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Abstract
In this paper, we prove the existence of weak solutions of a pseudo-parabolic
equation with logarithmic nonlinearity in an interval [0, T ) by employing the Galerkin
approximation method and compactness arguments. We show that the solutions
become unbounded at a finite time T� and find upper and lower bounds for this time.
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1 Introduction
Showalter [39] has initiated the study of pseudo-parabolic equations, and subsequently,
many authors have contributed to the various type of pseudo-parabolic equations. These
equations explain the physical phenomena like unidirectional travel of long waves, aggre-
gation of population, oozing of homogeneous fluids through cracked rocks, etc. Regarding
the study of the existence and blow-up of solutions to pseudo-parabolic equations, Xu and
Su [44] considered the following type of equation

⎧
⎪⎪⎨

⎪⎪⎩

wt(x, t) – �wt – �w = wp, (x, t) ∈ � × (0, T),

w(x, t) = 0, (x, t) ∈ ∂� × [0, T),

w(x, 0) = w0(x), x ∈ �,

(1.1)

where � ⊂ R
n is a bounded domain with a smooth boundary, ∂�. The authors proved

the global existence and unboundedness of solutions of (1.1) in finite time using a poten-
tial well method, variational methods, and comparison principle. This problem was also
studied by Luo [30]; he obtained a lower bound for the blow-up time using a differential
inequality technique. Moreover, for any p > 1, he established an upper bound for the fi-
nite time of blow-up. Xu et al. [45] derived a new theorem to prove blow-up at the finite
time and established an upper bound for the time using concavity method. Motivated by
[44], Chen and Tian [8] studied (1.1) by considering logarithmic nonlinearity instead of
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wp. In their work, the authors proved the existence of solutions by employing potential
well method and derived blow-up at infinity and a condition for finite time blow-up. Han
[20] derived a criterion for finite time blow-up of solutions of (1.1) by considering a gen-
eral nonlinearity f (w) and established an upper bound for blow-up time using the known
concavity method.

Sun et al. [41] considered the pseudo-parabolic equation of the form

⎧
⎪⎪⎨

⎪⎪⎩

wt(x, t) – a�wt – �w + bw = k(t)|w|p–2w, (x, t) ∈ � × (0, T),

w(x, t) = 0, (x, t) ∈ ∂� × [0, T),

w(x, 0) = w0(x), x ∈ �,

(1.2)

where k(t) > 0, a ≥ 0, b > λ1,λ1 being the principal eigenvalue of –�. The authors analyzed
the unboundedness of solutions at finite time under super-critical, critical, and sub-critical
initial energy levels. Using potential wells, differential inequalities, and concavity method,
they found bounds for blow-up time. The problem (1.2) has already been analyzed by Zhu
et al. [46] for a, b = 1 and k(t) ≡ 1; they have established global existence and unbounded-
ness of solutions at finite time. For the solutions of pseudo-parabolic equations with source
term depending on gradient term, blow-up properties are analyzed in [31]. Sufficient con-
ditions on the coefficients are introduced in order to specify bounded and blow-up cases,
and a lower bound for blow-up time is explicitly found. Blow- up phenomena of the equa-
tion in which the source term depends only on the solution are probed, and upper and
lower bounds and a blow-up criterion under specific conditions were obtained in [36].

Meyvaci [32] studied the asymptotic behavior of solutions of a pseudo-parabolic equa-
tion and in [33] generalized the study by incorporating a bounded function involving gra-
dient term and observed the conditions under which the solution does not blow-up. Also,
the author studied the finite time unboundedness of solutions and obtained lower and up-
per bounds for the time. Lian et al. [26] considered an initial boundary value problem of
pseudo-parabolic equation with singular potential and derived global existence, asymp-
totic behavior, and blow-up of solutions with initial energy. Moreover, they estimated an
upper bound of the blow-up time. For a nonlocal source, Wang and Xu [43] investigated
a semilinear pseudo-parabolic equation for all the three initial energy levels. For subcriti-
cal and critical initial energy cases, the authors obtained results on existence, uniqueness,
asymptotic behavior, and blow-up of solutions. Also, they proved that the solutions blow-
up for super-critical initial energy.

Di et al. [10] studied the Dirichlet problem of the following equation

⎧
⎪⎪⎨

⎪⎪⎩

wt – ν�wt – div(|∇w|m(x)–2∇w) = |w|p(x)–2w, (x, t) ∈ � × (0, T),

w(x, t) = 0, (x, t) ∈ ∂� × [0, T),

w(x, 0) = w0(x), x ∈ �,

(1.3)

where p(x) and m(x) are continuous variable exponents, and ν > 0. They have stated a
theorem on the existence of solution to (1.3) and proved the unboundedness of solutions
in finite time. They established an upper bound for the time using Kaplan’s first eigen-
value method while the lower bound is acquired by a differential inequality. Liao et al. [29]
improved the results of [10] by answering some unsolved questions therein. They used
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Galerkin’s approximation technique to show the global existence of solutions for p+ ≤ 2
and negative initial energy and presented results on nonextinction of these solutions. In
[28], Liao then analyzed the case of positive initial energy and proved the nonexistence of
a global solution.

All the above discussed investigations motivated us to work on the problem (1.6). The
equation we consider is not only a pseudo-parabolic one but also involves logarithmic
nonlinearity. Equations involving logarithmic nonlinearity are widely applied in nuclear
physics, geophysics, and optics [2, 4, 16]. They appear naturally in inflation cosmology,
supersymmetric field theories, and quantum mechanics [1, 13]. Looking at the very close
history of problems having logarithmic nonlinearity, Chen [7] considered the following
problem

⎧
⎪⎪⎨

⎪⎪⎩

wt – �w = w log |w|, x ∈ �, t > 0,

w(x, t) = 0, x ∈ ∂�, t > 0,

w(x, 0) = w0(x). x ∈ �.

(1.4)

By setting a family of potential wells, he derived the global existence of solutions. In addi-
tion, decay estimates for these solutions are obtained, and the solutions for getting suitable
conditions for blow-up at infinity are analyzed. Later, Han [23] improved the results of [7].
He established the criterion for the existence of global weak solutions and demonstrated
the unboundedness of solutions in finite time by the concavity method. In [8], Chen and
Tian studied a pseudo-parabolic problem with the same source term and boundary con-
dition. They established the existence of global solutions, blow-up at infinity, and asymp-
totic behaviour of solutions under particular assumptions. In these works, the authors
concluded that the presence of polynomial nonlinearity is important for the solutions to
blow-up at a finite time.

However, then the studies took a turn and scientists used a more powerful logarith-
mic nonlinearity in their works, which made the solutions blow-up in finite time. A p-
Laplacian parabolic equation with the source term |w|p–2w log |w| was studied in [21, 35].
Using the potential well method and logarithmic Sobolev inequality, the authors obtained
the existence and nonexistence of global solutions. They provided sufficient conditions
for the finite time blow-up of solutions. Nhan and Truong [34] established existence and
finite time blow-up results for the generalized equation

⎧
⎪⎪⎨

⎪⎪⎩

wt – �wt – div(|∇w|p–2∇w) = wq–2 log |w|, x ∈ �, t > 0,

w(x, t) = 0, x ∈ ∂�, t > 0,

w(x, 0) = w0(x), x ∈ �,

(1.5)

when p = q. Cao and Liu [6] also introduced a family of potential wells to prove the global
existence of solutions of (1.5) for q = p, and the logarithmic Sobolev inequality is used
to show the blow-up of solutions at infinity. In addition, they established some decay and
growth estimates and analyzed the behavior of solutions. Then, the problem (1.5) for p < q
was examined in [9, 12, 22]. He et al. [22] obtained finite time blow-up and decay results
for weak solutions by setting a family of potential wells and using the concavity method
under the condition 2 < p < q < p(1 + 2

n ). Ding and Zhou [9] considered more general as-
sumptions on p and q and classified the ranges of p and q into cases under which global
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existence of weak solutions, finite time blow-up, and blow-up at infinity are explicitly de-
termined for sub-critical and critical initial energy. The case of super-critical initial energy
was discussed in detail by Dai et al. [12]. Lian and Xu [27] examined an initial boundary
value problem of nonlinear wave equation with weak and strong damping terms and loga-
rithmic term at three different initial energy levels. They proved the local existence of weak
solution using contraction mapping principle and global existence, decay and infinite time
blow-up using potential well method. The global well-posedness of a Kirchhoff-type wave
system with logarithmic nonlinearities and weak damping was investigated by Wang et
al. [42]. They obtained several results and sufficient conditions for the existence and un-
boundedness of solutions at different initial energy levels using potential well method and
concavity method. In [25], the authors studied a semilinear wave equation with logarith-
mic nonlinearity and arrived at results on the existence and blow-up of solutions using
potential well method. Weak solutions and blow-up of different partial differential equa-
tions are discussed in [3, 17–19, 38].

Based on the above-mentioned works and motivated by [10, 22], we are excited to study
the existence and blow-up of weak solutions of the following pseudo-parabolic equation
with logarithmic nonlinearity

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt – �wt – div(|∇w|p(x)–2∇w)

= |w|s(x)–2w + |w|h–2w log |w|, (x, t) ∈ � × (0,∞),

w(x, t) = 0, (x, t) ∈ ∂� × [0,∞),

w(x, 0) = w0(x), x ∈ �,

(1.6)

where � ⊂ R
n(n ≥ 1) is a bounded domain with smooth boundary ∂�. The model con-

sidered in (1.6) is used to describe the non-stationary process in semiconductors in the
presence of sources; the first two terms represent the free-electron density rate and log-
arithmic and polynomial nonlinearity stands for the source of free-electron current [24].
The motivation of this work is to address the existence and finite time blow-up of solu-
tions of the non-stationary process in semiconductors in the presence of logarithmic and
polynomial sources.

The log-Hölder continuous variable exponents p(x), s(x) and the constant h satisfy the
following hypotheses

•

2 ≤ p– ≤ p(x) ≤ p+ < s– ≤ s(x) ≤ s+ < h < ∞, (1.7)

•

p∗(x) > 2, p∗(x) =

⎧
⎨

⎩

np(x)
n–p(x) , p(x) < n,

∞, p(x) ≥ n,
(1.8)

•

ess inf
x∈�

(
p∗(x) – s(x)

)
> 0. (1.9)
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This paper is arranged as follows: In Sect. 2, we state the required preliminaries. The ex-
istence results are discussed in Sect. 3 using the Faedo-Galerkin approximation method.
Blow-up analysis of the solutions is done in Sects. 4 and 5. In this paper, C and C(ε) are
generic constants, which may vary accordingly.

2 Preliminaries
To discuss the problem (1.6), we need the following facts about generalized Lebesgue and
Sobolev spaces. For more details, one can refer to [11]. In this section, we take p, s : � −→
[1,∞) as measurable functions, and � ⊂R

n is bounded.

Definition 2.1 ([5]) Let X be a Banach space. Then Lp(0, T , X) is defined as the set of
measurable functions w : [0, T] −→ X such that

if 1 ≤ p < ∞,

‖w‖Lp(0,T ;X) =
(∫ T

0

∥
∥w(t)

∥
∥p

X dt
) 1

p
< ∞,

and if p = ∞,

‖w‖L∞(0,T ;X) = ess sup
0≤t≤T

∥
∥w(t)

∥
∥

X < ∞.

Remark 2.1 For 1 ≤ p ≤ ∞, Lp(0, T ; X) is a Banach space with the above norms.

Definition 2.2 ([11]) The variable exponent Lebesgue space with exponent p(x) is defined
by

Lp(x)(�) :=
{

w : � −→R|ρp(x)(λw) < ∞, for some λ > 0
}

,

where

ρp(x)(w) =
∫

�

∣
∣w(x)

∣
∣p(x) dx.

Theorem 2.1 ([11]) The space Lp(x)(�) endowed with the Luxembourg norm

‖w‖p(x) = inf

{

λ > 0|ρp(x)

(
w
λ

)

≤ 1
}

,

is a Banach space and

min
{‖w‖p–

p(x),‖w‖p+
p(x)

} ≤
∫

�

|w|p(x) dx ≤ max
{‖w‖p–

p(x),‖w‖p+
p(x)

}

where p– = min p(x) and p+ = max p(x) on �.

Remark 2.2 ([11]) Lp′(x)(�) denotes the dual space of Lp(x)(�) with 1
p(x) + 1

p′(x) = 1.
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Definition 2.3 ([11]) The variable exponent Sobolev space is defined as

W k,p(x)(�) =
{

w ∈ Lp(x)(�)|Dαw ∈ Lp(x)(�), |α| ≤ k
}

,

where k ≥ 1, Dαw is the αth weak partial derivative with α = (α1,α2, . . . ,αN ), a multi-index
and |α| =

∑N
j=1 αj.

Theorem 2.2 ([11]) The variable exponent Sobolev space W k,p(x)(�) endowed with the
norm ‖w‖k,p(x) :=

∑
|α|≤k ‖Dαw‖p(x) is a Banach space.

Observe that W k,p(x)
0 (�) is the closure of C∞

0 (�) in W k,p(x)(�).

Lemma 2.1 ([11]) If p(x), s(x) are variable exponents satisfying p(x) ≤ s(x) a.e. in �, then
there is a continuous embedding from Ls(x)(�) ↪→ Lp(x)(�).

Lemma 2.2 There exists a continuous and compact Sobolev embedding W 1,p(x)
0 (�) ↪→

Ls(x)(�), where the variable exponents p(x) ∈ C(�), s : � −→ [1,∞) are measurable func-
tions and satisfy

ess inf
x∈�

(
p∗(x) – s(x)

)
> 0, where p∗ =

⎧
⎨

⎩

np(x)
n–p(x) , if p(x) < n,

∞, if p(x) ≥ n.

Lemma 2.3 ([9, 37] [lemma 2]) For all w ∈ [1,∞)

| log w| ≤ wη

eη
,

where η is a positive number.

3 Weak solutions
Here we prove the existence of weak solutions to the equation (1.6). The main result The-
orem 3.1 can be proved using the Faedo-Galerkin approximation method and Sobolev
embeddings as in [22].

Definition 3.1 A function w ∈ L2(0, T ; W 1,p(x)
0 (�) ∩ Ls(x)(�)) ∩ L∞(0, T ; H1

0 (�)) ∩ C(0, T ;
H1

0 (�)) is said to be a weak solution to (1.6) if w0 ∈ W 1,p(x)
0 (�)\{0}, wt ∈ L2(0, T ; H1

0 (�)),
and w satisfies

∫ T

0

∫

�

wtφ dx dt +
∫ T

0

∫

�

∇wt∇φ dx dt +
∫ T

0

∫

�

|∇w|p(x)–2∇w∇φ dx dt

=
∫ T

0

∫

�

|w|s(x)–2wφ dx dt +
∫ T

0

∫

�

|w|h–2w log |w|φ dx dt, (3.1)

∀φ ∈ C∞(0, T ; C∞
0 (�)).

Definition 3.2 For w0 ∈ W 1,p(x)
0 (�)\{0}, define an energy functional as

N(w) = –
∫

�

|w|s(x)

s(x)
dx +

∫

�

|∇w|p(x)

p(x)
dx +

1
h2

∫

�

|w|h dx –
1
h

∫

�

|w|h log |w|dx. (3.2)
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Theorem 3.1 Suppose w0 ∈ W 1,p(x)
0 (�)\{0} and p(x), s(x), h satisfy the conditions (1.7),

(1.8), and (1.9). Then, the equation (1.6) has a weak solution.

Proof Now we consider an orthonormal basis of L2(�), which is orthogonal in H1
0 (�)

given by {rj}∞j=1 and a collection of eigenfunctions of � corresponding to the eigenvalues
{λj}∞j=1. We seek for finite dimensional approximation solutions to (1.6) as

wm =
m∑

j=1

cmj(t)rj(x), (3.3)

where cmj are unknown and satisfy

∫

�

w′
mri dx +

∫

�

∇w′
m∇ri dx +

∫

�

|∇wm|p(x)–2∇wm∇ri dx

=
∫

�

|wm|s(x)–2wmri dx +
∫

�

|wm|h–2wm log |wm|ri dx, (3.4)

and

w0m =
m∑

j=1

cmj(0)rj(x) −→ w0 in W 1,p(x)
0 (�). (3.5)

This generates an initial value problem for a system of ordinary differential equations in
{cmi(t)}m

i=1, namely,

⎧
⎨

⎩

(1 + λi) d
dt cmi(t) = F(cm1, cm2, . . . , cmm),

cmi(0) = (w0, ri)L2 ,

where

F(cm1, cm2, . . . , cmm)

=
∫

�

(
–|∇wm|p(x)–2∇wm∇ri + |wm|s(x)–2wmri + |wm|h–2wm log |wm|ri

)
dx.

Since, F(cm1, cm2, . . . , cmm) depends on (cm1, cm2, . . . , cmm) continuously, Peano’s theorem
gives the existence of a local solution to this problem.

Now multiply (3.4) by cmi(t) and sum over i to get
∫

�

w′
mwm dx +

∫

�

∇w′
m∇wm dx +

∫

�

|∇wm|p(x)–2∇wm∇wm dx

=
∫

�

|wm|s(x)–2wmwm dx +
∫

�

|wm|h–2wm log |wm|wm dx. (3.6)

This gives

d
dt

(
1
2

∫

�

|wm|2 + |∇wm|2 dx +
∫ t

0

∫

�

∣
∣∇wm(x, τ )

∣
∣p(x) dx dτ

)

=
∫

�

|wm|s(x) dx +
∫

�

|wm|h log |wm|dx. (3.7)
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Integrating (3.7) over (0, t), we get

Hm(t) = Hm(0) +
∫ t

0

∫

�

|wm|s(x) dx dτ +
∫ t

0

∫

�

|wm|h log |wm|dx dτ , (3.8)

where Hm(t) = 1
2
∫

�
|wm|2 + |∇wm|2 dx +

∫ t
0
∫

�
|∇wm|p(x) dx dτ .

Now, we look for estimates to (3.8). By Lemma 2.3 and following the calculations similar
to [22], we get

∫

�

|wm|h log |wm|dx

≤
∫

{x∈�:|wm|<1}
|wm|h log |wm|dx +

∫

{x∈�:|wm|≥1}
|wm|h log |wm|dx

≤
∫

{x∈�:|wm|≥1}
|wm|h log |wm|dx,

[
since log |wm| < 0 for |wm| < 1

]

≤ 1
eη

∫

{x∈�:|wm|≥1}
|wm|h+η dx

≤ 1
eη

‖wm‖h+η

h+η. (3.9)

Choose η such that p– < η < np–
n–p–

– h. Then, by the interpolation inequality, we obtain

∫

�

|wm|h log |wm|dx ≤ C‖wm‖(1–θ )(h+η)
2 ‖wm‖θ (h+η)

np–
n–p–

,

where θ ∈ (0, 1) is given by 1
h+η

= θ (n–p–)
np–

+ 1–θ
2 . We have the following continuous embed-

dings W 1,p(x)
0 (�) ↪→ Lp∗(x)(�) and Lp∗(x)(�) ↪→ L

np–
n–p– (�) that together give

∫

�

|wm|h log |wm|dx ≤ C‖wm‖(1–θ )(h+η)
2 ‖wm‖θ (h+η)

W 1,p(x)
0 (�)

.

Here we assume ‖wm‖W 1,p(x)
0 (�) ≥ 1. Then by Theorem 1.3 of [14] and following the cal-

culations similar to [15], we get

∫

�

|wm|h log |wm|dx ≤ C‖wm‖(1–θ )(h+η)
2

(∫

�

|∇wm|p(x) dx
) θ (h+η)

p–
.

Since p– ≥ 2, θ (h+η)
p–

< 1. Similarly, if ‖wm‖W 1,p(x)
0 (�) < 1, we get

∫

�

|wm|h log |wm|dx ≤ C‖wm‖(1–θ )(h+η)
2

(∫

�

|∇wm|p(x) dx
) θ (h+η)

p+
.

However, in this paper, we proceed with the calculations under the assumption
‖wm‖W 1,p(x)

0 (�) ≥ 1, since we can do the other case in the same way. Now employing Young’s
inequality with ε > 0, we obtain

∫

�

|wm|h log |wm|dx ≤ C(ε)
(‖wm‖2

2
)ν + ε

∫

�

|∇wm|p(x) dx, (3.10)

where ν = (1–θ )(h+η)p–
2p––2θ (h+η) > 1.
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To proceed further choose the sets �+
1 = {x ∈ � : |wm| ≥ 1} and �–

1 = {x ∈ � : |wm| < 1}.
Hence, we can write

∫

�

|wm|s(x) dx ≤
∫

�–
1

|wm|s– dx +
∫

�+
1

|wm|s+ dx ≤ ‖wm‖s–
s– + ‖wm‖s+

s+ . (3.11)

This gives

∫

�

|wm|s(x) dx ≤ 2‖wm‖s+
s+ . (3.12)

Applying the Gagliardo-Nirenberg interpolation inequality to (3.12), we get

‖wm‖s+
s+ ≤ C‖∇wm‖ϑs+

p– ‖wm‖(1–ϑ)s+
2 , (3.13)

where ϑ = (2–s+)np–
s+(2n–2p––np–) . Now Young’s inequality gives us

‖wm‖s+
s+ ≤ ε‖∇wm‖p–

p– + C(ε)‖wm‖
p–(1–ϑ)s+

p––ϑs+
2 , ε > 0. (3.14)

Application of the inequalities (3.10) and (3.11) together with (3.14) in (3.8) gives

Hm(t) ≤ Hm(0) + ε

∫ t

0
‖∇wm‖p–

p– dτ + C(ε)
∫ t

0
‖wm‖

p–(1–ϑ)s+
p––ϑs+

2 dτ

+C(ε)
∫ t

0

(‖wm‖2
2
)ν dτ + ε

∫ t

0

∫

�

|∇wm|p(x) dx dτ .

Let δ = max {2ν, p–(1–ϑ)s+
p––ϑs+

}. Now, by Lemma 2.1 and Theorem 2.1, we get

Hm(t) ≤Hm(0) + 2ε

∫ t

0

∫

�

|∇wm|p(x) dx dτ + C(ε)
∫ t

0
‖wm‖δ

2 dτ . (3.15)

Further, by putting ε = 1
4 and using the definition of Hm(t), we arrive at the following

inequality

Hm(t) ≤ 2Hm(0) + C
∫ t

0
Hδ

m(s) dτ .

To carry forward, we apply the Gronwall-Bellman-Bihari-type integral inequality and ob-
tain

Hm(t) ≤ CT , (3.16)

where the constant CT depends on T . Hence

1
2

∫

�

(|wm|2 + |∇wm|2)dx +
∫ T

0

∫

�

|∇wm|p(x) dx dτ ≤ CT . (3.17)
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Assuming min{‖∇wm‖p–
p(x),‖∇wm‖p+

p(x)} = ‖∇wm‖p–
p(x), by (3.17), (1.7) and Theorem 2.1, we

get

∫ T

0
‖∇wm‖2

p(x) dτ ≤
∫ T

0

∫

�

|∇wm|p(x) dx dτ ≤ CT . (3.18)

Now consider the functional N(w) defined in definition (3.2). Since it is continuous and
we have w0m −→ w0 in W 1,p(x)

0 (�), we get a constant C with

N(w0m) ≤ C, (3.19)

for any integer m > 0 large enough.
Multiplying (3.4) by c′

mi(t) and summing over i, then integrating with respect to t gives

∫ t

0

∥
∥w′

m(s)
∥
∥2

H1
0 (�) dτ + N

(
wm(t)

)
= N

(
wm(0)

)
.

The inequality (3.19) gives

∫ t

0

∥
∥w′

m(s)
∥
∥2

H1
0 (�) dτ + N

(
wm(t)

) ≤ C. (3.20)

From the estimates (3.17), (3.18), and (3.20), together with the standard compactness
arguments, we get

wm −→ w weakly∗ in L∞(
0, T ; H1

0 (�)
)
, (3.21)

wm −→ w weakly in L2(0, T ; W 1,p(x)
0 (�)

)
, (3.22)

w′
m −→ w′ weakly in L2(0, T ; H1

0 (�)
)
, (3.23)

|∇wm|p(x)–2∇wm −→ ξ weakly in L2(0, T ; Lp′(x)(�)
)
. (3.24)

Since wm ∈ W 1,p(x)
0 (�), the Sobolev embedding gives

∫ T

0
‖wm‖2

s(x) dτ ≤ C
∫ T

0
‖∇wm‖2

p(x) dτ ≤ CT by (3.22).

This implies

wm ⇀ w in L2(0, T ; Ls(x)(�)
)
.

Since we have the convergences (3.21) and (3.23), by employing the Aubin-Lions lemma
[40], we get

wm −→ w in C
(
0, T ; L2(�)

)
,

which implies

wm −→ w a.e. on � × (0, T).
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Thus, we get

|wm|h–2wm log |wm| −→ |w|h–2w log |w| a.e. on � × (0, T),

|wm|s(x)–2wm −→ |w|s(x)–2w a.e. on � × (0, T).
(3.25)

Since we have p– < η < np–
n–p–

– h, we can choose γ > 0 such that p– < (h – 1 + γ )h′ < p∗.
Now, following the trick in [22], we get

∫

�

∣
∣ψm(x, t)

∣
∣h′

dx =
∫

�–
1

∣
∣ψm(x, t)

∣
∣h′

dx +
∫

�+
1

∣
∣ψm(x, t)

∣
∣h′

dx

≤ (
e(h – 1)

)–h′ |�| + (γ )–h′
∫

�+
1

(|wm|h–1+γ
)h′

dx

=
(
e(h – 1)

)–h′ |�| + (γ )–h′ ‖wm‖(h–1+γ )h′
(h–1+γ )h′ , (3.26)

where ψm(x, t) = |wm(x, t)|h–1 log |wm(x, t)|. Choosing η = γ h
h–1 in (3.9) and following the

calculations up to (3.10), we get

∫

�

∣
∣ψm(x, t)

∣
∣h′

dx ≤ C(ε)
(‖wm‖2

2
)ν + ε

∫

�

|∇wm|p(x) dx. (3.27)

Integrating this inequality over (0, T) and applying (3.17), we get

∫ T

0

∫

�

∣
∣ψm(x, t)

∣
∣h′

dx dt ≤ CT . (3.28)

Also,

∫ T

0

∫

�

(|wm|s(x)–1)s′(x) dx ≤
∫ T

0

∫

�

|wm|s(x) dx ≤ CT . (3.29)

Hence, from (3.25), (3.29), and Lion’s lemma (see [40], Lemma 1.3, p.12), we have

|wm|h–2wm log |wm| −→ |w|h–2w log |w| weakly star in L∞(
0, T ; Lh′

(�)
)

Now, since we have the monotonicity of |ζ |p(x)–2ζ , making use of the Minty-Browder
condition, we get ξ = |∇w|p(x)–2∇w. Hence the proof. �

4 Upper bound for blow-up time
Here our objective is to seek an upper bound for the time at which the solutions to the
problem (1.6) become unbounded.

Theorem 4.1 Let w be a weak solution of (1.6) and assume that w0 satisfies

∫

�

( |w0|s(x)

s(x)
–

|∇w0|p(x)

p(x)

)

dx –
1
h2

∫

�

|w0|h dx +
1
h

∫

�

|w0|h log |w0|dx ≥ 0. (4.1)
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Then the solution w blows up at a finite time T� > 0. In addition, there exists an upper
bound for the time as given below

T� ≤ 2[N(0)]( 2–p–
2 )

(p– – 2)θ
, (4.2)

where θ > 0 is some constant.

Proof We have the energy functional related to the problem (1.6) given by

N(t) = –
∫

�

|w|s(x)

s(x)
dx +

∫

�

|∇w|p(x)

p(x)
dx +

1
h2

∫

�

|w|h dx –
1
h

∫

�

|w|h log |w|dx, (4.3)

which gives

N
′(t) = –

∫

�

|wt|2 + |∇wt|2 dx ≤ 0. (4.4)

Now we set an auxiliary functional

N(t) =
∫

�

|w|2 + |∇w|2 dx. (4.5)

Multiply (1.6) by w and integrate over � to get

∫

�

wwt dx +
∫

�

∇w∇wt dx =
∫

�

|w|s(x) dx –
∫

�

|∇w|p(x) dx +
∫

�

|w|h log |w|dx. (4.6)

Now differentiate N(t) with respect to t to obtain

N ′(t) = 2
∫

�

(wwt + ∇w∇wt) dx

= 2
[∫

�

|w|s(x) dx –
∫

�

|∇w|p(x) dx +
∫

�

|w|h log |w|dx
]

= 2
[∫

�

s(x)
[ |w|s(x)

s(x)
–

|∇w|p(x)

p(x)

]

dx –
∫

�

s(x)
h2 |w|h dx +

∫

�

s(x)
h

|w|h log |w|dx

+
∫

�

s(x)
[

1
p(x)

–
1

s(x)

]

|∇w|p(x) dx +
∫

�

s(x)
h2 |w|h dx

–
∫

�

s(x)
h

|w|h log |w|dx +
∫

�

|w|h log |w|dx
]

. (4.7)

Since we have N′(t) ≤ 0, we get

∫

�

s(x)
[ |w|s(x)

s(x)
–

|∇w|p(x)

p(x)
–

1
h2 |w|h +

1
h
|w|h log |w|

]

dx

≥ s–

∫

�

[ |w0|s(x)

s(x)
–

|∇w0|p(x)

p(x)
–

1
h2 |w0|h +

1
h
|w0|h log |w0|

]

dx ≥ 0.
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Hence

N ′(t) ≥ 2
[∫

�

s(x)
[

1
p(x)

–
1

s(x)

]

|∇w|p(x) dx

+
∫

�

s(x)
h2 |w|h dx +

∫

�

(

1 –
s(x)

h

)

|w|h log |w|dx
]

,

by (1.7), we know (1 – s(x)
h ) > 0. So,

N ′(t) ≥ 2
∫

�

s(x)
[

1
p(x)

–
1

s(x)

]

|∇w|p(x) dx

≥ 2
∫

�

s–

[
1

p+
–

1
s–

]

|∇w|p(x) dx = β1

∫

�

|∇w|p(x) dx ≥ 0, (4.8)

where β1 = 2s–[ 1
p+

– 1
s–

]. Now define the sets �+
2 = {x ∈ � : |∇w| ≥ 1} and �–

2 = {x ∈ � :
|∇w| ≤ 1}. Since we have ‖∇w‖2 ≤ C‖∇w‖γ for all γ ≥ 2, we get

N ′(t) ≥ β1

[∫

�–
2

|∇w|p+ dx +
∫

�+
2

|∇w|p– dx
]

≥ β2

[(∫

�–
2

|∇w|2 dx
) p+

2
+

(∫

�+
2

|∇w|2 dx
) p–

2
]

.

This will give

(
N ′(t)

) 2
p+ ≥ β3

∫

�–
2

|∇w|2 dx ≥ 0, (4.9)

(
N ′(t)

) 2
p– ≥ β4

∫

�+
2

|∇w|2 dx ≥ 0. (4.10)

From the Poincare inequality, we can deduce that ‖∇w‖2
2 ≥ κ‖w‖2

2, where κ is the first
eigenvalue of –�. Therefore, we get

‖∇w‖2
2 =

1
1 + κ

‖∇w‖2
2 +

κ

1 + κ
‖∇w‖2

2

≥ κ

1 + κ
‖w‖2

2 +
κ

1 + κ
‖∇w‖2

2 =
κ

1 + κ
‖∇w‖2

H1
0 (�). (4.11)

Now set β5 = min{β3,β4}. Combining (4.9) and (4.10) and using (4.11), we obtain

(
N ′(t)

) 2
p+ +

(
N ′(t)

) 2
p– ≥ β5‖∇w‖2

2 ≥ κβ5

1 + κ
‖∇w‖2

H1
0 �

= β6N(t), (4.12)

where β6 = κβ5
1+κ

. Since we have the fact that N(t) > N(0) > 0, from (4.12), we get

(
N ′(t)

) 2
p+ ≥ β6

2
N(0) or

(
N ′(t)

) 2
p– ≥ β6

2
N(0).

Consequently,

(
N ′(t)

) ≥ β7

2
N(0)

p+
2 or

(
N ′(t)

) ≥ β8

2
N(0)

p–
2 ,
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where β7 = ( β6
2 )

p+
2 and β8 = ( β6

2 )
p–
2 . Now put β9 = min{ β7

2 N(0)
p+
2 , β8

2 N(0)
p–
2 }, then we get

(
N ′(t)

) ≥ β9. (4.13)

(4.12) implies that

(
N ′(t)

) 2
p–

(
1 +

(
N ′(t)

)( 2
p+ – 2

p– )) ≥ β6N(t). (4.14)

From (1.7), we observe that 2
p+

– 2
p–

≤ 0. Making use of (4.13) consequently, we get

(
N ′(t)

) ≥ θ
(
N(t)

) p–
2 , (4.15)

where the constant θ = ( β6

1+β
( 2

p+ – 2
p– )

9

)
p–
2 . Integrating from 0 to t, (4.15) gives

N(t) ≥ 1

[(N(0))(1– p–
2 ) + ( 2–p–

2 )θ t]
2

p––2
. (4.16)

This gives the finite time blow-up of the solution w at T� with

T� ≤ 2[N(0)]( 2–p–
2 )

(p– – 2)θ
. (4.17)

Hence the proof. �

5 Lower bound for blow-up time
Here we obtain a lower bound for the blow-up time of the solutions of (1.6).

Theorem 5.1 If the weak solution w of the problem (1.6) blows up at finite time T�, then
T� has a lower bound given by

T� ≥
∫ ∞

N(0)

dσ

2α
s–
2 (σ )

s–
2 + 2α

s+
3 (σ )

s+
2 + 2Cα1(σ )

h+η
2

, (5.1)

where C, α1, α2 and α3 are constants.

Proof Consider N(t) as in (4.5). From the previous section, we have

N ′(t) = 2
[∫

�

|w|s(x) dx –
∫

�

|∇w|p(x) dx +
∫

�

|w|h log |w|dx
]

(5.2)

≤ 2
[∫

�

|w|s(x) dx +
∫

�

|w|h log |w|dx
]

. (5.3)

Since we have w–η log w ≤ (eη)–1 for all η > 0 and w ≥ 1, we can deduce
∫

�

|w|h log |w|dx ≤
∫

{x∈�:|w|≥1}
|w|h log |w|dx

≤ (eη)–1
∫

{x∈�:|w|≥1}
|w|h+η dx ≤ C‖w‖h+η

h+η ≤ Cα1‖∇w‖h+η
2 (5.4)

using Sobolev embedding theorem, where α1 is the embedding constant.
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Thus,

∫

�

|w|h log |w|dx ≤ Cα1‖∇w‖h+η
2 . (5.5)

Now by Sobolev embedding theorem,

∫

�

|w|s(x) dx ≤
∫

�

|w|s– dx +
∫

�

|w|s+ dx

≤ α
s–
2

(∫

�

|∇w|2 dx
) s–

2
+ α

s+
3

(∫

�

|∇w|2 dx
) s+

2
, (5.6)

where α2 and α3 are the corresponding embedding constants. The inequalities (5.5) and
(5.6) together imply

N ′(t) ≤ 2α
s–
2

(∫

�

|∇w|2 dx
) s–

2
+ 2α

s+
3

(∫

�

|∇w|2 dx
) s+

2
+ 2Cα1

(∫

�

|∇w|2 dx
) h+η

2

≤ 2α
s–
2

(
N(t)

) s–
2 + 2α

s+
3

(
N(t)

) s+
2 + 2Cα1

(
N(t)

) h+η
2 . (5.7)

Integrating (5.7) from 0 to t, we get

∫ N(t)

N(0)

dσ

2α
s–
2 (σ )

s–
2 + 2α

s+
3 (σ )

s+
2 + 2Cα1(σ )

h+η
2

≤ t. (5.8)

Theorem 4.1 ensures the existence of finite time blow-up. Thus, from (5.8), we get a lower
bound as below

T� ≥
∫ ∞

N(0)

dσ

2α
s–
2 (σ )

s–
2 + 2α

s+
3 (σ )

s+
2 + 2Cα1(σ )

h+η
2

, (5.9)

which completes the proof. �

6 Conclusion
In history, there are many studies devoted to logarithmic nonlinearity or polynomial non-
linearity. The work in this paper is about what happens to the solutions when we combine
these two nonlinearities together. Here we established the existence and finite time blow-
up of solutions for the case when s(x) < h. Also, we obtained upper and lower bounds for
the blow-up time under suitable conditions. The case s(x) > h is still under study.
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