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1 Introduction

Many physical phenomena can be described by nonlinear fourth-order parabolic equa-
tions. The Cahn—Hilliard equation can be used to establish the model for phase transfor-
mation theory (see [3]). The degenerate fourth-order parabolic equations can show the
motion of a very thin layer of a viscous compressible fluid (see [2, 12], and [8]). Specially,
in materials science, the epitaxial growth of nanoscale thin films can be given by nonlinear
fourth-order parabolic equations (see [23] and [6]).

For the research of fourth-order parabolic equations, Liu [10] studied a Cahn—Hilliard
equation with a zero-mass flux boundary condition, and the global existence of classical
solutions with a nondegenerate m(w) and small initial energy was shown. Xu and Zhou
[18] considered a nonlinear fourth-order parabolic equation with gradient degeneracy;,
and the corresponding existence of weak solutions was studied in the sense of distribution.
For the nonlinear source problem, the existence and asymptotic behavior of solutions were
given by Liang and Zheng in [9]. In the paper, we consider a viscous fourth-order parabolic
equation with boundary degeneracy conditions. For the boundary degeneracy problem,
there have been some research results about second-order equations. Yin and Wang (see
[21] and [22]) gave the existence of weak solutions for a second-order singular diffusion
problem, and the corresponding diffusion coefficients were allowed to degenerate on a
portion of the boundary. For the boundary degeneracy problem with a gradient flow, Zhan
in [24] obtained the existence and stability of solutions.
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In the paper, a viscous fourth-order parabolic equation with boundary degeneracy is
considered. If we drop the viscous term, the model can be treated as a thin film equation
with a degenerate mobility rate. If the fourth-order diffusion term is replaced by a classic
second-order diffusion, it often appeared in the research for pseudo-parabolic equations.
For their research works, Xu and Su in [19] considered the initial-boundary value prob-
lem for a semi-linear pseudo-parabolic equation, and the corresponding global existence
and finite time blow-up of solutions were given by potential well theory. In [7], a pseudo-
parabolic equation with a singular potential was shown. Moreover, the papers [20] and
[16] studied the related nonlinear parabolic systems with power type source terms and
time-fractional pseudo-parabolic problems. For the other references, the readers may re-
fer to [4, 11, 13], and [14].

Our research problem with initial-boundary conditions has the following form:

Wy — Y Awg + A(Q"(x)|Aw|p’2Aw) =0, (x1t)eQr, (1.1)
w=Aw=0, (t)eTl, (1.2)
w(x,0) =wi(x), xe€, (1.3)

where © C RV is a bounded domain with N <2, Q7 = Q x (0,T), and T' = 9Q x (0, 7).
a >0,p>1,and y >0 are all constants. In physics, the capillarity-driven surface diffusion
is from the term A (0% (x)|Aw[P~2 Aw) (see Zangwill [23]). Here the function o(x) is defined
by o = dist(x, 9€2), which can yield the degeneration at 92. y > 0 is the viscosity coefficient.
We always suppose that the boundary 92 is smooth enough and simple enough. Besides,
for any constant o € (0, 1), the domain €2 satisfies the condition fQ 077 dx < 00. The term
y Aw, denotes the viscous relaxation factor or viscosity.

In order to obtain the existence of weak solutions for (1.1)—(1.3), we need to deal with
the degenerate coefficient o(x), and so we introduce the following approximate problem:

We — ¥ Awer + A(02 | AW, P2 Aw,) =0, (%,8) € Qr, (1.4)
we=Aw,=0, (xt)eT, (1.5)
We(x,0) = wer(x), x €8, (1.6)

where o, = o +¢& with € > 0. From the existence of (1.4)—(1.6), we can conclude the existence
of (1.1)—(1.3) by a limit process for ¢ — 0.
The weak solution of (1.4)—(1.6) is shown in the following definition.

Definition 1 If a function w, satisfies the conditions
(i) we € C([0, T HY(R)) NL=(0, T; W, P (), we, € L2(0, T; H'(2)),
0% Aw, P € LNQr) with WoP() = W P(Q) N W2P(Q);
(ii) For each ¢ € C§°(Qr), it has

oW,
// it wdxdt+yf/ Vwe Vo dxdt
Qr ot Qr

[ et tem sptndeo
Qr

then it is called a weak solution of (1.4)—(1.6).
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Its existence is shown in the following proposition.
Proposition 1 Let w,; € Wg’p (2). Problem (1.4)—(1.6) owns a unique weak solution.
For (1.1)—(1.3), its weak solutions are defined as follows.

Definition 2 If a function w satisfies the conditions
(1) we C([0, TI; HY(R)) N L>®(0, T; HY(RQ)), w; € L*(0, T; HY(R)), o*|Aw|? € L (Q7),
Aw e Ly, (Qr);
(ii) For each ¢ € C°(Qr)), it has

ad
// —W</’dxdt+)/// thV<pdxdt+// Q‘XIAWV”ZAWAq)dxdt:O,
Qr ot Qr Qr

then it is called a weak solution of (1.1)—(1.3).
The main existence is as follows.

Theorem 1 Let w; € Wé”’(sz) and a < p — 1. Problem (1.1)—(1.3) has a unique weak solu-

tion.

In the paper, C,C; (j = 1,2,...) represent general constants, and the values may change
from line to line. The paper is organized as follows. Section 2 gives the existence, unique-
ness, and iterative estimates for the semi-discrete elliptic problem. In Sect. 3, we show
the existence and uniqueness for the nondegenerate parabolic problem. The final section

establishes the existence and uniqueness for the degenerate problem.

2 Elliptic problem

In this section, we introduce a semi-discrete problem, and some important iterative esti-
mates are established. For the time interval [0, T], we make it into # subintervals with the
equal width / = % Let w; = w(x, ih) and wo = wey fori = 1,2,...,n. We get the semi-discrete

elliptic problem

1
E(Wi - Wi—l) - %(AW, — Awi_l) + A(Qg|AWi|p_2AWi) =0 in Q, (21)
wi=Aw; =0 ondQ. (2.2)

We will use the variational method to study the existence of (2.1)—(2.2), and so we define

the functional as follows:

1 1
Klw;] = —/ |w,»|2dx+1‘/ |Vw,»|2dx+—/ oY | Aw;lP dx
2h Jq 2h Jg pPJo

1
—Z/ Vwi_IVwidx——/ wi_iw;dx (2.3)
h Jo hJa

for w; € WOZ’P(Q).

The corresponding existence result is shown in the following lemma.
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Lemma 1 For fixed ¢ >0 and w;_; € Wg’p(Q),problem (2.1)—-(2.2) has a unique weak so-
lution w; € Woz’p(Q) with

1

—/(Wi—Wi—1)¢dx+Z/(Vwi—vwi—l)V(ﬂdx
hJq hJq

+/ Q§‘|Aw,-|1’_2AW,-A<p dx=0 (2.4)
Q

for each ¢ € C§°(2). Moreover, it has

1
Z/ |w,»|2dx+%/ |Vwi|2dx+2/Q‘j|Awi|pdx
Q Q Q

1

S—f |Wi—1|2dx+zf |Vwi1|* dx, (2.5)
hJq hJo

J
/|w,»|2dx+y/ |ij|2dx+2hZ/Q‘j|Awi|pdx
Q Q o /e

5/ |Wo|2dx+1// |Vwo|* dx, (2.6)

Q Q

1 1
—/(wi—wi_l)zdx+Z/(Vwi—Vwi_l)zdx+—/Q?IAWA”dx
1
< —/ ot |Aw;_1|P dx, (2.7)
pJo

1 1
—/(wi—wi,l)de+ Z/(Vwi—VWH)zdx+ —/ oY | Aw;lP dx
hJo hJg pJg

1

< —/ clAwglP dx, (2.8)
/ —Wil1) dx+Z /(Vw,—Vw,l ) dx

i=1

1

< —/ oY | Awg|P dx (2.9)
pPJa

forij=1,...,n

Proof Young’s inequality can give

Klw;

wi]
1 1
_h_/ |wil dx+—/ [Vw;| dx+—/ |Aw,|pdx——/ IVw,_1|*dx
p

——/ Vi dx——f|w, 2 dx——f|w,| dx

_Lh/wai_le —ﬂ‘/g|wi_1|2dx, (2.10)
and thus C[w;] is bounded

-C< 1nf Kl[v] <K][0] =
VEWO ()
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It ensures the existence of a subsequence {wy}i°; C W02 ?(§2) and a function v such that

Klwy] — inf Klv], (2.11)
veWr ()

as [ — +o0. Using Young’s inequality again, we have

1 2 V/ 2 1/
— wi|”dx + — Vwy|”dx + — Y| Awg P dx
2h/9| kil 7 Q| kil » QQ£| ]

1
7 _/Q Wi_iwy dx

v A
5|K[wkl]|+4h/9|wm dr+ h/gw»vl_u dr

1 1
+E/Q|wk1|2dx+ﬁfglwi,1|2dx.

Since K[wy] is bounded, it has

1 9 )// 9 80‘/
— wilfdx + — Vwgl dx + — Awyl?P dx
4h/9| kil W Q| kil » Q| &l

1
< |’C[Wkl]’+%/ |Vwi_l|2dx+Zf lwi_1|” d
Q Q

<|Klwu]| + +

Z/ Vw;_1Vwy dx
hJaq

<C.

It implies the estimate [|wy|| w2P () = C, and then we can seek a subsequence from {wy;}
0

and a function w; € Wg* () so that
wi — w; weakly in Wg’p ()

as [ — oo.
The weak lower semi-continuity yields

Klw;] <liminfC[wy]= inf K[v],
[=o00 veWr ()
and then K[w;] = inf _
(2.2) (see [17] or [5]).
For the uniqueness, we suppose that w;; and w;, are two weak solutions, and we choose

W2 (g) K[v]. A standard procedure can show the existence of (2.1)—
0

wi1 — Wy as the test function to get
1 2 Y 2
7 (Wi —wip)” dx + 7 (Vwi = Vwpp)“ dx
Q Q
= —/ 0 (|awa [P Awiy — | Awp P72 Awp) (Awi — Awp) dx < 0.
Q
Notice that, for arbitrary numbers ¢ and 7, the inequality

(1212 = mPP2n) (& —=n) =0 (2.12)

holds if p > 1. Thus, one has w;; = w;; a.e. in Q.

Page 5 of 16
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To give the proof for the iterative estimates, we take w; as the test function and apply

Young’s inequality to find

1
—/ |wi|2dx+Z/ IVwilzdx+/Q§|Awi|pdx
h Jo h Jo Q
1
:—/w,»,lwidx+ Z/ Vw;,_1Vw;dx
hJa h Jo

1 2 1 2 V/ 2 V/ 2
<= 1T dx + — JPdx+ — | [VwiqPde+ — | |[Vw]*dx.
_2h/9|w 1l x+2h/9|w| x+2h Q| wi1| x+2h Q| w;|*dx

Thus, (2.5) and (2.6) have been shown. Meanwhile, taking w; — w;_; as the test function,

we have
1 2 Y 2
— | Wi=wi) dx+ = | (Vw; = Vw,_1)"dx
hJo hJo

+ / Q§|Awi|P’2AwiA(wi —w;_1)dx =0.
Q
Apply Young’s inequality to give

1
—/(w,»—wl-_l)zdx+ Z/(VW,-—VW,»_l)zdx+/ oY | Aw;lP dx
hJo hJo Q

< f 0| Awi P | Awiy | dx
Q

_p-1

1
oY [Aw;lP dx + — / 0y |Aw;1|P dx.
Q pJg
Therefore, a simple calculation can show assertions (2.7)—(2.9). O

3 Parabolic problem with nondegenerate coefficient
In this section, we would give the proof of Proposition 1 for fixed constant ¢ > 0. We as-
sume that w,; — w; in H'-norm as ¢ — 0. For convenience, we use the notation w to
represent the weak solutions of (1.4)—(1.6).

For the purpose of existence, we define the following approximate solution:

U™ (x,t) = Silt)wi(x)
i=1

for

1, te((i-1h,ihl; o
Si(t) = withi=1,...,n.
0, elsewhere

For U™, we can establish the uniform estimates as follows.
Lemma 2 There is uniform constant C such that

|u® <C, (3.1)

: “LOO(O,T;LZ(Q))

Page 6 of 16
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||Q§ |Au(n) ip ||L°°(0,T;L1(SZ)) =G (3:2)
1
|| U(”) ||L°°(0,T;W3IP(Q)) < 8_%C (33)

Proof For any time t € (0, T], there exists some interval (({ — 1)/, k] such that ¢ € ((i -
1)k, ik, and then ||U® (x, t)||iz(9) = ||w,-(x)||iz(g) < C. So we have (3.1). Besides, estimate
(2.8) can give

1 1 1
(—/ Q§|ALI(”)|pdx)(t) = —/ o |Aw;lP dx < —/ os | AwglP dx < C.
pJa pJa pPJa
It implies (3.2)—(3.3). (I

Now we introduce another approximate solution

VO (,8) = 3 SiO(@Ow) + (1 - O,0) wir () (3.4)
i=1
with
O,(0) = p—@-1), ifte((i-1)hin],
0, otherwise .

For V", we establish the estimates as follows.
Lemma 3 There is a constant C such that
)+ H yn <C.

(n)
” 28 ||L2(0,T;H1(Q) >||L°°(0,T;W§’p(9))

Proof By using %i") = % > Si(w; — wi_1) and (2.8), we have

2

vy
B

L2(Qr

1
= TZh/(VWi—VWi_l)zdxf C.
Qr) h =1 Y9

For ¢ € [0, T'], there is a positive integer i satisfying ¢ € ((i — 1)k, ih]. Thus, (2.7) gives

( / |lav® P dx)(t)
Q

= / |(@i() Awi(x) + (1 - ©i(8)) Awpi () [” dx
Q

< le |Aw,»(x)|pdx+ C2/ ‘Awi_l(x)|p dx
Q Q
<C.
It shows the estimate in L*(0, T W02 P(Q)). O

Next we give the proof of Proposition 1.

Page 7 of 16



Liang et al. Boundary Value Problems (2022) 2022:29 Page 8 of 16

Proof of Proposition 1 Lemma 2 can ensure the existence of a subsequence of U (we

_pr_
always take the same notation) and two functions w € L*(0, T; WOZ ?(Q))and v € LF1(Qr)
such that

um Xy weakly* in L™ (O, T; Woz’p(Q)),

Jo |ALI(”) |p_2AL[(”) — o%v weakly in L1 (Qr),

as 1 — 00. Besides, from Lemma 3, we can find a subsequence of V" and a function o=

such that
avem 9
o — B_ZItI weakly in L2 (0, T; HI(Q)),

v A o weakly* in L™ (O, T; Woz i (Q)),
V" — @ strongly in L2 (o, T;Hl(Q)),

V" > @ ae. in Qr.

On the other hand, for any ¢ € C5°(Qr), we have

T
f f](vw”)—vv("))]zdxdt
0 Q
n 2
> Sit)(1 - 0:i(8) (Vwi — Vwey)| daedt
i=1

g

n ih
2
< \% i—V i dxdt
_;/W/Qu wi = Vg ) de

<CTh—0

as n — 0o (i.e. h — 0). It implies w = @ a.e. in Q7 and

U™ — w  strongly in L* (0, T;Hl(fz)),

U™ > w ae.inQr.

If we perform the limit # — oo in the expression

// oy
or Ot

+ / / 0¥ | AU AU A dxdi = 0, (3.5)
Qr

(pdxdt+y// vV Ve drdt
Qr

then we have

d
/f —W<pdxdt+y// thV(pdxdt+// o0svApdxdt=0 (3.6)
Qr ot Qr Qr

for any ¢ € C3°(Qr).
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The next job is to prove v = |Aw[P~2 Aw. For each test function v € C3°(0, T), we define
= Yw as the multiplier in (3.6) to get

__// —d dt——// Y |2—dxdt
Qr Qr

+ / YorvAwdxdt =0. (3.7)
Qr

In (2.4), we use ¥ (t)w; as the test function to give
1 2 4 2 @
— [ ywidx+ = [ ¥yVwdx+ | YollAw;lP dx
h Q h Q Q
1 J/
=— lﬁWi_1Wi dx + — wVwi_1Vwi dx
< Zh/ Yw? dx + 2h/ Yw? dx+ — 7 /QWwadx+ ﬁ/s;wwa_ldx.
That becomes

/ww dx——/lpwl 1dx+—f1pr dx——/tﬂle 1 dx

+/ Yoy |AwlP dx <O0.
Q

By introducing the notation U™ (x, t) = Yoy Si(e)wii(x), we have

1 1 -
— // w|U P dede - = // | dxde + 2 // | vu™|’ dede
2h Qr 2h JJo, 2h JJo,
—1// w|v£1<">|2dxdt+/ Yol | AU P dxde
2h Qr Qr
<o. (3.8)
For any function ¢; € C§°(Qr), we can seek two constants t; and t, with O <t <t < T
such that supp ¢, supp Ay C (£, ) x Q. Meanwhile, we redefine ¢ as ¥ = 1 on (¢, £,)

and ¥ =0o0n [0,h)U(T —h, T] for small /1 (i < t; and T - > £,). Now a direct computation
gives

T od 2
/ v |U™|"de
0

h B T B
=f 1p|l,[(”)|2dt+/ v | de
0 h
T ~ 2
_ / PO 0| de
h

t=1+h

T-h _
/ Y(+ )| TPt + )| de
0

T-h
_ / Wit + )| U, 0 de.
0
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Similarly, one has

L )2 = 2
/ y|vu| dt:/ Y (t+h) | VU (x,8)]" dt.
0 0

Therefore, we have

1 2 1 ~ ()12
- () _ (n)
2h/fQT¢f|u " dxdt zh//QTmu |” dxdt
Y ()2 _Y 770 |2
* o //QTl/f|VL[ |” dxde o mTw|Vu |” dxde

L /w(t)|u<">(x,t)|2dxdt+i/Th/w(t)|u<">(x,t)|2dxdt
2h T-hJQ 2h 0 Q

1 T*h 2
- / Yt + )| U (x,t)| drds
2h Jo Q

y T 9 y T-h 9
+—/ /w(t)]VLI(”)(x,t)] dxdt+—/ /w(t)\vw")(x,t)\ dxdt
2h JrowJa 2h Jo Q
_L T-h
2h J

Y AT
= 2 ), Q h ,

T-h
_Z/ /w‘ww(x,t)‘zdm
2 0 Q h

/W(t+h)]VLI(")(x,t)}2dxdt
Q

(3.8) implies

LT r g+ ) =v@) o, a2
_5/0 fgih U (e, )] dx e

T-h _
_Z/ /M\Vu(n)(x,t)|2dxdt+f/ vo¥| AU dxdt
2 Jo Q h o

<0.

If we choose ¢ = AU™ and n = A(w—A¢;)) with A >0 and ¢; € C3°(Qr) in (2.12), then we

have

// lpgg"AU(")V’dxdt
Qr

2—// wQ?|A(w—)\<p1)|pdxdt
Qr

+ /f Yol | AU P2 AU A(w - hpy) dade
Qr

+ /f Yol | Aw ~ xgol)\"”zA(w — A1) AU™ dxdt. (3.10)
Qr

Page 10 of 16
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Use (3.9) and (3.10) to get

T-h
f /7‘”(”}’ VO 00, ) e e
T-h
/ /‘””h 1900 ) de
_/fQ Yol |Aw—rg)|” drdt

+ / Yol | AU P2 AU A(w - hpy) dade
Qr

+ /f Yol | Aw =) P2 Aw - hp) AU dxds
Qr

By letting n — oo (i.e. 1 — 0), we have

T
——/ f d dt——/ /|Vw|2ﬂdxdt
0o Ja de

-// 1//Qg‘|A(w—A<p1)|pdxdt+/ Yo vA(w— Agp) dxdt
Qr Qr

+/ W.Qg‘A(W—k¢1)‘p72A(W—K¢1)Adedt
Qr

<0.

Apply (3.7) and (3.12) to get

—// ng‘|A(w—A(p1)|pdxdt—k/ YorvAp; dxdt
Qr Qr

+/ WQZ‘A(W—Agol)}psz(w—k(pl)Awdxdt
Qr

<o.
Therefore, we have
/ g ng‘HA(W - A(p1)|p72A(w - A1) — V]A(pl dxdt <0.
T
We pass to the limit A — 0 to get

// WQg‘[|Aw|p_2Aw - V]A<p1 dxedt <O.
Qr

(3.11)

(3.12)

Page 11 0of 16
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Finally, the arbitrariness of ¢; and v implies v = [Aw|P"2Aw a.e. in Q7. Thus, (3.6) be-

comes

0
// —w<pdxdt+y// thVgodxdt+// oY | AwPP2 AwAg dxdt
Qr at Qr Qr
=0

-0. (3.13)

For other estimates in Proposition 1, we may apply J. Simon’s lemma (see [15]) and
Sobolev’s embedding theorem (see [1] and [5]), and so we omit the details. The uniqueness
can be shown as the corresponding proof of Lemma 1. g

4 Existence for degenerate coefficient
For the solutions obtained in Proposition 1, we would use the notation w,. In this section,
we want to gain necessary uniform estimations with respect to ¢ so that the limit ¢ — 0
can be passed well.

For uniform estimates, we have the lemma.

Lemma 4 There are a constant C and a constant 6 > 1 (close to 1) such that

IWell oo o, 711 () < Cs (4.1)
lo? vy = @2)
o2 1aw: [P~ Aw, ”L%@T) <C, (4.3)
Weell 20,7110 < G (4.4)
lAwellzo oy = C. (4.5)

Proof Define the characteristic function

1, tel0,t];
Sto,q(t) =
0, otherwise

and apply ¢ = w:So,4(£) as the test function in (3.13) to give

1
—/wg(x,t)dx+z/ Vwﬁ(x,t)dx+// 05 | Aw,|P dxdt
2 /e 2 Ja o

1

= / W, (x) dx + Y / Vwl, (x) dx. (4.6)

2 Ja 2 Jgo

It implies (4.1) and (4.2). Since . is bounded, (4.3) can be shown. From (3), the limit
v =~ Vw,, weakly in L*(Qr) as n — oo

can give the estimate

. . (n)
VWeellr2op) = hnn_l)gf”szt HLQ(QT) <C,
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where we have used the weak lower semi-continuity for L2-norm, and the constant C de-
pends on the WZ-norm of the initial function.
On the other hand, the condition « < p — 1 implies p%l < 1, and thus we can seek a

constant oy € (1%, 1). Besides, we can determine the constant 6 € (1, min{p — o%, %}).

Moreover, the above constants satisfy the conditions «;6 < 1 and 5‘—1 +6 < p. Now we have
the estimate

// |Aw,|? dxdt
Qr
5// |Awg|9dxdt+// [Aw,|? dx dt
{0 |Awe|<1} foe 1awe|>1)
< // 0. dwdt + /f Q?|AWS|‘;X_1+9 dxdt
Qr Qr
5/[ Q‘“ladxdt+C// Q‘;‘(1+|Aw8|p)dxdt
Qr Qr

<G,
where we have applied (4.6). It yields (4.5). O

Proof of Theorem 1 Lemma 4 allows us to find a subsequence of w, and two functions w,

V' so that
W — w;  weakly in L (O, T;Hl(Q)), (4.7)
W, -~ w weakly* in L (0, T; H' (), (4.8)
Aw, = Aw  weakly in I (Qr), (4.9)
we — w  strongly in L*(0, T; H'(Q)), (4.10)
we — w a.e.in Qr, (4.11)
o%|Aw P2 Aw, — v weakly in L1 (Qr) (4.12)

as & — 0. It can ensure

w, e *(0, T;H'(Q)),  wel™(0,T;HY(Q)),

Awell (Qr), vV eLi1(Qr).

If we perform the limit £ — 0o in (3.13), then we have

ad
// —Wwdxdt+y// thVgodxdt+// VApdxdt=0 (4.13)
Qr ot Qr Qr

for any ¢ € C3°(Qr). We need to prove

// VApdxdt = // 0% | AwPP 2 AwAgp dxdt. (4.14)
Qr Qr
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To show this, for each ¢ € C5°(Qr), we can find a small positive constant 8 such that
supp ¢, supp Ag CC Qp x (B, T — B), where Qp = {x € Q|dist(x,dQ) > B}. Now we can

rewrite (4.13) and (3.13) as

d
// —W¢dxdt+y// thV¢dxdt+// VApdxdt =0,
QT ot QT Qpr
I,
Qpr ot
=0

with Q,gT = Qﬁ X (ﬁ, T- ,3)

// sztV¢)dxdt+// 0% | Aw P2 Aw, A dx dt
Qpr Qpr

(4.15)

(4.16)

For any ¥ € C*°(0, T') with supp ¢ C (8, T — B), we choose ¢ = Y w as the test function

(may need some approximate procedure here and below) in (4.13) to obtain
——// w—dxdt——// [Vw I—dxdt
Qpr Qpr
+ / YV Awdxdt = 0.
QT
On the other hand, we take ¢ = Y w, as the multiplier in (4.13) to get
——// —d dt——// A% 5|2—dxdt
Qpr Qpr
+ / Yol |Aw,|P dxdt = 0.
Qpr
For A > 0, we set { = Aw, and n = A(w — A¢) in (2.12) and use (4.18) to find
__// w2 Y dt——// v W deas
Qpr Qpr
-// Vol |aw-rp)| dredt
QT
+/ Yoy |Aw, P2 Aw, Alw — 1) dx dt
Qpr

+ / f Yol |Aw=2¢)[" Aw - Ad) Aw, dxdt
Qpr
<o.

By letting ¢ — 0, we find

——// w—dxdt——// [Vw I—dxdt
Qpr Qpr

- // V0| Aw - rg)|” dxdt
QT

+/ YV A(w — Ap) dxdt
Qpr

(4.17)

(4.18)
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+ / / Yo | Aw - Ag)[" T Alw - 1) Awdxdt
Qpr
<0.

Apply (4.15) to have
/f ¥ (0% Aw - 28)["A(w—1¢) — V) Ap dxdt <O.
Qpr
By passing to the limit A — 0%, we get
f/ ¥ (0% |awf? Aw —V) A dxdt
Qr

= / / Y (1AWl Aw — V) Ap dxdt
Qs

<0.

For negative A, we can have the same result with an opposite inequality sign. Therefore,
we can show (4.14) from the arbitrariness of ¢ and .
Finally, a standard process can give the other estimates of the theorem and the unique-

ness of weak solutions. Now we have completed the proof of Theorem 1. d
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