

�′(c) = z′(c) – y′(c),

�(d) = z(d) – y(d) = kz(β) – ky(β) = k
(

z(β) – y(β)
)

= k�(β),

or

�(c) = c1 + c2c + c3c2,

�′(c) = c2 + 2c3c,

�(d) = c1 + c2d + c3d2 = k
(

c1 + c2β + c3β
2) = k�(β).
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We get the following homogeneous system

⎧

⎪⎪⎨

⎪⎪⎩

c1 + c2a + c3c2 = 0,

c2 + 2c3c = 0,

c1(1 – k) + c2(d – kβ) + c3
(

d2 – kβ2) = 0,

with determinant
∣
∣
∣
∣
∣
∣
∣

1 c c2

0 1 2c
1 – k d – kβ d2 – kβ2

∣
∣
∣
∣
∣
∣
∣

= (c – d)2 – k(c – β)2 �= 0.

Therefore, the homogeneous system contains only the trivial solution, and hence �(t) ≡ 0,
t ∈ [c, d] or y(t) ≡ z(t), t ∈ [c, d]. Thus, the proof is completed. �

4 Green’s function estimations
Proposition 4.1 Let R(t, s) be Green’s function given in Proposition 3.1, then

∫ d

c

∣
∣R(t, s)

∣
∣ds ≤ 2

(d – c)ζ

�(ζ + 1)
, for t ∈ [c, d].

Proof We deduce the proof as

∫ d

c

∣
∣R(t, s)

∣
∣ds ≤

∫ t

c

∣
∣R(t, s)

∣
∣ds +

∫ d

t

∣
∣R(t, s)

∣
∣ds

=
∫ t

c

∣
∣
∣
∣

(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 –
(t – s)ζ–1

�(ζ )

∣
∣
∣
∣
ds +

∫ d

t

(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 ds

≤
∫ t

c

(
(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 +
(t – s)ζ–1

�(ζ )

)

ds +
∫ d

t

(c – t)2(d – s)ζ–1

�(ζ )(c – d)2 ds

=
(

(c – t)2(d – s)ζ

�(ζ + 1)(c – d)2 +
(t – s)ζ

�(ζ + 1)

)

|tc +
(

(c – t)2(d – s)ζ

�(ζ + 1)(c – d)2

)

|dt

=
(c – t)2(d – t)ζ

�(ζ + 1)(c – d)2 –
(c – t)2(d – c)ζ

�(ζ + 1)(d – c)2 –
(t – c)ζ

�(ζ + 1)
–

(c – t)2(d – t)ζ

�(ζ + 1)(c – d)2

= –
(c – t)2(d – c)ζ

�(ζ + 1)(c – d)2 –
(t – c)ζ

�(ζ + 1)

≤ (d – c)2(d – c)ζ

�(ζ + 1)(c – d)2 +
(d – c)ζ

�(ζ + 1)
=

(d – c)ζ

�(ζ + 1)
+

(d – c)ζ

�(ζ + 1)
= 2

(d – c)ζ

�(ζ + 1)
. �

The next result is also important in our study.

Proposition 4.2 Green’s function G(t, s) given in Proposition 3.2 satisfies the following in-
equality

∫ d

c

∣
∣G(t, s)

∣
∣ds ≤ 2

(d – c)ζ

�(ζ + 1)
+ 2

|k|
�(ζ + 1)

(d – c)ζ+2

|(d – c)2 – k(β – c)2| ,

for t ∈ [c, d].
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Proof Here we derive the proof as

∫ d

c

∣
∣G(t, s)

∣
∣ds =

∫ d

c

∣
∣
∣
∣
R(t, s) +

k(c – t)2

(c – d)2 – k(c – β)2 R(β , s)
∣
∣
∣
∣
ds

≤
∫ d

c

∣
∣R(t, s)

∣
∣ds +

∣
∣
∣
∣

k(c – t)2

(c – d)2 – k(c – β)2

∣
∣
∣
∣

∫ d

c

∣
∣R(β , s)

∣
∣ds

≤ 2
(d – c)ζ

�(ζ + 1)
+

|k(c – t)2|
|(c – d)2 – k(c – β)2|2

(d – c)ζ

�(ζ + 1)

≤ 2
(d – c)ζ

�(ζ + 1)
+ 2

|k|
�(ζ + 1)

(d – c)ζ+2

|(d – c)2 – k(β – c)2| . �

5 Existence results for the solution
For further correspondence in this work, we define the following:

G(t, s) = R(t, s) +
k(c – t)2

(c – d)2 – k(c – β)2 R(β , s).

For further analysis, we also denote the Banach space by X = C[c, d] under the norm ‖y‖ =
supt∈[c,d] |y(t)|. Hence we define the operator T : X → X by

Ty(t) =
∫ d

c
G(t, s)�

(

s, y(s)
)

ds, t ∈ [c, d]. (5.1)

The following hypothesis needed also to be held:
(H1) Let � : [c, d] × R → R is continuous and follows the uniform Lipschitz inequality

for y on [c, d] ×R, such that there exists a constant L, for all (t, y), (t, z) ∈ [c, d] ×R,

∣
∣�(t, y) – �(t, z)

∣
∣ ≤ L|y – z|.

Theorem 5.1 Under the hypothesis (H1) and if the condition (d – c)2 �= k(c –β)2, with c �= β

holds and d – c is sufficiently small, such that

2
(d – c)ζ

�(ζ + 1)
+ 2

|k|
�(ζ + 1)

(d – c)ζ+2

|(d – c)2 – k(β – c)2| <
1
L

, (5.2)

then there exists a unique solution to (1.3) and (1.4).

Proof Note that y is a solution to (1.3) and (1.4) if and only if it is a solution to (3.3) and
(3.4) with h(t) replaced by �(t, y(t)). However, (3.3) and (3.4) have a unique solution given
by

y(t) =
∫ d

c
G(t, s)�

(

s, y(s)
)

ds, (5.3)

where G(t, s) is specified in Proposition 3.2. Define the operator T : X → X by

Ty(t) =
∫ d

c
G(t, s)�

(

s, y(s)
)

ds, t ∈ [c, d]. (5.4)
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We will apply the Banach fixed point theorem to determine whether the operator T has a
unique fixed point. Assume that y, z ∈ X, then for t ∈ [c, d], we have

∣
∣Ty(t) – Tz(t)

∣
∣ =

∣
∣
∣
∣

∫ d

c
G(t, s)

(

�
(

s, y(s)
)

– �
(

s, z(s)
))

ds
∣
∣
∣
∣

≤
∫ d

c

∣
∣G(t, s)‖�(

s, y(s)
)

– �
(

s, z(s)
)∣
∣ds

≤
∫ d

c

∣
∣G(t, s)

∣
∣L

∣
∣y(s) – z(s)

∣
∣ds

≤ L
∫ d

c

∣
∣G(t, s)

∣
∣ds‖y – z‖

≤ L
[

2
(d – c)ζ

�(ζ + 1)
+ 2

|k|
�(ζ + 1)

(d – c)ζ+2

|(d – c)2 – k(β – c)2|
]

‖x – y‖,

where we have utilized Proposition 4.1. It agrees that

‖Ty – Tz‖ ≤ �L‖y – z‖,

where

� =
[

2
(d – c)ζ

�(ζ + 1)
+ 2

|k|
�(ζ + 1)

(d – c)ζ+2

|(d – c)2 – k(β – c)2|
]

. (5.5)

Hence, we deduce that T is a contraction mapping on X, and from the Banach contraction
mapping theorem, we receive the required result. �

For next result, the following hypothesis need to be hold:
(H2) For (i = 1, 2), let there exists ϕi : [c, d] → R and y ∈ X , such that

∣
∣�

(

t, y(t)
)∣
∣ ≤ ϕ1(t) + ϕ2(t)|y|, t ∈ [c, d].

Further putting ϕ∗
1 = supt∈[c,d] |ϕ1(t)| and ϕ∗

2 = supt∈[c,d] |ϕ2(t)|.

Theorem 5.2 Under the hypothesis (H2), if T : B → B is a completely continuous operator,
then T has at least one fixed point in Br .

Proof Let X be a Banach space and Br ⊂ X be a bounded closed convex subset.
Step 1: First, we are going to show that operator T is continuous.
Let {yn} be a sequence, such that Br = {y ∈ X : ‖y‖ ≤ r}, then, for t ∈ [c, d], we have

‖Tyn – Ty‖ ≤ sup
t∈[c,d]

∫ d

c

∣
∣G(t, s)‖�(

s, yn(s)
)

– �
(

s, y(s)
)∣
∣ds,

≤ 2
[

(d – c)ζ

�(ζ + 1)
+

|k|
�(ζ + 1)

(d – c)ζ+1

(d – c)2 – (β – c)2

]

‖yn – y‖

= �L‖yn – y‖,
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where � is given in (5.5).

yn → y as n → ∞,

then we have

‖Tyn – Ty‖ → 0, as n → ∞.

Hence T is continuous.
Step 2: Next, to show that T is bounded means maps bounded sets to bounded sets on

X. Let y ∈ Br , then for t ∈ [c, d], we have

∥
∥Ty(t)

∥
∥ ≤ sup

t∈[c,d]

∫ d

c

∣
∣G(t, s)‖�(

s, y(s)
)∣
∣ds

≤ � Sup
t∈[c,d]

∫ d

c

[∣
∣ϕ1(s)

∣
∣ +

∣
∣ϕ2(s)

∣
∣|y|]ds

≤ �

∫ d

c
|[ϕ∗

1 | + |ϕ∗
2 |]ds

= �
(

ϕ∗
1 + ϕ∗

2 r
)

(d – c) = ε∗.

Hence one has

‖Ty‖ ≤ ε∗.

Thus, T is a bounded operator.
Step 3: Now, we are going to show that T is equi-continuous. Let t1 and t2 ∈ [c, d], then

∥
∥Ty(t2) – Ty(t1)

∥
∥

≤
∫ d

c

∣
∣G(t2, s) – G(t1, s)

∣
∣
∣
∣�

(

s, y(s)
)∣
∣ds

≤
∫ t2

c

[
(c – t2)2(d – s)ζ–1

�(ζ )(c – d)2 –
(t2 – s)ζ–1

�(ζ )

]
[

ϕ∗
1 + ϕ∗

2 r
]

ds

+
∫ d

t2

(c – t2)2(d – s)ζ–1

�(ζ )(c – d)2

[

ϕ∗
1 + ϕ∗

2 r
]

ds

+
k(c – t2)2

(c – d)2 – k(c – β)2

∫ d

c

∣
∣R(β , s)

∣
∣
∣
∣ϕ∗

1 + ϕ∗
2 r

∣
∣ds

–
∫ t1

c

[
(c – t1)2(d – s)ζ–1

�(ζ )(c – d)2 –
(t1 – s)ζ–1

�(ζ )

]
[

ϕ∗
1 + ϕ∗

2 r
]

ds

–
∫ d

t1

[
(c – t1)2(d – s)ζ–1

�(ζ )(c – d)2

[

ϕ∗
1 + ϕ∗

2 r
]

ds

–
k(c – t1)2

(c – d)1 – k(c – β)2

∫ d

c

∣
∣R(β , s)

∣
∣
∣
∣ϕ∗

1 + ϕ∗
2 r

∣
∣ds

=
[

ϕ∗
1 + ϕ∗

2 r
]
(∫ t2

c

(c – t2)2(d – s)ζ–1

�(ζ )(c – d)2 –
∫ t1

c

(c – t1)2(d – s)ζ–1

�(ζ )(c – d)2

)
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+
[

ϕ∗
1 + ϕ∗

2 r
]
(∫ t1

c

(t1 – s)ζ–1

�(ζ )
–

∫ t2

c

(t2 – s)ζ–1

�(ζ )

)

+
[

ϕ∗
1 + ϕ∗

2 r
]
(∫ d

t2

(c – t2)2(d – s)ζ–1

�(ζ )(c – d)2 ds –
∫ d

t1

(c – t1)2(d – s)ζ–1

�(ζ )(c – d)2

)

+
k

(c – d)2 – k(c – β)2

[

(c – t2)2 – (c – t1)2]
∫ d

c

∣
∣R(β , s)

∣
∣
[

ϕ∗
1 + ϕ∗

2 r
]

ds.

On further simplification, one has

∥
∥Ty(t2) – Ty(t1)

∥
∥ ≤ [ϕ∗

1 + ϕ∗
2 r]

�(ζ + 1)(c – d)2

[

(c – t2)2[(d – c)ζ – (d – t2)ζ
]

+ (c – t1)2[(d – t1)ζ – (d – c)ζ
]]

+
[ϕ∗

1 + ϕ∗
2 r]

�(ζ + 1)
[

(t1 – c)c – (t2 – c)c)
]

+
[ϕ∗

1 + ϕ∗
2 r]

�(ζ + 1)(c – d)2 [(c – t2)2(d – t2)ζ – (c – t1)2[(d – t1)ζ
]

+
k[ϕ∗

1 + ϕ∗
2 r]

(c – d)2 – k(c – β)2

[

(c – t2)2 – (c – t1)2]
∫ d

c

∣
∣R(β , s)

∣
∣ds.

We see that as t1 → t2, then the right-hand side tends to 0. As T is bounded and continuous
on Br therefore is uniformly continuous.

Hence we claim that

∥
∥Ty(t2) – Ty(t1)

∥
∥ → 0 as t1 → t2.

Thus, using Arzelá Arcoli theorem, one can say that operator T is relatively com-
pact, bounded, and uniformly continuous. Thus, T is the completely continuous operator.
Hence, T has at least one fixed point. Therefore, the considered problem has at least one
solution. �

6 Stability results
Here we describe some stability results. The said stability results are based on the H-U
concept.

Remark 6.1 We consider a mapping φ independent of y, such that |φ(t)| ≤ ε, for every,
t ∈ [c, d].

Theorem 6.1 The solution to the following perturbed problem

cDζ y(t) = �
(

t, y(t)
)

+ φ(t), t ∈ [c, d], 2 < ζ ≤ 3 (6.1)

satisfies the following relation

∣
∣
∣
∣
y(t) –

∫ d

c
G(t, s)�

(

s, y(s)
)

ds
∣
∣
∣
∣
≤ �ε, (6.2)

where � has been given above in (5.5).
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Proof In view of Lemma 2.1, the solution is given by

y(t) =
∫ d

c
G(t, s)�

(

s, y(s)
)

ds +
∫ d

c
G(t, s)φ(s) ds. (6.3)

Further, we have for t ∈ [c, d]

∣
∣
∣
∣
y(t) –

∫ d

c
G(t, s)�

(

s, y(s)
)

ds
∣
∣
∣
∣
≤

∫ d

c

∣
∣G(t, s)‖φ(s)

∣
∣ds

≤ 2
∣
∣
∣
∣

(d – c)2

�(ζ + 1)
+

|k|
�(ζ + 1)

(d – c)ζ+2

[(d – c)2 – k(β – c)2]

∣
∣
∣
∣
ε

= �ε. �

Theorem 6.2 In view of Theorem 6.1 and assumption (H1), the solution of Problem (1.3)
and (1.4) is H-U stable and in the same line will be g-H-U stable if and only if the condition
� < 1

L holds.

Proof Let y be any solution and x be the unique solution of Problem (1.3) and (1.4), such
that x, y ∈ X, then consider

‖x – y‖ = sup
t∈[c,d]

∣
∣
∣
∣
x(t) –

∫ d

c
G(t, s)�

(

s, y(s)
)

ds
∣
∣
∣
∣

≤ sup
t∈[c,d]

∣
∣
∣
∣
x(t) –

∫ d

c
G(t, s)�

(

s, x(s)
)

ds
∣
∣
∣
∣

+ sup
t∈[c,d]

∣
∣
∣
∣

∫ d

c
G(t, s)�

(

s, x(s)
)

ds –
∫ d

c
G(t, s)�

(

s, y(s)
)

ds
∣
∣
∣
∣

≤ �ε + L�‖x – y‖.

Hence

‖x – y‖ ≤ �

1 – L�
ε,

where CL,� = �
1–L�

.
Forth, if we have a non-decreasing function ψ : [c, d] → R+, then

‖x – y‖ ≤ CL,�ψ(ε), where ψ(ε) = ε,

where ψ(0) = 0. So, the solution to the considered problem is also g-H-U stable. �

7 Illustrative example
Here to support our findings, we present the following example.

Example 7.1 Consider the following nonlocal nonlinear BVP of FDEs as

⎧

⎪⎨

⎪⎩

cD
27
10
+0 y(t) + 2 + t2 + y2

2(y2+1) = 0, t ∈ [0, 1],

y(0) = y′(0) = 0, y(1) = 3
4 y

(

1
2

)

.
(7.1)
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We see from (7.1) that

�(t, y) = 2 + t2 +
y2

2(y2 + 1)
, �(t, 0) = 2 + t2 �= 0,

and

∣
∣�(t, y1) – �(t, y2)

∣
∣ =

∣
∣
∣
∣

y2
1

2(y2
1 + 1)

–
y2

2
2(y2

2 + 1)

∣
∣
∣
∣

=
∣
∣
∣
∣

y2
1(y2

2 + 1) – y2
2(y2

1 + 1)
2(y2

1 + 1)(y2
2 + 1)

∣
∣
∣
∣

=
∣
∣
∣
∣

(y2
1 – y2

2)
2(y2

1 + 1)(y2
2 + 1)

∣
∣
∣
∣

=
∣
∣
∣
∣

(y1 – y2)(y1 + y2)
2(y2

1 + 1)(y2
2 + 1)

∣
∣
∣
∣

=
1
2
|y1 – y2|

∣
∣
∣
∣

y1 + y2

(y2
1 + 1)(y2

2 + 1)

∣
∣
∣
∣

=
1
2
|y1 – y2|

∣
∣
∣
∣

y1

(y2
1 + 1)(y2

2 + 1)
+

y2

(y2
1 + 1)(y2

2 + 1)

∣
∣
∣
∣

<
1
2
|y1 – y2|

∣
∣
∣
∣

y1

y2
1 + 1

+
y2

y2
2 + 1

∣
∣
∣
∣

<
1
2
|y1 – y2|(2)

= |y1 – y2|.

So, � is a Lipschitz with respect to y on [0, 1] ×R with the Lipschitz constant L = 1.
Since (d – c)2 = 1 �= 3

16 = k(c – β)2 and

2
(d – c) 27

10

�( 27
10 + 1)

+ 2
|k|

�( 27
10 + 1)

(d – c) 27
10 +2

|(d – c)2 – k(β – c)2| =
2

�( 37
10 )

+
24

13�( 37
10 )

=
50

13�( 37
10 )

∼= 0.922195 <
1
L

= 1.

Now in view of Theorem 5.1, Problem (7.1) has a unique solution. The graph of the solu-
tion y(t) is displayed in Fig. 1. Note that the solution has been obtained here by the gener-
alized differential transform method, which is a very effective tool to give semi-analytical
solutions for FDEs (see for details [41]). Also, the condition of H-U stability and g-H-U is
obvious. The graphical presentation of the approximate solution is given in Fig. 1.

8 Conclusion
We have given some sufficient conditions that demonstrate the existence and uniqueness
of the solution for a non-integer order three-point nonlocal BVP of FDEs. Some perti-
nent results regarding H-U and g-H-U stability have been incorporated. Thanks to the
fixed point approach and nonlinear functional analysis, these findings have been estab-
lished. For validation of our results, an interesting example has also been given. From the
mentioned discussion and results, we conclude that fixed point theory is a powerful tool
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Figure 1 Graphical presentation of approximate solution of Problem (7.1)

to deal with nonlinear problems of FDEs corresponding to different initial and boundary
conditions.
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