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1 Introduction
In this paper, we mainly consider the following high-order Yamabe-type coupled system,
which is called the poly-Laplacian system:

EmypU +hiUPP-U=Fy(xuv), x V,

(1.1)
£m2qu+ h2(X)|V|q“'%/: FV(X’ U,V), X V,

whereV is a “nite graph,m; 2,i=1,2,p,q> 1 are integersh; : V R*, i=1,2,F:
Vx Rx R R,and#,, is de"ned as follows: for any function :V R,

| muP-? ("u, " )dp o if mis odd,
(Empu) du= Y m o om (1.2)
v vl MuP-? zZu Z dy if mis even.

When p =2, £4p = (... )"u is called the poly-Laplacian operator afi, and whenm = 1,
£mp=... pu. A detailed de“nition is given in Sect2; see also]].
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When m; =m, =m, p=q, andu =v, system {.1) becomes the scalar equation
EmpU +hX)[ulP~t=f(x,u), x V, (1.3)

where f (x,u) = F,(x,u) for x V, and can be seen as a generalization of the following
Yamabe equation on a “nite graph:

u+hEulPu=f(x,u), x V. (1.4)

Inrecentyears, some scholars are devoted to studying the Yamabe equation on “nite and
in“nite graphs. We refer the readers to1..7]. Ge [2] studied the following Yamabe-type
equations withp-Laplacian operator on “nite graphs:

pUX) +h(u™= f(xu -+ x V, (1.5)

wherel<m...1 ,f>0,h>0,and ,isde“ned by

1
ofi = W ilfy - fi1P 3 . 6),

i j~i
where ,y is the weight of the edge connecting andy. When the nonlinear termf >0,
m=p...1,and R, Ge established the existence of a positive solution. When 1

p g,h 0,andf >0, Zhang B], extended the case ol =p...1in{.Htom=q... 1
and proved the existence of a positive solution. Ge and Jiagyjdnd Zhang and Lin p]

extended the existence results of solutions on “nite graphs to in“nite graphs fpr=2 and
p > 2 and obtained the existence of one positive solution. Han and Shdpifvestigated
the nonlinearp-Laplacian equation

Cpu+ A+ 1 uPt=f(xu), x V, (1.6)

wherep 2, where the de“nition of thep-Laplacian operator  is di erent:

pu(x) L ulPy)+1 ulP %)y u®) - u()

1
2009

Under appropriate conditions on the nonlinear term$§(x, u) anda(x), the author obtained
the existence of a positive solution for equatiori(6) via the mountain pass theorem. Pina-
monti and Stefani [7] studied the following equation with the (n, p)-Laplacian operator
on locally “nite weighted graphs:

Empu= f(x,u) in
| u|=0, on ,0 j m..1,

where and  are the interior and boundary of , respectively. They established the
existence of at least one nontrivial solution when 0 << for some >0 via the varia-
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tional method. Besides, they also investigated the following Yamabe-type equationsZ

Cputgx,u)=f(x,u) in

u=h on ,

wheref LY( ),h LY ),andg: x R R s a function such thatg(x,0) =0 and
t  g(x,t) isnondecreasing for atk . They obtained the uniqueness of weak solutions.

The research of this paper is mainly inspired by a recent work due to Grigorsyan, Lin,
and Yang [L], who investigated the Yamabe equation and its generalization, that is, poly-
Laplacian equation on locally “nite and “nite graphs. To be speci“c, inl], for equation
(1.3 on a “nite graph V, they assumed thah(x) >0 for allx V and F satis“es the fol-
lowing conditions:

(V1) F(x,9 = Osf (x,t)dt for x V, f(x,0) =0 and f(x,t) is continuous with respect to

t R;

(V2) limsup, 0|f(th)|

|t|p.4.1

< mp(V), where pmp is the first eigenvalue of the operator £m p, and

vl MulP+hlulP)dp
v lulPdp '

mp(V) = inf
(V3) thereexist >pand M >0such thatif|§ M, then
0< F(x,9 sf(x,9 x V.

They obtained the existence of a nontrivial solution via the mountain pass theorem.

In this paper, we would like to generalize and improve the above result itj.[We use
the mountain pass theorem to study the existence of a nontrivial solution and use the
symmetric mountain pass theorem to study the multiplicity of nontrivial solutions for
system (.1) on a “nite graph, where the nonlinear term satis“es the super4,q)-linear
growth condition. Our work is also inspired by Luo and Zhangg], who considered the
following nonlinear p-Laplacian di erence system:

o u(n...1) ..a()u() " Um)+ Fnum =0, n Z, (1.7)

wherep 2, p(9=1|9P% u(n)=u(n+1)..u(n), F(n,x) is continuously di erentiable
inxforalln {1,...M},andM > 1is a positive integer. By the linking theorem ir9] they
obtained that the system has at least one nonconstant periodic solution wiesatis“es
superp-linear growth condition.

Notations h; i, := miny v hij(X), i =1, 2; hpi, = ming v W(X); Kmin := miny v L(X), where
H:V  R*is a “nite measure;W = WMP(V) x WM24(V) with the norm (u,v) =
U wmiey) + V wmay de“nedin Sect.2.

Next, we state our main results.

Theorem 1.1 Assume that F satis“es the following conditions
(F1) F(x,0,0) =0 and F(x,t,9) is continuously differentiable in (t,5) R?forallx V;



Zhang et al.Boundary Value Problems  (2022) 2022:32 Page 4 of 13

. F(x,t,9) . 1 1
(F2) limgg o fpayga < mm{p—Kf, q—Kg}for allx V, where

(  yHOI.

L .

1 1 1 1
p p q q
Hminhl,min uminhZ,min

K]_:

(F3) limygg) % =+ forallx V;

(F4) there are constants 1>0and 2> 0such that

L RG99t +H R, t,9)s. . max{p, q}F(x,t,9)
liminf
[G] It] ++]9 2

>0 forallx V,

where F(X,t,9) = w and Fy(X,1,9 = Lsts) Then system (1.1) has at least one
nontrivial solution.

Theorem 1.2 Assume that(F;)..(F4) and the following condition hold
(Fs) F(x,.t,.9=F(xt,9 for (x,t,9 V x R2
Then systen{1.1) has at least dim W nontrivial solutions

Remark1.1 In Theoremsl.1and 1.2 we do not eliminate the case of seminontrivial so-
lutions. Hence, in Theoremsl.1and 1.2the solutions have three possibilitiesu(,v ) =
©,v),u,v)=(u,0),or@ ,v)=(0,0).

From Theoremsl.1land1.2we easily obtain the following results corresponding td (3).

Theorem 1.3 Assume that F satis“es the following conditions
(Fy) F(x,0) =0 and F(x,t) is continuously differentiable int R forallx V;

1
(F,) limy o % < pTlpfor allx V,where K = Lxy &7 X u(lx))p ;

P P
Hmin"min

(Fg) limy Fl(t)|(Pt) =+ forallx V;
(Fy) there exists a constant > 0 such that

F(x, Dt .. pF(x,t
llitrlninfw>0 forallx V,

where F(X,t) = @ Then equation (1.3) has at least one nontrivial solution.
Theorem 1.4 Assume that(F;)..(F,) and the following condition hold
(F5) F(x,.t)=F(xt)for (x,t) VxR.

Then equation(1.3) has at least dim W™P(V) nontrivial solutions.

Remarkl.2 There are examples satisfying the conditions of Theorelnd, for example,
Fx,t,9 =In 1+]t|P |t|™>PD +1n 1+|g9 |gmoipa,
Remarkl.3 Itis notdi cult to verify that ( V3) implies (F;) and (F,). There exist examples

satisfying the conditions of Theoreni.3but not satisfying /1)...V3), for example F(x,t) =
In(1 +]t|P)[t|° for x V.
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Remarkl.4 Insome senseH,)...E,) can be seen as a generalization of the assumptions in
[8], where the di erence equation (.7) is studied, de“ned on the se¥ of integers. How-
ever, in this paper, we study the high-order Yamabe-type coupled system involving the
poly-Laplacian on a “nite graph. Hence we generalize those conditions B} from m=1
tom 2andfromn Ztox V,whichisa “nite graph. Moreover, we also present the
multiplicity results, that is, Theoremsl.2and 1.4, which are not considered in]].

2 Preliminaries
In this section, we state some useful properties of poly-Laplacian and Sobolev spaces on
graphs. For details, we refer tdl].
Let G = (V,E) be a “nite graph with vertex setV and edge sekE. For any edgexy E
with two vertexes ofx,y V, assume that its weight ,, >0 and ,y= . Foranyx V,
its degree is de“ned adeg(X) = ., xy, Where we writey xifxy E. Letp:V R*
be a “nite measure. De“ne

=== Wy O).. K. (2.1)

The corresponding gradient form is

L W,
009,

(1 2= 1Y) - 100 2(Y) - 2(X) - (2.2)

Write ()= ( , ). The length of the gradient is de“ned by

1
1 2 2

e, M O (2:3)

1= ()X=

Similarly to the case in Euclidean space, we yse€" | to represent the length of themth-
order gradient of de“ned by

m..1

m _ |7 | whenmisodd, 2.4)
| 2 | whenm is even, '

where| " |isde‘nedasin@.9with replacedby "5 ,and| % |denotesthe
absolute value of the function ?2 .Forany function :V R, we denote

du = uX X (2.5)

X V

and|V|= ).
Whenp 2, we de“ne thep-Laplacian operator by , by

p (%) L P+l P oy 0 ) (2.6)

1
2n(
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In the distributional sense, , can be written as follows. Forany  Cc(V),

(p)du=c | P2(, )du, 2.7)
v v

whereC¢(V) is the set of all real functions with compact support. Itis easy to see that £
de“ned by (1.2 is a generalization of ,
De“ne the space

W™N)= VR m ) P+h(x) () du<

endowed with the norm

1

wmay= " 0P+he) ()P du 2.8)

wherem 2,p>1, andh(x)>0forallx V.ThenW™P(V)is a Banach space of “nite
dimension. Let 1< <+ .De"ne

L'(V)= :V R (x) "du <

with the norm

tw = x) "du . (2.9)

Let X be a Banach space, and let C'(X,R). We say that the functional satis“es the
Palais...Smale (PS) conditio{if,} has a convergent subsequenceXwhenever (uy) is
bounded and (u,) 0. We call that satis“es the Cerami (C) condition ifun} has a
convergent subsequence X whenever (u,)is boundedand (up) x (1+ u, ) O.

Lemma 2.1 (Mountain pass theorem 10]) Let X be a real Banach spacand let
CY(X,R), (0) = 0 satisfy the(P9-condition. Suppose that satis“es the following con-
ditions:

(i) there exists a constant >OQsuch that | g (0)>0 whereB ={w X: w x< }

(i) there existsw X\B (0) such that (w) O.
Then has a critical value c with

c:=inf t) ,
gy O

where
= C[0,1],X] : (0)=0, (1)=w .

Lemma 2.2 (Symmetric mountain pass theoreml0]) Let X be an in“nite-dimensional
Banach spacdet X=Y Z,where Y is “nite-dimensionglandlet  C(X,R), (0)=0,
satisfy the(P9-condition. Suppose that satis“es the following conditions
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@) (0)=0 (u)= (u)forallu X;

(ii) there exists a constant , >0, suchthat | g (o) z ;
(ili) for any finite-dimensional subspace X X, there is R=R(X) > Osuch that (u) O
on X\ Bg(0).

Then possesses an unbounded sequence of critical values
Remark2.1 As shown in 1], the deformation lemma can be proved with the weaker (C)-
condition instead of the (PS)-condition, so that Lemma&.1and 2.2 also hold under the

(C)-condition.

Remark2.2 If X is “nite-dimensional, the result of Lemma2.2can also be obtained with
the conclusion that possesses at least did critical values (see]0], Remark 9.36).

Lemma 2.3 Letp>1.Forall WMP(V), we have

d WMP(V),
where =maxyx v| (X)]andd= (pminlhmin)%'
Proof Indeed,
wnagy = " TG 007 du

MO ™ Prhg (0P

X V

LEOhX) () °

XV

M min hmin (X) P
x V

M min hmin P . 0

Lemma 2.4 Let G=(V,E) be a “nite graph Let m be any positive integeand let q> 1.
Then W™P(V)  L9%V)foralll q + .lInparticular,if 1l<q<+ ,thenforall
WTP(V),

Ly Ko wmeyy, (2.10)
where

= Cx v RO

P Kb
p‘min min

In addition, W™P(V) is precompactthat is, if { } is bounded in W™P(V), then up to a
subsequencehere exists ~ W™P(V) such that ¢ in WMP(V),
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Proof Note that V is a bounded set. ThetW™P(V) is a “nite-dimensional space. Hence
it is precompact. According to Lemma.3, we have

Eq(v) = | |%du
\%

HO () °

X V

Hey @

X V

x V H(X) q
a dg WmR(V)-
(|
Hr’r)linl‘]r’r)lin

Remark2.3 The proofs of Lemma®.3and?2.4are givenin [L]. However, the precise values
of d andK are not given. In Lemmag.3and 2.4, we specify their values.

3 Proofs of main results

Note that the spaceW :=WMP(V) x WT29(V) with the norm  (u,v) = u wmepyy +
v wmagy) IS a “nite-dimensional Banach space. Consider the functiona: W R de-

“ned as

(uv) =

Tl

muP P du S ™y hQOl Y d
% a v
N F(x,u,v)du. (3.1)
Then  CYW,R), and
uVv),(1, 2) = y (Emypt, D)+ hUP-4, 1 L Fu(uy), 1 du
t EmaVs 20+ h(M* %, 2 . Rxuyv), 2 du (3.2
forall (u,v),( 1, 2) W.Then (u,v) W isa critical pointof ifand only if
E£m, pU + 1 O)UlP4 . Fy(x,u,v) , 1 dp=0
and
EmyqV+ (V%% .. Fy(x,u,v) , 2 du=0.
By the arbitrariness of ; and , we conclude that

Emy pu + 1 (X)|ulP% = Fu(x,u,v),
Empqv + ha(X)[V]%% = Fy(x, u, V).

Thus the problem of “nding the solutions of systemX.1) is reduced to “nding the critical
points of the functional onW.
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Lemma 3.1 Assume that(F4) holds Then the functional satis“es condition(C), that
is, {(ux,w)} has a convergent subsequence in W whenever,v) is bounded and
(U, i) x (1+ (u,vi) )  Oask

Proof Let{(uk, )} be asequence itV such that (uk,vk) is boundedand  (ug,w) (1+
(ug,vx) ) Oask . Then there exists a positive constart such that

(Uovi) L (uow) 1+ (uew) L
for everyk N. By (F),there are constant€; >0 and ; > 0 such that
Fe(x,t,9t + Fs(X,t,9)s.. max{p,q}F(x,t,s) Cy |t|]1+]|g2 >0
forall |(t,9)] > 1andx V. Therefore
F(x,t,9t + Fs(X,t,9s..max{p,q}F(x,t,s9) Cy |t]1+][d2 ..Co
forall(t,9 RZandx V,where

Co=Cymax |t| *+]9 2] (t,9 1

+max F(Xt,9t +Fs(X,t,9)s.. max{p,q}F(x,t,9 | (t,9 1.
Then for all largek, we have

max{p,q}+1L
max{p,q} (Uk,Vk)--- (Uk,Vk), (Uk,Vk)

1
= max{p,q} = My P+ hy(x)|uglP dp
p v
1
+ = M2y T+ ()i dp .. F(X, Ui, i) dit
q v v

o (EmppUio ) di ... hy()[ukPdp .. (EmgqVi Vi) AUt
\% \% \%

o haIviPdp+ Ry (U Vidudp + Ry (X, Ui, Vi Vi AL (3.3)
\Y \% \%
When max{p,q} = p,

(P+1L .1 M2y 4+ ho(X)|vie|@ dp
\%

+ Fu (X, Ui, Vi), U+ By (X, Uk, Vi), Vi - PF(X, Uk, Vi) d
\%

g 1 Moy, @+ (Vi dia



Zhang et al.Boundary Value Problems  (2022) 2022:32 Page 10 of 13

+ Cplug] *+ w2 du..Co X
\%

X V

= g...l W lmaagy ¥Cr I T G Co ).

x V

Therefore vi wmzay), Uk L1(v), and Vi | 2¢v) are bounded. SinceW/, - ) is a “nite-
dimensional space, there exist positive constarids and D, such that

Uc wmiey) D1 Uk L1qvys Vic wnzaeyy D2 Vi L 2qv). (3.4)

Thus ux wmipy and v wmaayy are bounded. S¢(ug, vi)} is bounded inW . Similarly,
whenmax{p, q} = q, we can also prove thaf{uk, v)} is bounded inW . To sum up,{(ux, vk)}
is bounded inW. SinceW is of “nite dimension, there is a convergent subsequence of
{(uk,vk)}. Hence satis“es the C)-condition. O

Lemma 3.2 There exists a constant > 0 such that | g ) > 0,where B ={(u,v) W:
uv) w< }

Proof By (F,) there are 0 <C, < min{pTlp, q—iq} and a positive constant, < Cs, whereCz =
1 2

1 1
max{ i Hahan | SUCH thet
F(x,t,9 C4 |t|P+|9¢ (3.5)

forall|(t,9)| ».BylLemma2.4we have

U ey Kiu wmegy, Vo) Ko vowmaay, (3.6)

where Ky, K is de“ned in (F,). For every ¢,v) W with (u,v) = = ,Cii<1, by
Lemma2.3we have

(U,V) u + Vv Cs u wmipyy V. owmaayy = 2.

Then by 3.5 and 3.6), for all (u,v) W with (u,v) = ,we have

(u,v)
1 1
== My P4y (ulP dp+ = Moy S+ (V|9 dpt ... F(x,u,v)dp
p v q v v
Lo myPepoguP durl ™y S hyGoM9 du
p v q v

+Cq ulP+|v|? du
\
1 p m P
B..K1C4 u "+ hy(X)|ul® du
\

1
+ a...|<§c:4 M2y 4+ hy(X)V dp
\
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1 1
= 6...Kf<:4 U fympy + a...K§C4 V Wmaaw)

1 .
KPc, }_.ch4 ol U wmey+ Vo wmaw))? ifp g,
1 q 2

min  — . '
s U wmeeyy + vV owmaay))? if p<q
1 1 e ifp
min = .K{Cs , =.KJCs - %7 :
P a 1 Ifp<q
= >0.
The proof is completed. O

Lemma 3.3 Assume tha(F;) and (Fs) hold. Then there existéuo,vo) W\ B (0)such that
(uo,vo) 0.

Proof Choosee= (ey,&) W suchthat e pvy=0and & La)=0. By {s3) there exist
1>0and 3> 0 such that

} el \';le,pw) +} eZ \(jvmz,Q(V) + _1
p q
P& 1y 4 & v

F(x,t,9) [t]? + ]9

forall |(t,9)] > zandx V. Thus by ;) there existsCs > 0 such thatfor all ¢,s) R? and
allx Vv,

p q
1 el Wmlva) +} eZ sz,q(\/) + _1

F(x,t,9 -
P @y 9 & g

ItlP+]99 ..Cs.

Then for every >0, we have

1
(e, &) == . Mg P+hy(x)] e’ du+a , M2 g Y+ hy(x)| el du
.. FX e, &)
\Y
1 p p q q
B € Wm1~P(V)+a €& wmaaq)
p q
S L PME L L b g v Ty,
+Cs u(X

x V

1 1
= P e Doy du = el tCs MK
XV

., as

Hence there exists a su ciently large >1suchthat ( e, &)<0.Let € =ugand
& =Vp. Then (ug,vo) O. O
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Proof of Theorem.1 Itis easy to see that (0, 0) = 0. It follows from Lemma<.1and3.1...
3.3 possesses a critical value > 0, that is, there exists a pointy ,v) W such
that

(u,v)=c and (u,v)=0.

Hence the associated point ,v ) W is a nontrivial weak solution of systeml(1). O

Lemma 3.4 Assume tha{F;) and (F3) hold. Then for any “nite-dimensional subspacké
W, there is R=R(X) >0such that (u) 0onX\Bg(0).

Proof Let dim X = m. Then there exist positive constant€s(m) and C;(m) such that
u wmey  Ce(M) U ey, vV wmayy  Cz(m) v Loy, (3.7)

for all (u,v) X. By (s3) we know that there exist constants > %m)p + %m)q andr >0
such that

F(x,t,9 [t|P+]99 forall (t,y randx V. (3.8)
It follows from (F;) and (3.8) that there existsCg > 0 such that
F(x,t,9 [tlP+|9% ..Cg forall(t,s RZandx V. (3.9

Then by (3.7) and 3.9 we have

(u,v)
1 1
== My P4y (ulP dp+ = Moy S+ (V|9 dpt ... F(x,u,v)dp
P v q v %
1
—u 5\/"\1,9(\/)*'_ v \C/lvmzyq(\/) .o u Ep+ \ Eq +Cg H(X)
p q « vV
= +> v Loy by
p = WV g T WRWMT ghm) T WY T clm) T W)
+Cg M),
X V
forall (u,v) X.Note that >%m)p+%m)q.80 (uyv) ... as (u,v) . Thus we
complete the proof. O

Proof of Theoreml..2 By (F,) and (Fs) we know that is even and (0,0)=0. LetX =W,
Y ={0}andZ =W. Then by Lemma3.1, Lemma3.2 Lemma3.4, Remark2.1, Remark2.2,
and Lemma2.2we obtainthat possesses atleadim W critical values. Thus we complete
the proof. O
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