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Abstract

In this paper, we investigate the existence and multiplicity of nontrivial solutions for
poly-Laplacian system on a “nite graphG= (V,E), which is a generalization of the
Yamabe equation on a “nite graph. When the nonlinear termFsatis“es the
super-(p,q)-linear growth condition, by using the mountain pass theorem we obtain
that the system has at least one nontrivial solution, and by using the symmetric
mountain pass theorem, we obtain that the system has at least dimW nontrivial
solutions, whereW is the working space of the poly-Laplacian system. We also obtain
the corresponding result for the poly-Laplacian equation. In some sense, our results
improve some results in (Grigor•yan et al. in J. Di�er. Equ. 261(9):4924…4943,2016).
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1 Introduction
In this paper, we mainly consider the following high-order Yamabe-type coupled system,

which is called the poly-Laplacian system:

�
�

�
£m1,pu + h1(x)|u|p…2u = Fu(x,u,v), x � V ,

£m2,qv + h2(x)|v|q…2v = Fv(x,u,v), x � V ,
(1.1)

where V is a “nite graph, mi � 2, i = 1,2,p,q > 1 are integers,hi : V � R+, i = 1,2,F :

V × R × R � R, and £m,p is de“ned as follows: for any function� : V � R,

�

V
(£m,pu)� dµ =

�
�

�

�
V |� mu|p…2� (�

m…1
2 u,�

m…1
2 � )dµ if m is odd,

�
V |� mu|p…2�

m
2 u�

m
2 � dµ if m is even.

(1.2)

When p = 2, £m,p = (…� )mu is called the poly-Laplacian operator ofu, and whenm = 1,

£m,p = …� pu. A detailed de“nition is given in Sect.2; see also [1].
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When m1 = m2 = m, p = q, andu = v, system (1.1) becomes the scalar equation

£m,pu + h(x)|u|p…2u = f (x,u), x � V , (1.3)

where f (x,u) = Fu(x,u) for x � V , and can be seen as a generalization of the following

Yamabe equation on a “nite graph:

� u + h(x)|u|p…2u = f (x,u), x � V . (1.4)

In recent years, some scholars are devoted to studying the Yamabe equation on “nite and

in“nite graphs. We refer the readers to [1…7]. Ge [2] studied the following Yamabe-type

equations withp-Laplacian operator on “nite graphs:

� pu(x) + h(x)um = � f (x)u� …1, x � V , (1.5)

where 1 <m … 1� � , f > 0,h > 0, and� p is de“ned by

� pfi =
1
µ i

�

j∼i

� ij |fj …fi |p…2(fj …fi ),

where � xy is the weight of the edge connectingx and y. When the nonlinear termf > 0,

m = p … 1, and� � R, Ge established the existence of a positive solution. When 1� � �

p � q, h � 0, andf > 0, Zhang [3], extended the case ofm = p … 1 in (1.5) to m = q … 1

and proved the existence of a positive solution. Ge and Jiang [5] and Zhang and Lin [6]

extended the existence results of solutions on “nite graphs to in“nite graphs forp = 2 and

p > 2 and obtained the existence of one positive solution. Han and Shao [4] investigated

the nonlinearp-Laplacian equation

…� pu +
�
� a(x) + 1

	
|u|p…2u = f (x,u), x � V , (1.6)

wherep � 2, where the de“nition of thep-Laplacian operator� p is di�erent:

� pu(x) =
1

2µ(x)

�

y∼x

�
|� u|p…2(y) + |� u|p…2(x)

	
� xy

�
u(y) …u(x)

	
.

Under appropriate conditions on the nonlinear termsf (x,u) anda(x), the author obtained

the existence of a positive solution for equation (1.6) via the mountain pass theorem. Pina-

monti and Stefani [7] studied the following equation with the (m,p)-Laplacian operator

on locally “nite weighted graphs:

�
�

�
£m,pu = � f (x,u) in � � ,

|� ju| = 0, on	� , 0 � j � m … 1,

where� � and 	� are the interior and boundary of� , respectively. They established the

existence of at least one nontrivial solution when 0 <� < 
 for some
 > 0 via the varia-
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tional method. Besides, they also investigated the following Yamabe-type equationsŽ

�
�

�
…� pu + g(x,u) = f (x,u) in � � ,

u = h on 	� ,

where f � L1(� ), h � L1(	� ), and g : � × R � R is a function such thatg(x, 0) = 0 and

t �� g(x,t) is nondecreasing for allx � � . They obtained the uniqueness of weak solutions.

The research of this paper is mainly inspired by a recent work due to Grigor•yan, Lin,

and Yang [1], who investigated the Yamabe equation and its generalization, that is, poly-

Laplacian equation on locally “nite and “nite graphs. To be speci“c, in [1], for equation

(1.3) on a “nite graph V , they assumed thath(x) > 0 for all x � V and F satis“es the fol-

lowing conditions:

(V1) F(x,s) =
� s

0 f (x,t)dt for x � V , f (x, 0) = 0, and f (x,t) is continuous with respect to
t � R;

(V2) lim supt � 0
|f (x,t)|
|t |p…1 < � mp(V), where � mp is the first eigenvalue of the operator £m,p, and

� mp(V ) = inf
u	
 0

�
V (|� mu|p + h|u|p)dµ

�
V |u|p dµ

;

(V3) there exist � > p and M > 0 such that if |s| � M , then

0 <� F(x,s) � sf(x,s) � x � V .

They obtained the existence of a nontrivial solution via the mountain pass theorem.

In this paper, we would like to generalize and improve the above result in [1]. We use

the mountain pass theorem to study the existence of a nontrivial solution and use the

symmetric mountain pass theorem to study the multiplicity of nontrivial solutions for

system (1.1) on a “nite graph, where the nonlinear termF satis“es the super-(p,q)-linear

growth condition. Our work is also inspired by Luo and Zhang [8], who considered the

following nonlinear p-Laplacian di�erence system:

�
�
� p

�
� u(n … 1)

		
…a(n)




u(n)




p…2

u(n) + � F
�
n,u(n)

	
= 0, n � Z, (1.7)

wherep � 2, � p(s) = |s|p…2s, � u(n) = u(n + 1) …u(n), F(n,x) is continuously di�erentiable

in x for all n � { 1, . . . ,M}, andM > 1 is a positive integer. By the linking theorem in [9] they

obtained that the system has at least one nonconstant periodic solution whenF satis“es

super-p-linear growth condition.

Notations hi,min := minx� V hi (x), i = 1,2;hmin := minx� V h(x); µ min := minx� V µ (x), where

µ : V � R+ is a “nite measure;W := W m1,p(V ) × W m2,q(V ) with the norm � (u,v)� =

� u� Wm1,p(V) + � v� Wm2,q(V) de“ned in Sect.2.

Next, we state our main results.

Theorem 1.1 Assume that F satis“es the following conditions:

(F1) F(x,0,0) = 0, and F(x,t,s) is continuously differentiable in (t,s) � R2 for all x � V ;
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(F2) lim|(t ,s)|� 0
F(x,t,s)

|t |p+|s|q < min{ 1
pKp

1
, 1

qKq
2
} for all x � V , where

K1 =
(
�

x� V µ (x))
1
p

µ
1
p
minh

1
p
1,min

, K2 =
(
�

x� V µ (x))
1
q

µ
1
q
minh

1
q
2,min

;

(F3) lim|(t ,s)|�
F(x,t,s)

|t |p+|s|q = + for all x � V ;
(F4) there are constants � 1 > 0 and � 2 > 0 such that

lim inf
|(t ,s)|�

Ft (x,t,s)t + Fs(x,t,s)s…max{p,q}F(x,t,s)
|t |� 1 + |s|� 2

> 0 for all x � V ,

where Ft(x,t,s) = 	 F(x,t,s)
	 t and Fs(x,t,s) = 	 F(x,t,s)

	 s . Then system (1.1) has at least one
nontrivial solution.

Theorem 1.2 Assume that(F1)…(F4) and the following condition hold:

(F5) F(x,…t,…s) = F(x,t,s) for (x,t,s) � V × R2.
Then system(1.1) has at least dim W nontrivial solutions.

Remark1.1 In Theorems1.1and 1.2, we do not eliminate the case of seminontrivial so-

lutions. Hence, in Theorems1.1 and 1.2 the solutions have three possibilities: (u� ,v� ) =

(0,v� ), (u� ,v� ) = (u� , 0), or (u� ,v� ) 	= (0,0).

From Theorems1.1and1.2we easily obtain the following results corresponding to (1.3).

Theorem 1.3 Assume that F satis“es the following conditions:

(F�
1) F(x,0) = 0, and F(x,t) is continuously differentiable in t � R for all x � V ;

(F�
2) lim|t |� 0

F(x,t)
|t |p < 1

pKP for all x � V , where K = (
�

x� V µ (x))
1
p

µ
1
p
minh

1
p
min

;

(F�
3) lim|t |�

F(x,t)
|t |p = + for all x � V ;

(F�
4) there exists a constant � > 0 such that

lim inf
|t |�

Ft (x,t)t …pF(x,t)
|t |�

> 0 for all x � V ,

where Ft(x,t) = 	 F(x,t)
	 t . Then equation (1.3) has at least one nontrivial solution.

Theorem 1.4 Assume that(F�
1)…(F�

4) and the following condition hold:

(F�
5) F(x,…t) = F(x,t) for (x,t) � V × R.

Then equation(1.3) has at least dim Wm,p(V) nontrivial solutions.

Remark1.2 There are examples satisfying the conditions of Theorem1.1, for example,

F(x,t,s) = ln
�
1 + |t|p

	
|t |max{p,q} + ln

�
1 + |s|q

	
|s|max{p,q}.

Remark1.3 It is not di�cult to verify that ( V3) implies (F�
3) and (F�

4). There exist examples

satisfying the conditions of Theorem1.3but not satisfying (V1)…(V3), for example,F(x,t) =

ln(1 + |t|p)|t |p for x � V .
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Remark1.4 In some sense, (F�
1)…(F�

4) can be seen as a generalization of the assumptions in

[8], where the di�erence equation (1.7) is studied, de“ned on the setZ of integers. How-

ever, in this paper, we study the high-order Yamabe-type coupled system involving the

poly-Laplacian on a “nite graph. Hence we generalize those conditions in [8] from m = 1

to m � 2 and from n � Z to x � V , which is a “nite graph. Moreover, we also present the

multiplicity results, that is, Theorems1.2and1.4, which are not considered in [1].

2 Preliminaries
In this section, we state some useful properties of poly-Laplacian and Sobolev spaces on

graphs. For details, we refer to [1].

Let G = (V ,E) be a “nite graph with vertex setV and edge setE. For any edgexy � E

with two vertexes ofx,y � V , assume that its weight� xy > 0 and� xy = � yx. For anyx � V ,

its degree is de“ned asdeg(x) =
�

y∼x � xy, where we writey � x if xy � E. Let µ : V � R+

be a “nite measure. De“ne

� (x) =
1

µ(x)

�

y∼x

wxy
�
 (y) … (x)

	
. (2.1)

The corresponding gradient form is

� ( 1,  2)(x) =
1

2µ(x)

�

y∼x

wxy
�
 1(y) … 1(x)

	�
 2(y) … 2(x)

	
. (2.2)

Write � ( ) = � ( ,  ). The length of the gradient is de“ned by

|�  |(x) =
�

� ( )(x) =


1
2µ (x)

�

y∼x

wxy
�
 (y) … (x)

	 2
� 1

2

. (2.3)

Similarly to the case in Euclidean space, we use|� m | to represent the length of themth-

order gradient of de“ned by




� m




 =

�
�

�
|� �

m…1
2  | whenm is odd,

|�
m
2  | whenm is even,

(2.4)

where|� �
m…1

2  | is de“ned as in (2.3) with  replaced by�
m…1

2  , and|�
m
2  | denotes the

absolute value of the function�
m
2  . For any function : V � R, we denote

�

V
 (x)dµ =

�

x� V

µ (x) (x) (2.5)

and |V | =
�

x� V µ (x).

When p � 2, we de“ne thep-Laplacian operator by� p by

� p (x) =
1

2µ(x)

�

y� x

�
|�  |p…2(y) + |�  |p…2(x)

	
� xy

�
 (y) … (x)

	
. (2.6)
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In the distributional sense,� p can be written as follows. For any� � Cc(V ),

�

V
(� p )� dµ = …

�

V
|�  |p…2� ( , � ) dµ , (2.7)

whereCc(V ) is the set of all real functions with compact support. It is easy to see that £m,p

de“ned by (1.2) is a generalization of� p .

De“ne the space

W m,p(V) =
�

 : V � R






�

V

� 

� m (x)



p

+ h(x)



 (x)




p	

dµ < 
�

endowed with the norm

�  � Wm,p(V) =
 �

V

� 

� m (x)



p

+ h(x)



 (x)




p	

dµ
� 1

p

, (2.8)

wherem � 2, p > 1, andh(x) > 0 for all x � V . Then W m,p(V) is a Banach space of “nite

dimension. Let 1 <r < + . De“ne

Lr(V ) =
�

 : V � R






�

V




 (x)




r

dµ < 
�

with the norm

�  � Lr (V ) =
 �

V




 (x)




r

dµ
� 1

r

. (2.9)

Let X be a Banach space, and let� � C1(X,R). We say that the functional� satis“es the
Palais…Smale (PS) condition if{un} has a convergent subsequence inX whenever� (un) is

bounded and� �(un) � 0. We call that � satis“es the Cerami (C) condition if{un} has a
convergent subsequence inX whenever� (un) is bounded and� � �(un)� × (1 + � un� ) � 0.

Lemma 2.1 (Mountain pass theorem [10]) Let X be a real Banach space, and let � �

C1(X,R), � (0) = 0 satisfy the(PS)-condition. Suppose that� satis“es the following con-
ditions:

(i) there exists a constant � > 0 such that � |	 B� (0) > 0, where B� = {w � X : � w� X < � };
(ii) there exists w � X\ B̄� (0) such that � (w) � 0.

Then� has a critical value c with

c := inf
� � �

max
t � [0,1]

�
�
� (t)

	
,

where

� :=
�
� � C

�
[0, 1],X]

	
: � (0) = 0,� (1) = w

�
.

Lemma 2.2 (Symmetric mountain pass theorem [10]) Let X be an in“nite-dimensional

Banach space, let X = Y � Z, where Y is “nite-dimensional, and let � � C1(X,R), � (0) = 0,
satisfy the(PS)-condition. Suppose that� satis“es the following conditions:
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(i) � (0) = 0, � (…u) = � (u) for all u � X;
(ii) there exists a constant � , � > 0, such that � |	 B� (0)� Z � � ;

(iii) for any finite-dimensional subspace �X � X, there is R= R(�X) > 0 such that � (u) � 0

on �X\ BR(0).
Then� possesses an unbounded sequence of critical values.

Remark2.1 As shown in [11], the deformation lemma can be proved with the weaker (C)-

condition instead of the (PS)-condition, so that Lemmas2.1and 2.2also hold under the

(C)-condition.

Remark2.2 If X is “nite-dimensional, the result of Lemma2.2can also be obtained with

the conclusion that� possesses at least dimZ critical values (see [10], Remark 9.36).

Lemma 2.3 Let p> 1.For all  � W m,p(V ), we have

�  �  � d�  � Wm,p(V),

where�  �  = maxx� V | (x)| and d = ( 1
µ minhmin

)
1
p .

Proof Indeed,

�  � p
Wm,p(V) =

�

V

� 

� m



p

+ h(x)



 (x)




p	

dµ

=
�

x� V

µ (x)
� 

� m




p

+ h(x)



 (x)




p	

�
�

x� V

µ (x)h(x)



 (x)




p

� µ minhmin

�

x� V




 (x)




p

� µ minhmin�  � p
 . �

Lemma 2.4 Let G= (V ,E) be a “nite graph. Let m be any positive integer, and let q> 1.

Then Wm,p(V) �� Lq(V) for all 1 � q � + . In particular, if 1 <q < + , then for all  �

W m,p(V ),

�  � Lq(V) � K�  � Wm,p(V), (2.10)

where

K =
(
�

x� V µ (x))
1
q

µ
1
p
minh

1
p
min

.

In addition, W m,p(V ) is precompact, that is, if { k} is bounded in Wm,p(V), then up to a

subsequence, there exists � W m,p(V ) such that k �  in W m,p(V ).
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Proof Note that V is a bounded set. ThenW m,p(V) is a “nite-dimensional space. Hence
it is precompact. According to Lemma2.3, we have

�  � p
Lq(V) =

�

V
| |q dµ

=
�

x� V

µ (x)



 (x)




q

�
�

x� V

µ (x)�  � q


�

�
x� V µ (x)

µ
q
p
minh

q
p
min

�  � q
Wm,p(V). �

Remark2.3 The proofs of Lemmas2.3and2.4are given in [1]. However, the precise values
of d andK are not given. In Lemmas2.3and2.4, we specify their values.

3 Proofs of main results
Note that the spaceW := W m1,p(V ) × W m2,q(V ) with the norm � (u,v)� = � u� Wm1,p(V) +
� v� Wm2,q(V) is a “nite-dimensional Banach space. Consider the functional� : W � R de-
“ned as

� (u,v) =
1
p

�

V

� 

� m1u



p

+ h1(x)|u|p
	
dµ +

1
q

�

V

� 

� m2v



q

+ h2(x)|v|q
	
dµ

…
�

V
F(x,u,v)dµ . (3.1)

Then � � C1(W,R), and

�
� �(u,v), (� 1, � 2)

�
=

�

V

�
(£m1,pu,� 1) +

�
h1(x)|u|p…2u,� 1

	
…

�
Fu(x,u,v),� 1

	�
dµ

+
�

V

�
(£m2,qv,� 2) +

�
h2(x)|v|q…2v,� 2

	
…

�
Fv(x,u,v),� 2

	�
dµ (3.2)

for all (u,v), (� 1, � 2) � W . Then (u,v) � W is a critical point of � if and only if

�

V

��
£m1,pu + h1(x)|u|p…2u …Fu(x,u,v)

	
, � 1

	
dµ = 0

and

�

V

��
£m2,qv + h2(x)|v|q…2v …Fv(x,u,v)

	
, � 2

	
dµ = 0.

By the arbitrariness of� 1 and � 2 we conclude that

£m1,pu + h1(x)|u|p…2u = Fu(x,u,v),

£m2,qv + h2(x)|v|q…2v = Fv(x,u,v).

Thus the problem of “nding the solutions of system (1.1) is reduced to “nding the critical
points of the functional� on W.
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Lemma 3.1 Assume that(F4) holds. Then the functional� satis“es condition(C), that

is, {(uk,vk)} has a convergent subsequence in W whenever� (uk,vk) is bounded and

� � �(uk,vk)� × (1 + � (uk,vk)� ) � 0 as k�  .

Proof Let {(uk,vk)} be a sequence inW such that� (uk,vk) is bounded and� � �(uk,vk)� (1 +

� (uk,vk)� ) � 0 ask �  . Then there exists a positive constantL such that




� (uk,vk)




 � L,

�
� � �(uk,vk)

�
� �

1 +
�
� (uk,vk)

�
� 	

� L

for everyk � N. By (F4),there are constantsC1 > 0 and� 1 > 0 such that

Ft (x,t,s)t + Fs(x,t,s)s…max{p,q}F(x,t,s) � C1
�
|t |� 1 + |s|� 2

	
> 0

for all |(t,s)| > � 1 andx � V . Therefore

Ft (x,t,s)t + Fs(x,t,s)s…max{p,q}F(x,t,s) � C1
�
|t |� 1 + |s|� 2

	
…C2

for all (t,s) � R2 andx � V , where

C2 = C1 max
�
|t |� 1 + |s|� 2 |




(t ,s)




 � � 1

�

+ max
�
Ft (x,t,s)t + Fs(x,t,s)s…max{p,q}F(x,t,s) |




(t ,s)




 � � 1

�
.

Then for all largek, we have

�
max{p,q} + 1

	
L

� max{p,q}� (uk,vk) …
�
� �(uk,vk), (uk,vk)

	

= max{p,q}
�

1
p

�

V

� 

� m1uk



p

+ h1(x)|uk|p
	
dµ

+
1
q

�

V

� 

� m2vk



q

+ h2(x)|vk|q
	
dµ …

�

V
F(x,uk,vk)dµ

�

…
�

V
(£m1,puk,uk)dµ …

�

V
h1(x)|uk|p dµ …

�

V
(£m2,qvk,vk)dµ

…
�

V
h2(x)|vk|p dµ +

�

V
Fuk (x,uk,vk)uk dµ +

�

V
Fvk (x,uk,vk)vk dµ . (3.3)

When max{p,q} = p,

(p + 1)L �


p
q

… 1
� �

V

� 

� m2vk



q

+ h2(x)|vk|q
	
dµ

+
�

V

��
Fuk (x,uk,vk),uk

	
+

�
Fvk (x,uk,vk),vk

	
…pF(x,uk,vk)

�
dµ

�


p
q

… 1
� �

V

� 

� m2vk



q

+ h2(x)|vk|q
	
dµ
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+
�

V
C1

�
|uk|� 1 + |vk|� 2

	
dµ …C2

�

x� V

µ (x)

=


p
q

… 1
�

� vk� q
Wm2,q(V) + C1

�

V

�
|uk|� 1 + |vk|� 2

	
dµ …C2

�

x� V

µ (x).

Therefore� vk� Wm2,q(V), � uk� L� 1(V ), and� vk� L� 2(V ) are bounded. Since (W,� · � ) is a “nite-

dimensional space, there exist positive constantsD1 andD2 such that

� uk� Wm1,p(V) � D1� uk� L� 1(V ), � vk� Wm2,q(V) � D2� vk� L� 2(V ). (3.4)

Thus � uk� Wm1,p(V) and � vk� Wm2,q(V) are bounded. So{(uk,vk)} is bounded inW. Similarly,

whenmax{p,q} = q, we can also prove that{(uk,vk)} is bounded inW. To sum up,{(uk,vk)}

is bounded inW. SinceW is of “nite dimension, there is a convergent subsequence of

{(uk,vk)}. Hence� satis“es the (C)-condition. �

Lemma 3.2 There exists a constant� > 0 such that� |	 B� (0) > 0, where B� = {(u,v) � W :

� (u,v)� W < � }.

Proof By (F2) there are 0 <C4 < min{ 1
pKP

1
, 1

qKq
2
} and a positive constant� 2 < C3, whereC3 =

max{ 1
µ minh1,min

, 1
µ minh2,min

}, such that




F(x,t,s)




 � C4

�
|t |p + |s|q

	
(3.5)

for all |(t,s)| � � 2. By Lemma2.4we have

� u� Lp(V) � K1� u� Wm1,p(V), � v� Lq(V) � K2� v� Wm2,q(V), (3.6)

where K1, K2 is de“ned in (F2). For every (u,v) � W with � (u,v)� = � = � 2C…1
3 < 1, by

Lemma2.3we have

�
� (u,v)

�
�

 � � u�  + � v�  � C3
�
� u� Wm1,p(V) + � v� Wm2,q(V)

	
= � 2.

Then by (3.5) and (3.6), for all (u,v) � W with � (u,v)� = � , we have

� (u,v)

=
1
p

�

V

� 

� m1u



p

+ h1(x)|u|p
	
dµ +

1
q

�

V

� 

� m2v



q

+ h2(x)|v|q
	
dµ …

�

V
F(x,u,v)dµ

�
1
p

�

V

� 

� m1u



p

+ h1(x)|u|p
	
dµ +

1
q

�

V

� 

� m2v



q

+ h2(x)|v|q
	
dµ

…C4

�

V

�
|u|p + |v|q

	
dµ

�


1
p

…Kp
1 C4

� �

V

� 

� m1u



p

+ h1(x)|u|p
	
dµ

+


1
q

…Kq
2C4

� �

V

� 

� m2v



q

+ h2(x)|v|q
	
dµ
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=


1
p

…Kp
1 C4

�
� u� p

Wm1,p(V) +


1
q

…Kq
2C4

�
� v� q

Wm2,q(V)

� min

�
1
p

…Kp
1 C4

�
,


1
q

…Kq
2C4

��
·

�
�

�

1
2p…1(� u� Wm1,p(V) + � v� Wm2,q(V))p if p � q,

1
2q…1(� u� Wm1,p(V) + � v� Wm2,q(V))q if p < q

� min

�
1
p

…Kp
1 C4

�
,


1
q

…Kq
2C4

��
·

�
�

�

� p

2p…1 if p � q,
� q

2q…1 if p < q

:= � > 0.

The proof is completed. �

Lemma 3.3 Assume that(F1) and (F3) hold.Then there exists(u0,v0) � W\ B̄� (0)such that

� (u0,v0) � 0.

Proof Choosee= (e1,e2) � W such that� e1� Lp(V) 	= 0 and� e2� Lq(V) 	= 0. By (F3) there exist

� 1 > 0 and� 3 > 0 such that

F(x,t,s) �


1
p

� e1� p
Wm1,p(V)

� e1� p
Lp(V)

+
1
q

� e2� q
Wm2,q(V)

� e2� q
Lq(V)

+
� 1

2

�
�
|t |p + |s|q

	

for all |(t,s)| > � 3 andx � V . Thus by (F1) there existsC5 > 0 such that for all (t,s) � R2 and

all x � V ,

F(x,t,s) �


1
p

� e1� p
Wm1,p(V)

� e1� p
Lp(V)

+
1
q

� e2� q
Wm2,q(V)

� e2� q
Lq(V)

+
� 1

2

�
�
|t |p + |s|q

	
…C5.

Then for every� > 0, we have

� (� e1,� e2) =
1
p

�

V

� 

� m1� e1



p

+ h1(x)|� e1|p
	
dµ +

1
q

�

V

� 

� m2� e2



q

+ h2(x)|� e2|q
	
dµ

…
�

V
F(x,� e1,� e2)

�
1
p

� p� e1� p
Wm1,p(V) +

1
q

� q� e2� q
Wm2,q(V)

…


1
p

� e1� p
Wm1,p(V)

� e1� p
Lp(V)

+
1
q

� e2� q
Wm2,q(V)

� e2� q
Lq(V)

+
� 1

2

�
�
� p� e1� p

Lp(V) + � q� e2� q
Lq(V)

	

+ C5

�

x� V

µ (x)

� …
� 1

2
� p� e1� p

Lp(V) dµ …
� 1

2
� q� e2� q

Lq(V) + C5

�

x� V

µ (x)

� … , as� �  .

Hence there exists a su�ciently large� � > 1 such that� (� � e1, � � e2) < 0. Let� � e1 = u0 and

� � e2 = v0. Then � (u0,v0) � 0. �
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Proof of Theorem1.1 It is easy to see that� (0, 0) = 0. It follows from Lemmas2.1and3.1…

3.3, � possesses a critical valuec � � > 0, that is, there exists a point (u� ,v� ) � W such
that

� (u� ,v� ) = c and � �(u� ,v� ) = 0.

Hence the associated point (u� ,v� ) � W is a nontrivial weak solution of system (1.1). �

Lemma 3.4 Assume that(F1) and (F3) hold.Then for any “nite-dimensional subspace�X �
W, there is R= R(�X) > 0 such that� (u) � 0 on �X\ BR(0).

Proof Let dim �X = m. Then there exist positive constantsC6(m) andC7(m) such that

� u� Wm1,p(V) � C6(m)� u� Lp(V), � v� Wm2,q(V) � C7(m)� v� Lq(V) (3.7)

for all (u,v) � �X. By (F3) we know that there exist constants� > C6(m)p

p + C7(m)q

q and r > 0
such that

F(x,t,s) � �
�
|t |p + |s|q

	
for all




(t ,s)




 � r andx � V . (3.8)

It follows from (F1) and (3.8) that there existsC8 > 0 such that

F(x,t,s) � �
�
|t |p + |s|q

	
…C8 for all (t,s) � R2 andx � V . (3.9)

Then by (3.7) and (3.9) we have

� (u,v)

=
1
p

�

V

� 

� m1u



p

+ h1(x)|u|p
	
dµ +

1
q

�

V

� 

� m2v



q

+ h2(x)|v|q
	
dµ …

�

V
F(x,u,v)dµ

�
1
p

� u� p
Wm1,p(V) +

1
q

� v� q
Wm2,q(V) …�

�
� u� p

Lp + � v� q
Lq

	
+ C8

�

x� V

µ (x)

�
1
p

� u� p
Wm1,p(V) +

1
q

� v� q
Wm2,q(V) …�


1

Cp
6(m)

� u� p
Wm1,p(V) +

1

Cq
7(m)

� v� q
Wm2,q(V)

�

+ C8

�

x� V

µ (x),

for all (u,v) � �X. Note that � > C6(m)p

p + C7(m)q

q . So� (u,v) � … as� (u,v)� �  . Thus we

complete the proof. �

Proof of Theorem1.2 By (F1) and (F5) we know that� is even and� (0, 0) = 0. LetX = W,

Y = {0} andZ = W. Then by Lemma3.1, Lemma3.2, Lemma3.4, Remark2.1, Remark2.2,

and Lemma2.2we obtain that� possesses at leastdim W critical values. Thus we complete

the proof. �
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