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Abstract
In this note we consider boundary point principles for partial differential inequalities
of elliptic type. First, we highlight the difference between the conditions required to
establish classical strong maximum principles and classical boundary point lemmas
for second-order linear elliptic partial differential inequalities. We highlight this
difference by introducing a singular set in the domain where the coefficients of the
partial differential inequality need not be defined and, in a neighborhood of which,
can blow-up. Secondly, as a consequence, we establish a comparison-type boundary
point lemma for classical elliptic solutions to quasilinear partial differential
inequalities. Thirdly, we consider tangency principles, for C1 elliptic weak solutions to
quasilinear divergence structure partial differential inequalities. We highlight the
necessity of certain hypotheses in the aforementioned results via simple examples.
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1 Introduction
In this note we consider boundary point principles for solutions to elliptic partial differen-
tial inequalities (PDI). Specifically, we first give a relaxation of Hopf ’s [4] classical strong
maximum principle (CSMP) for classical solutions to linear elliptic PDI, which here, al-
lows the coefficients in the PDI to be unbounded in a neighborhood of a sufficiently regular
subset of the spatial domain. The boundary point lemma (BPL) for linear elliptic PDI is
obtained as a consequence of this CSMP and complements available results in [5, 13]. Al-
though coefficients in the PDI in the BPL are not necessarily bounded, they are constrained
by growth conditions detailed in Sect. 2. As a secondary consideration, we illustrate how to
extend BPL for classical solutions to linear elliptic PDI, to comparison-type BPL for elliptic
classical solutions of quasilinear PDI, and highlight the importance of specific conditions
on this extension via examples. Consequently, we demonstrate that the BPL, as stated in
[13, Theorem 2.7.1] is erroneous. Thirdly, we give an extension of a tangency principle for
C1 elliptic weak solutions to divergence structure quasilinear PDI in domains with bound-
aries that satisfy an interior cone condition, which appeared in [17]. We also highlight that
the tangency principle in [13, Theorem 2.7.2], an extension of that in [17], is erroneous.
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We speculate that if detailed proofs for each of the three results in [13, Sect. 2.7] were in-
cluded, then erroneous statements would not have appeared therein. Consequently, rather
than merely provide counterexamples to the aforementioned erroneous theorem state-
ments, we also investigate suitable amendments to the aforementioned results, which are
established subject to conditions apparently intended in [13]. Specifically, the amended
theorem statements allow for coefficients and functions in the elliptic PDI considered here
to allow for local instead of global regularity/bounds, within the limitations of arguments
used to prove the results. By providing detailed proofs, we clearly highlight when the math-
ematical arguments in [13] cease to be valid. Moreover, the proofs provided here illustrate
the requirement for supplementary hypotheses to the theorem statements provided in
[13], which retain the nonlocal nature of the theorem hypotheses.

We now give a brief account of the historical development of results in this note. The
CSMP and BPL for classical solutions to linear elliptic PDI were established by Hopf in [4]
for linear elliptic PDI with bounded (uniformly elliptic) coefficients. Although Hopf con-
sidered generalizations of the CSMP and BPL to elliptic solutions of nonlinear PDI in [4],
more general statements of these results were established by McNabb in [6]. Extensions
to the CSMP and BPL for classical solutions to linear elliptic PDI with coefficients that
can blow-up or degenerate have been considered by numerous authors, as summarized in
[2, 5, 12]. Notably, the consideration of a singular set within a domain for an elliptic PDI
where the differential operator is not necessarily defined, and where tangency/maximum
principles can be estalished, date back to Giraud [3]. Additionally, due to the develop-
ment of a theory for weak solutions to boundary value problems for divergence struc-
ture quasilinear elliptic partial differential equations, tangency principles for C1 elliptic
weak solutions to quasilinear PDI were established by Serrin in [17], and extended in [13].
We note that the proof of Serrin relies on an iteration method developed by Moser [7]
and a Harnack inequality for quasilinear divergence structure elliptic PDI established by
Trudinger [18]. More recently [14–16], tangency principles have been established for C1

elliptic weak solutions to quasilinear PDI that have conclusions more similar to that of
Hopf-type BPL. A broader historical overview of the development of this theory can be
found in [10, p.156–158 and p.193–194], [13, p.46] and [1, 8, 11].

The remainder of the note is presented as follows. In Sect. 2, we prove the CSMP and BPL
for classical solutions to linear elliptic PDI, and consequently, we establish a comparison-
type BPL for elliptic classical solutions to quasilinear PDI. Furthermore, we provide ex-
amples that highlight the need for specific conditions given in the statement of the BPL as
given here, one of which, is a counterexamples to [13, Theorem 2.7.1]. In Sect. 3, we es-
tablish a comparison-type tangency principle for C1 elliptic weak solutions to quasilinear
divergence structure PDI in domains that satisfy an interior cone condition at boundary
points. The necessity of several conditions in the BPL statement are highlighted, and fur-
thermore, we demonstrate that [13, Theorems 2.7.2 and 2.7.3], are erroneous. In Sect. 4,
we discuss how results in this note can be generalized and placed in a wider context.

2 Classical theory
In this section, we establish a CSMP in Theorem 2.3 and BPL in Theorem 2.5 for classical
solutions to linear elliptic PDI. The CSMP is noteworthy in that it allows coefficients in
the PDI, under constraint, to blow-up in the interior of the domain in the neighborhood
of a singular set. After defining the regularity of the singular set and constructing a suit-
able auxiliary function, the proofs of these results largely follow the description of related
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proofs available in [13, Chap. 2]. This allows us to highlight a distinction between the con-
ditions required to establish a CSMP and BPL for classical solutions to linear elliptic PDI.
Consequently, we also establish a comparison-type BPL for classical elliptic solutions to
quasilinear PDI in Theorem 2.6 using the aforementioned BPL for linear elliptic PDI, refin-
ing an analogous statement in [13, Theorem 2.7.1]. We provide a proof using the approach
outlined in [13, Sect. 2.7] where it is noteworthy that a full proof is omitted. To conclude
the section, we give a simple counterexample to [13, Theorem 2.7.1] and provide a further
example to highlight the importance of specific conditions in Theorem 2.6 that are not
present in [13, Theorem 2.7.1].

2.1 Notation and definitions
For a set X ⊂R

n, we denote ∂X = X̄ \ int(X), to be the boundary of X. In addition, through-
out this note, � ⊂ R

n denotes an open connected bounded set (a bounded domain), and
we denote the set BR(x0) ⊂R

n to be an open n-dimensional ball of radius R (with respect to
the Euclidean distance) centered at x0 ∈R

n. We also denote the origin in R
n by O. Further-

more, we denote R(X) to be the set of real-valued functions with domain X, C(X) ⊂ R(X)
to be the set of all continuous functions in R(X), and Ci(X) ⊂ C(X) to be the set of i-times
continuously differentiable functions in C(X) for each i ∈ N. Additionally, for u ∈ C2(�)
and S ⊂ �, we consider the linear elliptic operator L : C2(�) → R(� \ S) given by

L[u] :=
n∑

i,j=1

aijuxixj +
n∑

i=1

biuxi + cu in � \ S , (2.1)

with aij, bi, c : � \ S → R prescribed functions for i, j = 1, . . . , n, and such that there exists
a nonnegative function � : � \ S →R for which,

|y|2 ≤
n∑

i,j=1

aij(x)yiyj ≤ �(x)|y|2 ∀x ∈ � \ S , y ∈ R
n. (2.2)

We refer to the set S where the linear elliptic operator is not defined for u, as the singular
set. Additionally, note that by rescaling the coefficients in the operator in (2.1) by ε, the
left-hand side of (2.2) can be expressed as ε|y|2, i.e., with an equivalent frequently used
ellipticity condition. Moreover, for u ∈ C2(�) we denote Du and D2u to be the gradient of
u and the Hessian of u on �, respectively.

To establish the CSMP in this note, we give the following definition, which will be used
to define the structure of the singular set S ⊂ �. We refer to S as the singular set since
the coefficients aij, bi or c of L are allowed, with constraint, to blow-up in neighborhoods
of S . We note that in [1], alternatively, two-sided ‘hour-glass’ conditions are employed for
regularity conditions on singular sets that complement the following definition.

Definition 2.1 Let � ⊂ R
n be a domain and S ⊂ �. We say that S satisfies an outward

ball property if, given any nonempty relatively closed set T ⊂ � that is a strict subset of
�, there exists R > 0 and x0 ∈ � \ (T ∪ S) such that

BR(x0) ⊂ � \ (T ∪ S) and ∂BR(x0) ∩ T 	= ∅. (2.3)
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To illustrate some geometric aspects of sets that satisfy an outward ball property, con-
sider the following:

(i) If S consists solely of a finite number of points in � then S satisfies the outward
ball property. This follows by considering dH′ : P(Rn) ×P(Rn) → [0,∞) with P(X)
denoting the power set of X , and

dH′ (X, Y ) = sup
x∈X

(
inf
y∈Y

|x – y|
)

∀X, Y ∈P
(
R

n),

i.e., one component of the Euclidean Hausdorff distance between X and Y . Note
that if |X| = 1, then dH′ is the Euclidean Hausdorff distance between the two sets X
and Y , denoted here by d(X, Y ). Now, let T be as in Definition 2.1. Then, since T is
nonempty and T 	= �, it follows that ∂T ∩ � 	= ∅. If dH′ (∂T ∩ �,S) = 0, it follows
that T ⊆ S , and we can choose a point x0 ∈ � \ (T ∪ S) sufficiently close to T such
that there exists a ball BR(x0) that satisfies (2.3). Alternatively, if dH′ (∂T ∩ �,S) > 0,
then since � \ (T ∪ S) is a nonempty open set, we can chose x0 ∈ � \ (T ∪ S) so
that dH′ ({x0},T ) < 1

2 dH′ ({x0},S ∪ ∂�). Thus, there exists a ball BR(x0) that satisfies
(2.3).

(ii) If � = (–1, 1)2 ⊂R
2 and

S =
{

(x1, x2) ∈ � : (x1, x2) =
(
φ1(t),φ2(t)

) ∀t ∈ (0, 1) with

φ : (0, 1) → � twice continuously differentiable and injective on

(0, 1), φ′ > 0 on (0, 1), lim
t→0

φ(t) 	= lim
t→1

φ(t) and

lim
t→0

φ(t), lim
t→1

φ(t) 	= φ(s) ∀s ∈ (0, 1)
}

,

then S satisfies the outward ball property. To see this, let T be as in Definition 2.1.
If dH′ (∂T ∩ �,S) > 0, then a ball that satisfies (2.3) is guaranteed to exist, following
the justification in (i). Alternatively, if dH′ (∂T ∩ �,S) = 0, then it follows that
∂T ∩ � ⊆ S . Suppose there exists s0 ∈ ∂T ∩ S . Then, since S is given by a
sufficiently smooth curve, for s0, there exists a ball BR(s0) ⊂ � such that

S ∩ B̄R(s0) =
{(

φ1(t),φ2(t)
)

: t1 ≤ t ≤ t2
}

=: SR ∪ {(
φ1(t1),φ2(t1)

)
,
(
φ1(t2),φ2(t2)

)}
.

Thus, ∂T ∩ BR(s0) ⊂ SR and hence, via the Jordan Curve Theorem, BR(s0) can be
decomposed into the disjoint sets SR, B1

R(s0) and B2
R(s0) with B1

R(s0) the connected
open set with boundary SR and the arc on ∂BR(s0) connecting (φ1(t1),φ2(t1)) to
(φ1(t2),φ2(t2)) in a clockwise direction (B2

R(s0) is defined similarly to B1
R(s0) with

clockwise replaced by anticlockwise). Thus, T ∩ BR(s0) is either: SR ∩ T ,
SR ∪ B1

R(s0) or SR ∪ B2
R(s0), and in each case, since SR is defined by a C2 curve, there

exists a ball BR1 (x) ⊂ BR(s0) \ (T ∪ S) that satisfies (2.3). If instead
dH′ (∂T ∩ �,S) = 0 and ∂T ∩ S = ∅ then a similar argument to that in (i) can be
used to demonstrate that a ball that satisfies (2.3) exists. It follows analogously from
the Jordan–Brouwer Separation Theorem that any set of finitely many disjoint
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compact (n – 1)-dimensional sufficiently smooth C2 manifolds in a domain � ⊂R
n

also satisfies the outward ball property.
(iii) If � = (–1, 1)2 and

S ′ =
{

(x1, x2) ∈ � : x1 = 0 or x2 = 0
}

,

then S ′ does not satisfy the outward ball property. This follows by considering
T = {(0, 0)} and observing that every ball BR(x) ⊂ � such that ∂BR(x) ∩ T 	= ∅, also
satisfies BR(x) ∩ S ′ 	= ∅. However, if instead � = (–1, 1)2 and

S =
{

(x1, x2) ∈ [0, 1) × (–1, 1) : x1 = 0 or x2 = 0
}

then S satisfies the outward ball property.
(iv) If S ′ is locally dense on BR(x) ⊂ � then S ′ does not satisfy the outward ball

property. This can be observed by choosing T to contain any point in S ′ ∩ BR(x).
Consequently, sets that satisfy Definition 2.1 are necessarily measure zero sets with
respect to the Lebesgue measure.

(v) If S satisfies Definition 2.1, then S is 1-porous at each s ∈ S with respect to [20,
Definition 2.1]. This follows by considering T = {s}. However, not all subsets of �

that are 1-porous at every point necessarily satisfy Definition 2.1. For example,
consider � = (–1, 1)2 with

S ′ =
{

(x1, x2) ∈ � : x1 =
1

2n
for n ∈N

}
.

Since S ′ consists of a countable set of isolated lines, it follows immediately that S ′ is
1-porous at each s ∈ S ′. However, by considering T = (–1, 0] × (–1, 1) ⊂ �, it
follows that S ′ does not satisfy the outward ball property.

Later in this section, for u ∈ C2(�), we consider the quasilinear operator Q : C2(�) →
R(�) given by,

Q[u] :=
n∑

i,j=1

Aij(x, u, Du)uxixj + B(x, u, Du) in �, (2.4)

with Aij, B : � × R × R
n → R prescribed functions. Specifically, we refer to Q as elliptic

with respect to a specific u ∈ C2(�) if (2.2) holds for aij(x) = Aij(x, u(x), Du(x)) for all x ∈ �.

2.2 CSMP and BPL for linear elliptic PDI
Before we establish a CSMP and BPL for classical solutions to L[u] ≥ 0 with L given by
(2.1), we give the following lemma that guarantees the existence of a suitable comparison
function.

Lemma 2.2 Let R, m > 0 be constants and set k = 2n( 2
R + 1) + 3. Additionally, suppose that

there exists a constant ε > 0 and a continuous nonincreasing function � : (0, ε] → (0,∞)
such that � ∈ L1((0, ε)),

ε ∈
(

0, min

{
1,

R
2

})
and

∫ ε

0
�(s) ds <

1
k

, (2.5)
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and moreover, for � = BR(O) \ B̄R–ε(O) that

|y|2 ≤
n∑

i,j=1

aij(x)yiyj ≤ �
(
R – |x|)|y|2 ∀x ∈ �, y ∈R

n, (2.6)

∣∣bi(x)
∣∣ ≤ �

(
R – |x|) ∀x ∈ �, (2.7)

–c(x) ≤ �(R – |x|)
(R – |x|) ∀x ∈ �. (2.8)

Then, if L is a linear elliptic operator with coefficients that satisfy (2.6)–(2.8), there exists
v : �̄ → [0, m], such that:

(i) v = 0 on ∂BR(O), v = m on ∂BR–ε(O), and v > 0 on �.
(ii) v ∈ C1(�̄) ∩ C2(�).

(iii) L[v] > 0 on �.
(iv) ∂νv < 0 on ∂BR(O), where ∂νv denotes the outward (to �) directional derivative of v

normal to ∂�.

Proof Define f : [0, ε] → [0,∞) to be

f (r) = r + k
∫ r

0

∫ s

0
�(t) dt ds ∀r ∈ [0, ε]. (2.9)

It follows immediately that

f ∈ C1([0, ε]
) ∩ C2((0, ε]

)
, (2.10)

with

f ′(r) = 1 + k
∫ r

0
�(t) dt ∀r ∈ [0, ε], (2.11)

f ′′(r) = k�(r) ∀r ∈ (0, ε]. (2.12)

Now, we define ṽ : �̄ →R to be

ṽ(x) = f
(
R – |x|) ∀x ∈ �̄. (2.13)

It follows from (2.9)–(2.13) that

ṽ ∈ C1(�̄) ∩ C2(�), (2.14)

ṽ > 0 on �, (2.15)

and

L[ṽ](x) =
(f ′′(R – |x|)|x| + f ′(R – |x|))

|x|3
n∑

i,j=1

aij(x)xixj

–
f ′(R – |x|)

|x|
n∑

i=1

(
aii(x) + bi(x)xi

)
+ f

(
R – |x|)c(x) (2.16)
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for all x ∈ �. It now follows from substituting (2.9), (2.11), and (2.12) into (2.16), and using
(2.5)–(2.8), that

L[ṽ](x) =
1

|x|3
(

k�
(
R – |x|)|x| +

(
1 + k

∫ R–|x|

0
�(t) dt

)) n∑

i,j=1

aij(x)xixj

–
1
|x|

(
1 + k

∫ R–|x|

0
�(t) dt

) n∑

i=1

(
aii(x) + bi(x)xi

)

+ c(x)
((

R – |x|) + k
∫ R–|x|

0

∫ s

0
�(t) dt ds

)

≥ �
(
R – |x|)

(
k – 2n

(
2
R

+ 1
)

– 2
)

= �
(
R – |x|)

> 0 (2.17)

for all x ∈ �. Now, define v : �̄ →R to be

v(x) =
ṽ(x)m
f (ε)

∀x ∈ �̄. (2.18)

Then, via (2.18), (2.13), (2.15), and (2.9), v satisfies (i). Also, via (2.14) v satisfies (ii). Ad-
ditionally, from (2.17) and (2.18), v satisfies (iii). Moreover, via (2.18), (2.13), (2.11), and
(2.9), it follows that

∂νv(x)||x|=R =
–m
f (ε)

< 0,

and hence v satisfies (iv), as required. �

We now establish a CSMP for linear elliptic PDI that allows coefficients of L to blow-
up in neighborhoods of interior points of �. We note that one can recover a standard
CSMP for linear elliptic PDI with bounded coefficients of appropriate sign (see for instance
[4, 10, 13]) by considering S = ∅ with � a sufficiently large constant.

Theorem 2.3 ((CSMP)) Let � ⊂R
n and S ⊂ � satisfy the outward ball property. Suppose

that u ∈ C2(�) satisfies the linear elliptic PDI L[u] ≥ 0 on � \ S . In addition, suppose that
for each BR(x0) ⊂ (� \ S) for which ∂BR(x0) ∩ ∂� = ∅, there exists a function � : (0, R

2 ] →
(0,∞) that is continuous nonincreasing and such that � ∈ L1((0, R

2 )), and such that the
coefficients of L satisfy

|y|2 ≤
n∑

i,j=1

aij(x)yiyj ≤ �
(
d
({x}, ∂BR(x0)

))|y|2 ∀x ∈ BR(x0), y ∈R
n, (2.19)

∣∣bi(x)
∣∣ ≤ �

(
d
({x}, ∂BR(x0)

)) ∀x ∈ BR(x0), (2.20)

–c(x) ≤ �(d({x}, ∂BR(x0)))
d({x}, ∂BR(x0))

∀x ∈ BR(x0). (2.21)
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Additionally, let

Mu = sup
x∈�

u(x) (2.22)

and suppose that either Mu = 0, or Mu > 0 with c nonpositive. Then, Mu > u(x) for all x ∈ �

or u is constant on �.

Proof Suppose that u is not constant on �, and

T =
{

x ∈ � : u(x) = Mu
}

(2.23)

is not empty. Since T is a relatively closed strict subset of � and S satisfies the outward
ball property, it follows that there exists a sufficiently small BR(x0) such that BR(x0) ⊂ � \
(T ∪S), ∂BR(x0) ∩ T = {y0} and ∂BR(x0) ∩ ∂� = ∅. Moreover, it follows from (2.19)–(2.21)
and the hypotheses on L and �, that Lemma 2.2 can be applied to a linear elliptic operator
L̃ defined in �0 = BR(O) \ B̄R–ε(O), for sufficiently small ε ∈ (0, R), with coefficients given
by

ãij(x) = aij(x + x0), b̃i(x) = bi(x + x0), c̃(x) =
–�(R – |x|)

(R – |x|) , ∀x ∈ �0 (2.24)

with

m = Mu –
(

sup
∂BR–ε (x0)

u
)

> 0,

to guarantee the existence of v : �̄0 → [0, m] that satisfies the conclusions of Lemma 2.2.
Now, define w : �0 →R to be

w(x) = u(x + x0) + v(x) – Mu ∀x ∈ �0. (2.25)

It follows that w ∈ C2(�0) ∩ C1(�0) and sup∂�0 w = w(y0 – x0) = 0. Additionally, it follows
that w ≤ 0 on �0, for suppose that the converse holds, i.e., that there exists x∗ ∈ �0 such
that supx∈�0 w(x) = w(x∗) > 0. From the hypotheses and Lemma 2.2(iii), we have L[u](x∗ +
x0) ≥ 0 and L̃[v](x∗) > 0, respectively. Thus, via (2.24) and (2.25) we have,

n∑

i,j=1

ãij
(
x∗)wxixj

(
x∗) +

n∑

i=1

b̃i
(
x∗)wxi

(
x∗) (2.26)

> –c
(
x∗ + x0

)
u
(
x∗ + x0

)
– c̃

(
x∗)v

(
x∗)

≥ �(R – |x∗|)
(R – |x∗|)

(
min

{
u
(
x∗ + x0

)
, 0

}
+ v

(
x∗))

> 0

with the last two inequalities following from (2.21), (2.25), and the hypotheses. However,
since there is a local maxima of w at x∗, then Dw(x∗) = 0, and D2w(x∗) is negative semidef-
inite. Consequently, via the Schur Product Theorem, the left-hand side of (2.26) is non-
positive, which gives a contradiction, and hence, w ≤ 0 on �0. Therefore, ∂νw(y0 – x0) ≥ 0,
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and hence ∂νu(y0) ≥ –∂νv(y0 – x0) > 0. However, since there is a local maxima of u at y0, it
follows from the regularity of u that Du(y0) = 0, which contradicts ∂νu(y0) > 0. Therefore,
either u is constant on �, or u < Mu on �, as required. �

Remark 2.4 Note that in Theorem 2.3, the conditions on the coefficients of L apply on balls
that satisfy ∂BR(x0) ∩ S̄ 	= ∅ but not on balls that satisfy BR(x0) ∩ S̄ 	= ∅. Thus, although the
coefficients of L can, under constraints (2.19)–(2.21), blow-up as x → S̄ , they cannot blow-
up (except c negatively) as x → x0 for x0 ∈ � \ S̄ . Moreover, observe that the coefficients
of L can blow-up as x → ∂� with conditions (2.19)–(2.21) not required to hold on BR(x0)
such that ∂BR(x0)∩∂� 	= ∅. However, for a BPL to hold for a linear elliptic operator L on �,
conditions (2.19)–(2.21) are required to hold on balls BR(x0) such that ∂BR(x0) ∩ ∂� 	= ∅.
This is the principal difference in hypothesis between BPL and CSMP for linear elliptic
PDI.

A straightforward application of Theorem 2.3 gives an associated BPL for classical so-
lutions to linear elliptic PDI.

Theorem 2.5 ((BPL)) Suppose that the hypotheses of Theorem 2.3 hold, with the restriction
that ‘for which ∂BR(x0) ∩ ∂� = ∅’ is omitted.1 In addition, suppose that u ∈ C1(�̄) and
supx∈� u(x) = u(xb) for some xb ∈ ∂� such that there exists BRb (x′

b) ⊂ � \ S that satisfies
xb ∈ ∂BRb (x′

b). If u is not constant on �, then ∂νu(xb) > 0.

Proof Since u satisfies the conditions of Theorem 2.3 and is not constant, it follows that
u(x) < u(xb) for all x ∈ BRb (x′

b). A function analogous to w in (2.25) can now be constructed,
from which we can conclude (as in the proof of Theorem 2.3) that ∂νu(xb) > 0, as re-
quired. �

2.3 Comparison-type BPL for elliptic classical solutions to quasilinear PDI
In this subsection we establish a comparison-type BPL for classical elliptic solutions to
quasilinear PDI using the approach described in [13, Chap. 2]. Specifically, via an applica-
tion of Theorem 2.5, a BPL for classical elliptic solutions to quasilinear PDI can be estab-
lished. Although the proof is standard, we provide it to inform the discussion that follows.

Theorem 2.6 ((BPL)) Suppose that u, v : �̄ → R satisfy u, v ∈ C2(�) ∩ C1(�̄) and the
quasilinear PDI Q[u] ≥ 0 and Q[v] ≤ 0 on �. Furthermore, suppose that Q is elliptic with
respect to u, with vxixj bounded on � (or instead suppose that Q is elliptic with respect to v,
with uxixj bounded on �) for i, j = 1, . . . , n. Suppose that u < v in � and u = v at xb ∈ ∂� for
which there exists BRb (x′

b) ⊂ � with xb ∈ ∂BRb (x′
b). Suppose that there exists a continuous

nonincreasing function � : (0, Rb
2 ] → (0,∞) such that � ∈ L1((0, Rb

2 )),

∣∣Aij(x, z1,η1) – Aij(x, z2,η2)
∣∣ (2.27)

≤ �
(
d
({x}, ∂BRb

(
x′

b
)))

(
|z1 – z2|

d({x}, ∂BRb (x′
b))

+
n∑

l=1

|η1l – η2l|
)

1i.e., for the BPL, we also impose conditions (2.19)–(2.21) on BR(x0)⊂ � \S such that ∂BR(x0)∩ ∂� 	= ∅.
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for all (x, z1,η1), (x, z2,η2) ∈ BRb (x′
b) × [–Mz, Mz] × [–Mη, Mη]n, and

B(x, z1,η1) – B(x, z2,η2) (2.28)

≥ –�
(
d
({x}, ∂BRb

(
x′

b
)))

(
(z1 – z2)

d({x}, ∂BRb (x′
b))

+
n∑

l=1

|η1l – η2l|
)

for all (x, z1,η1), (x, z2,η2) ∈ BRb (x′
b) × [–Mz, Mz] × [–Mη, Mη]n with z1 ≥ z2, with

Mz = sup
x∈BRb (x′

b)

{∣∣u(x)
∣∣,

∣∣v(x)
∣∣} and Mη = sup

x∈BRb (x′
b)

i=1,...,n

{∣∣uxi (x)
∣∣,

∣∣vxi (x)
∣∣}.

Then, ∂νu(xb) > ∂νv(xb).

Proof Let w = u – v on BRb (x′
b). Then, on BRb (x′

b),

0 ≤
n∑

i,j=1

(
Aij(·, u, Du)uxixj – Aij(·, v, Dv)vxixj

)
+ B(·, u, Du) – B(·, v, Dv)

=
n∑

i,j=1

(
Aij(·, u, Du)(uxixj – vxixj ) +

(
Aij(·, u, Du) – Aij(·, u, Dv)

)
vxixj

+
(
Aij(·, u, Dv) – Aij(·, v, Dv)

)
vxixj

)

+
(
B(·, u, Du) – B(·, u, Dv)

)
+

(
B(·, u, Dv) – B(·, v, Dv)

)

≤
n∑

i,j=1

Aij(·, u, Du)wxixj

+ �
(
d
(·, ∂BRb

(
x′

b
))) n∑

i=1

(
sgn(wxi ) +

n∑

k,l=1

vxkxl sgn(vxk xl wxi )

)
wxi

+

(
�(d(·, ∂BRb (x′

b)))
d(·, ∂BRb (x′

b))

n∑

k,l=1

vxkxl sgn(vxk xl w)

+
(B(·, u, Dv) – B(·, v, Dv))

w

)
w

=:
n∑

i,j=1

ãwxixj +
n∑

i=1

b̃iwxi + c̃w,

where, for i, j = 1, . . . , n, ãij, b̃i, c̃ : � → R are given by,

ãij = Aij(·, u, Du), (2.29)

b̃i = �
(
d
(·, ∂BRb

(
x′

b
)))

(
sgn(wxi ) +

n∑

k,l=1

vxk xl sgn(vxkxl wxi )

)
, (2.30)

c̃ =
�(d(·, ∂BRb (x′

b)))
d(·, ∂BRb (x′

b))

n∑

k,l=1

vxk xl sgn(vxk xl w) +
B(·, u, Dv) – B(·, v, Dv)

(u – v)
(2.31)
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≥ –
�(d(·, ∂BRb (x′

b)))
d(·, ∂BRb (x′

b))

(
n2 sup

k,l=1,...,n
x∈BRb (x′

b)

∣∣vxk xl (x)
∣∣ + 1

)
, (2.32)

on BRb (x′
b). Thus, it follows that L̃ is a linear elliptic operator on BRb (x′

b), that satisfies the
conditions of Theorem 2.5, provided that we consider � in Theorem 2.5 as that in (2.29)–
(2.32) after multiplication by a sufficiently large constant. An application of Theorem 2.5
yields ∂νw > 0 at xb and hence,

∂νu(xb) > ∂νv(xb),

as required. �

Remark 2.7 Note that conditions (2.27) and (2.28) ensure that: Aij are locally Lipschitz
continuous in z and η on �; B is locally lower Lipschitz in z and Lipschitz continuous in η;
and the associated Lipschitz and lower Lipschitz constants for Aij and B can tend to ∞ as
x → ∂� but are constrained by the integrability condition on �. Additionally, observe that
the conditions in Theorem 2.6 can be readily altered to accommodate d(x, ∂�) instead of
d(x, ∂BRb (x′

b)).

We now demonstrate that if the bound on the lower Lipschitz constant for B in Theo-
rem 2.6 is relaxed to a mere local lower Lipschitz condition, then the conclusion of Theo-
rem 2.6 does not necessarily hold.

Example 2.8 Suppose that � ⊂ R
n and for xb ∈ ∂� there exists BRb (x′

b) ⊂ � with xb ∈
∂BRb (x′

b). Consider u : �̄ →R given by,

u(x) = 0 ∀x ∈ �̄, (2.33)

and v : �̄ →R such that:

v ∈ C∞(�̄), (2.34)

v > 0 in �, (2.35)

v(xb) = 0 and ∂νv(xb) = 0. (2.36)

Note that (2.34) implies that there exists M ≥ 0 such that for i, j = 1, . . . , n,

|v|, |vxi |, |vxixj | ≤ M for all x ∈ �̄. (2.37)

Now, for the quasilinear PDI in (2.4), set Aij : � ×R×R
n →R to be

Aij(x, z,η) = δij ∀(x, z,η) ∈ � ×R×R
n, (2.38)

for all i, j = 1, . . . , n and B : � ×R×R
n →R to be

B(x, z,η) = –
z

v(x)

n∑

i=1

vxixi (x) ∀(x, z,η) ∈ � ×R×R
n. (2.39)
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Since the coefficients of Aij define a Laplacian, it can be seen that Aij satisfies the conditions
of Theorem 2.6 (with, for example, � = 1), and also, that Q is elliptic with respect to u with
vxixj bounded on �. Moreover, observe that B is independent of η, and

B(x, z1,η1) – B(x, z2,η2) = –
z1 – z2

v(x)

n∑

i=1

vxixi (x) ≥ –MK (z1 – z2), (2.40)

for all (x, z1,η1), (x, z2,η2) ∈ K such that z1 ≥ z2, with K = �′ × [–M, M] × [–M, M]n for
any �′ that is a compact subset of �, where via (2.35) and (2.37),

MK =
Mn

infx∈�′ {v(x)} > 0. (2.41)

Therefore, it follows from (2.40) and (2.41) that B(x, z,η) satisfies the conditions of The-
orem 2.6 with the exception of the lower Lipschitz condition, which instead holds only
locally on � × R × R

n. It follows from (2.33)–(2.36), that Q[u] ≥ 0 and Q[v] ≤ 0 on �,
for Q defined by (2.38) and (2.39). Moreover, via (2.33), (2.35), and (2.36) u < v in � and
u(xb) = v(xb) for xb ∈ ∂�. In conclusion, although u, v, Aij and B satisfy all of the conditions
of Theorem 2.6 (with the exception of the lower Lipschitz condition on B, or alternatively
(2.28)), via (2.36),

∂νu(xb) = ∂νv(xb),

which violates the conclusion of Theorem 2.6.

Remark 2.9 We note that u, v, Aij and B in Example 2.8 satisfy all of the conditions of
[13, Theorem 2.7.1], but violate the conclusion. This occurs since an unconstrained local
lower Lipschitz constant is supposed on B with respect to z in [13, Theorem 2.7.1], which
is an error. It is noteworthy that essentially the same error can be found in the statement
of a BPL for classical solutions to linear parabolic PDI given in [10, p.174, Theorem 7], as
illustrated in [9]. We also highlight that in both of these instances, a direct proof of the
associated BPL is not given, but instead, only the main ideas of the proofs are described.

Remark 2.10 If ∂ννv(xb) > 0 in Example 2.8, by considering K = BR(x′
b) × [–M, M] ×

[–M, M]n with 0 < R < Rb, it follows from (2.34) that as R → Rb,

MK ≥ 2Mn
vνν(xb)(Rb – R)2 + O((R – Rb)3)

≥ Mn
vνν(xb)d(∂BR(x′

b), ∂BRb (x′
b))2 . (2.42)

Thus, we observe that B in (2.40) satisfies the conditions of Theorem 2.6 with the exception
of � ∈ L1((0, Rb

2 )) in (2.28). This follows from letting R → Rb in (2.42), which implies that
� necessarily satisfies

�(d) ≥ Mn
vνν(xb)d

as d → 0+.

Now, we highlight the necessity of the bound on vxixj (or uxixj ) in Theorem 2.6. Note that
this condition is not present in [13, Theorem 2.7.1].
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Example 2.11 Let � = (0, 1) ⊂ R and u, v : �̄ →R be given by

u(x) = x1+α , v(x) = 2x1+α ∀x ∈ �̄, (2.43)

with constant α ∈ (0, 1). It follows that u, v ∈ C1(�̄)∩C2(�), v > u in �, and for xb = 0 ∈ ∂�,
we have u(xb) = v(xb) = 0. Now, consider the quasilinear operator Q with A : �×R×R→
R given by

A(x, z,η) = 1 +
2

x1+α

(
3
2

x1+α – z
)

∀(x, z,η) ∈ � ×R×R (2.44)

with B = 0 on � ×R×R→R. Since

Q[u] = A(·, u, Du)uxx = 2uxx ≥ 0, Q[v] = A(·, v, Dv)vxx ≤ 0, (2.45)

on �, it follows that Q is elliptic with respect to u, and that Q satisfies the conditions (2.27)
and (2.28) in Theorem 2.6 with � : (0, 1] → (0,∞) given by

�(d) =
2

dα
∀d ∈

(
0,

1
2

]
.

Since � is continuous nonincreasing and � ∈ L1((0, 1
2 )), it follows from (2.43)–(2.45) that

u and v satisfy all of the conditions of Theorem 2.6 with the exception of vxx being bounded
on �. However, via (2.43),

uν(xb) = vν(xb) = 0,

which violates the conclusion of Theorem 2.6.

3 Weak theory
In this section, we establish a comparison-type tangency principle, for C1 weak elliptic
solutions to divergence structure PDI that is a correction of that stated in [13, Theo-
rem 2.7.2]. The proof largely follows that of [13, Theorem 2.7.2] with additional details in-
cluded to highlight the additional hypotheses, and missing details in the proof of [13, The-
orem 2.7.2]. We also provide simple counterexamples to [13, Theorems 2.7.2 and 2.7.3].

3.1 Notation and definitions
The quasilinear divergence structure PDI we consider are given by:

div
(
A(·, u, Du)

)
+ B(·, u, Du) ≥ 0 on �, (3.1)

div
(
A(·, v, Dv)

)
+ B(·, v, Dv) ≤ 0 on �, (3.2)

with A : � × R × R
n → R

n and B : � × R × R
n → R. Specifically, we consider C1 weak

solutions to (3.1) (and analogously (3.2)) that satisfy: u ∈ C1(�̄), A(·, u, Du), B(·, u, Du) ∈
L1

loc(�) and

∫

�

A
(
x, u(x), Du(x)

) · Dψ(x) dx ≤
∫

�

B
(
x, u(x), Du(x)

)
ψ(x) dx (3.3)
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for any test function ψ ∈ C1(�̄) such that ψ ≥ 0 on � and ψ has compact support in
�. Moreover, we say that u (and analogously v) is an elliptic solution to (3.1) if aij(x) =
(Ai)ηj (x, u(x), Du(x)) satisfies the left inequality in (2.2) for all x ∈ �. Furthermore, in this
section we consider � with boundary ∂� that satisfies an interior cone condition, i.e., at
each point xb ∈ ∂� there exists a cone of finite height in � with apex xb. We denote the
interior of such a cone by �b.

Additionally, for a function u ∈ C(�̄) we say that u has a finite-order zero at xb ∈ �̄ if
u(xb) = 0 and there exists x1 ∈R

n and m ∈N such that xb + hx1 ∈ �̄ for all h ∈ (0, 1), and

lim
h→0+

u(xb + hx1)
hm 	= 0. (3.4)

Conversely we say that u has an infinite order 0 at xb if u(xb) = 0 and there does not exist
m ∈N such that (3.4) is satisfied.

3.2 A comparison-type tangency principle for weak elliptic solutions to
quasilinear divergence structure PDI

Theorem 3.1 ((Tangency Principle)) Let xb ∈ ∂� satisfy the interior cone condition, and
u, v : �̄ → R be such that: u, v ∈ C1(�̄); u, v satisfy (3.1) and (3.2), respectively; A : � ×
R × R

n → R
n is continuous and continuously differentiable with respect to z and η; Az is

uniformly bounded and Aη is uniformly continuous on �b × [u(xb) – Mz, u(xb) + Mz] ×
[–Mη, Mη]n for some constants Mz, Mη > 0; B : � ×R×R

n →R satisfies

B(x, z1,η1) – B(x, z2,η2) ≥ –bz(z1 – z2) – bη

n∑

l=1

|η1l – η2l| (3.5)

for all (x, z1,η1), (x, z2,η2) ∈ �b × [u(xb) – Mz, u(xb) + Mz] × [–Mη, Mη]n with z1 ≥ z2 for
some constants bz, bη ≥ 0; u is an elliptic solution of (3.1) with respect to A in �b; u < v in
�b; and u(xb) = v(xb). Then, the zero of v – u at xb is of finite order.

Proof For a contradiction, assume that w = v – u has a zero of infinite order at xb ∈ ∂�.
Via regularity on w, it follows that Dw(xb) = 0. Moreover, for each ε ∈ (0, min{Mz, Mη/2}),
there exists a cone of finite height in � with apex xb, without loss of generality denoted by
�b, such that (w(x), Dw(x)) ∈ (0, ε] × [–ε, ε]n for all x ∈ �b, there exists a constant

az = sup
�b×[–ε,ε]×[–ε,ε]n

i=1,...,n

∣∣(Ai)z
∣∣ ∈ [0,∞) (3.6)

and

∣∣(Ai)ηj

(
x, u(x),η(1)) – (Ai)ηj

(
x, u(x),η(2))∣∣ <

1
2n2 (3.7)

for all (x,η(1)), (x,η(2)) ∈ �b × [–2ε, 2ε]n and i, j = 1, . . . , n. From (3.1) and (3.2), we have

div
(
A(x, v, Dv) – A(x, u, Du)

)
+

(
B(x, v, Dv) – B(x, u, Du)

)

= div
(
Ã(x, w, Dw)

)
+ B̃(x, w, Dw) ≤ 0 (3.8)
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on �b. The function Ã : �b ×R×R
n →R

n arises from repeated application of the mean-
value theorem in (3.8), e.g.,

Ãi(x, z,η) = (Ai)z
(
x, z̃(i)(x), Dv(x)

)
z +

n∑

j=1

(Ai)ηj

(
x, u(x), η̃(i)(x)

)
ηj (3.9)

for all (x, z,η) ∈ �b × R × R
n, z̃(i) : �b → [0, ε] and η̃(i) : �b → [–2ε, 2ε]n for i = 1, . . . , n.

Similarly, via (3.8), we define B̃ : �b ×R×R
n →R as

B̃(x, z,η) =
(

B(x, v(x), Dv(x)) – B(x, u(x), Dv(x))
v(x) – u(x)

)
z +

n∑

i=1

B̌i(x)ηn+1–i (3.10)

for all (x, z,η) ∈ �b ×R×R
n, with B̌i : �b →R given by

B̌i(x) =
B(x, u(x),η(i)(x)) – B(x, u(x),η(i+1)(x))

Dvn+1–i(x) – Dun+1–i(x)
∀x ∈ Ri

and with B̌i = 0 on �b \ Ri for i = 1, . . . , n, such that

Ri =
{

x ∈ �b : Dun+1–i(x) 	= Dvn+1–i(x)
}

for i = 1, . . . , n, and η(i) : �b →R
n given by

η
(i)
j (x) =

⎧
⎨

⎩
Dvj(x), j ≤ n + 1 – i,

Duj(x), n + 2 – i ≤ j,

for i = 1, . . . , n + 1. Since Q is elliptic with respect to u, it follows from (3.6)–(3.9) that

ηT · Ã(x, z,η)

=
n∑

i=1

(Ai)z
(
x, z̃(i)(x), Dv(x)

)
zηi +

n∑

i,j=1

(Ai)ηj

(
x, u(x), Du(x)

)
ηiηj

+
n∑

i,j=1

(
(Ai)ηj

(
x, u(x), η̃(i)

j (x)
)

– (Ai)ηj

(
x, u(x), Du(x)

))
ηiηj

≥ –nazz|η| + |η|2 –
1
2
|η|2

≥ 1
4
|η|2 – (naz)2z2 (3.11)

for (x, z,η) ∈ �b × [0,∞) × R
n. Additionally, via the regularity hypotheses on A and B it

follows that there exists a constant aη ≥ 0 such that

∣∣Ã(x, z,η)
∣∣ ≤ aη|η| +

√
nazz (3.12)

for all (x, z,η) ∈ �b × [0,∞) ×R
n, and

B̃(x, z,η) ≥ –nbη|η| – bzz (3.13)
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for all (x, z,η) ∈ �b × [0,∞) ×R
n. It follows from (3.8)–(3.13) that on any Br(x) ⊂ �b, w,

Ã and B̃ satisfy the conditions of Trudinger’s weak Harnack inequality [18, Theorem 1.2]
with constants required in the hypotheses and conclusion, independent of the ball, i.e.,
there exists a constant C independent of B2r(x) ∈ �b such that

1
rn

∫

B2r (x)
w dx ≤ C min

Br (x)
w ∀B2r(x) ⊂ �b. (3.14)

Note that [18, Theorem 1.2] remains true if u > 0 in �, inequalities (1.2) hold on � ×
[0,∞) × En, and the second and third inequalities in (1.2) for α = 2 are replaced by p ·
A(x, u, p) ≥ a5|p|2 –a2u2 and B(x, u, p) ≥ –b1|p|–b2u for constants a2, b1, b2 ≥ 0 and a5 > 0.

Now, since xb is the apex of the cone �b ⊂ �, it follows that there exists a sequence
of balls {Brk (yk)}k∈N0 : that have boundaries that tangentially intersect ∂�b; such that
Brk /3(yk) ⊂ B2rk+1/3(yk+1) for all k ∈ N0; for which yk → xb as k → ∞; rk+1 < rk for k ∈ N0;
and by denoting θ to be the half-angular opening of the cone, we can set

rk+1

rk
=

|yk+1 – xb|
|yk – xb| =

1 + ( 1
3 ) sin (θ )

1 + ( 2
3 ) sin (θ )

= κ ∈ (0, 1) (3.15)

for all k ∈N0. It follows immediately that

min
Brk /3(yk )

w ≤ 3n

ωnrn
k

∫

Brk /3(yk )
w dx ≤ 3n

ωnrn
k+1

∫

B2rk+1/3(yk+1)
w dx ∀k ∈N0, (3.16)

with ωn denoting the volume of a Euclidean unit ball in R
n. By combining (3.14) and (3.16),

we have

min
Brk /3(yk )

w ≥ Lk min
Br0/3(y0)

w ∀k ∈ N, (3.17)

with

L =
ωn

C3n .

Now, via our initial assumption, w has a zero of infinite order at xb and hence via (3.15),
for each m ∈N there exists a positive constant c independent of k such that

w(yk) ≤ c|yk – xb|m = c|y0 – xb|mκmk ∀k ∈N0. (3.18)

Now, via (3.17) and (3.18), it follows that there exists a positive constant c independent of
k such that

Lk ≤ cκmk ∀k ∈ N0. (3.19)

Letting k → ∞ in (3.19) implies that

κm ≥ L. (3.20)
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However, via (3.15) κm → 0 as m → ∞ and hence for all sufficiently large m, it follows
that (3.20) yields a contradiction. Therefore, the zero of w at xb is of finite order, as re-
quired. �

Remark 3.2 Observe that via the bounds in (3.11)–(3.13), we have ensured that the con-
stant C in (3.14) exists independently of the choice of ball in �b. Alternatively, using the
conditions of [13, Theorem 2.7.2], although bounds analogous to (3.11)–(3.13) hold on any
ball in �b, the same constant C is not necessarily valid for every ball, i.e., C is potentially
dependent on k. Consequently, in the proof of [13, Theorem 2.7.2], although Theorem [18,
Theorem 1.2] can be applied to any ball in �b, as in (3.14) and (3.17), the constant c that
arises, as in (3.19), is not necessarily independent of k, which is the source of the error in
the proof.

Example 3.3 Suppose that � ⊂ R
n and for xb ∈ ∂� satisfies an interior cone condition.

Consider u : �̄ → R and v : �̄ → R as given in Example 2.8 such that additionally, v has a
zero of infinite order at xb, i.e.,

∂ (m)
ν v(xb) = 0 ∀m ∈N. (3.21)

For the quasilinear partial differential inequalities in (3.1) and (3.2) set A : � ×R×R
n →

R
n to be

A(x, z,η) = η ∀(x, z,η) ∈ � ×R×R
n, (3.22)

with B : � × R × R
n → R as in (2.39). It follows that A satisfies the conditions of Theo-

rem 3.1, and also that u and v are elliptic solutions of (3.1) and (3.2), respectively. Via (2.40)
and (2.41), observe that B is independent of η, and satisfies the conditions of Theorem 3.1
with the exception of the lower Lipschitz condition in (3.5), which instead holds locally
on � × R × R

n. Moreover, via (2.33) and (2.35), it follows that u < v in �. In conclusion,
although �, u, v, A and B satisfy all of the conditions of Theorem 3.1 (with the exception
of the lower Lipschitz condition on B), via (3.21),

∂ (m)
ν u(xb) = ∂ (m)

ν v(xb) ∀m ∈N,

which violates the conclusion of Theorem 3.1. We also note here that the conditions on
Aη and Az in Theorem 3.1 cannot be relaxed to those in [13, Theorem 2.7.2], which can
be observed via similarly constructed counterexamples.

Remark 3.4 We note that the erroneous tangency principle stated in [13, Theorem 2.7.2]
was intended to be a relaxation of that in [17] to allow for weaker constraints on the nonlin-
earities A and B in (3.1) and (3.2) as x → ∂�. However, the constraint on B, appears to arise
from the very same condition on B in the erroneous BPL stated in [13, Theorem 2.7.1].

To conclude the section, we note that in [13, Theorem 2.7.3], a strong maximum prin-
ciple and tangency principle is stated with the regularity conditions on u and v in [13,
Theorem 2.7.2] relaxed to u, v ∈ C(�̄) but so that u and v also possess strong derivatives
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in L2
loc(�). To compensate for these relaxed regularity conditions on u and v, stricter reg-

ularity conditions are imposed on A and B that we now demonstrate, are insufficient to
establish the conclusion. This establishes that all three theorems in [13, Sect. 2.7] are er-
roneous.

Example 3.5 For ε ∈ (0, 1) consider � = B1(0) \ B1–ε(0) with u, A = A(η) and B = B(x, z) as
in Example 3.3. Here, consider v given by

v(x) =

⎧
⎨

⎩
e–1/(1–|x|2), x ∈ B1(0) \ B1–ε(0),

0, x ∈ ∂B1(0).
(3.23)

Observe that u, v ∈ C∞(�̄) and that the zero of v – u on ∂B1(0) is of infinite order. Addi-
tionally, note that A is locally bounded on R

n and B is locally bounded and locally lower
Lipschitz on � ×R. Furthermore, for i = 1, . . . , n, we have

vxixi (x) =
(4x2

i – 8x2
i (1 – |x|2) – 2(1 – |x|2)2)v(x)

(1 – |x|2)4 ∀x ∈ �. (3.24)

Via (3.23) and (3.24), for sufficiently small ε > 0, it follows that

n∑

i=1

vxixi > 0 on �.

For such ε > 0, it follows that B(x, z), as given by (2.39), is nonincreasing in z on �. There-
fore, although �, u, v, A, and B satisfy the conditions of [13, Theorem 2.7.3], the conclusion
that the zero of v – u on ∂B1(0) is of finite order is violated.

4 Discussion
In Theorem 2.3, the outward ball condition on S in Definition 2.1 can be generalized to an
outward C1,Dini condition, provided that the conditions on the coefficients of L are appro-
priately constrained. This can be achieved with more restrictive conditions in the state-
ment of Theorem 2.3, by replacing the function in Lemma 2.2 with a suitable alternative
(for instance, the regularized distance functions constructed in [5, Sects. 1 and 2]).

It is also noteworthy that although the singular sets for elliptic PDI considered in Sect. 2
satisfy a 1-porous condition (see [20, Definition 2.1]) the review articles [19, 20] do not
indicate that a link has been established between porous sets and singular sets for elliptic
PDI. Although it is not immediately clear if strengthening the link between porosity and
singular sets for elliptic PDI will be a fruitful pursuit, it is potentially worthy of further
consideration.

In relation to Theorem 2.6, a fully nonlinear version can be established without substan-
tial additional technicality (see, for example [4, 13]). Moreover, the condition bounding
vxixj can be relaxed provided that the right-hand side of (2.29)–(2.32) can be expressed
(for instance, by further constraining the growth of �(d) as d → 0) so that Theorem 2.5
can be applied.

With regard to Theorem 3.1, we note that allowable blow-up in A and B as x → xb can be
accommodated by using the more general integrability conditions on coefficients in The-
orem [18, Theorem 1.2], i.e., by using Theorem [18, Theorem 5.1]. Also, complementary
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results are contained in [14–16] where BPL for quasilinear elliptic PDI are established un-
der more regular domain and PDI constraints, but that guarantee the existence of nonzero
(first) outward directional derivatives. It is also pertinent to note that in [16] the author
highlights two further distinct incorrect statements of BPL from those highlighted here
and in [9].
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11. Pucci, P., Rădulescu, V.D.: A maximum principle with a lack of monotonicity. Electron. J. Qual. Theory Differ. Equ. 58, 1

(2018). https://doi.org/10.14232/ejqtde.2018.1.58
12. Pucci, P., Serrin, J.: The strong maximum principle revisited. J. Differ. Equ. 196(1), 1–66 (2004).

https://doi.org/10.1016/j.jde.2003.05.001
13. Pucci, P., Serrin, J.: The Maximum Principle, vol. 73. Birkhäuser, Basel (2007)
14. Rosales, L.: Generalizing Hopf’s boundary point lemma. Can. Math. Bull. 62(1), 183–197 (2019).

https://doi.org/10.4153/CMB-2017-074-6
15. Rosales, L.: A Hopf-type boundary point lemma for pairs of solutions to quasilinear equations. Can. Math. Bull. 62(3),

607–621 (2019). https://doi.org/10.4153/S0008439519000055

https://doi.org/10.1007/s10958-011-0398-3
https://doi.org/10.2140/apde.2016.9.439
https://doi.org/10.2140/pjm.1985.117.329
https://doi.org/10.1002/cpa.3160140329
https://doi.org/10.1137/110821664
https://doi.org/10.1007/s00033-014-0492-8
https://doi.org/10.14232/ejqtde.2018.1.58
https://doi.org/10.1016/j.jde.2003.05.001
https://doi.org/10.4153/CMB-2017-074-6
https://doi.org/10.4153/S0008439519000055


Meyer Boundary Value Problems         (2022) 2022:33 Page 20 of 20

16. Sabina De Lis, J.C.: Hopf maximum principle revisited. Electron. J. Differ. Equ. 2015(115), 1 (2015)
17. Serrin, J.: On the strong maximum principle for quasilinear second order differential inequalities. J. Funct. Anal. 5,

184–193 (1970). https://doi.org/10.1016/0022-1236(70)90024-8
18. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure

Appl. Math. 20, 721–747 (1967). https://doi.org/10.1002/cpa.3160200406
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