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Abstract
We study the following non-cooperative type singularly perturbed systems involving
the fractional Laplacian operator:

{
ε2s(–�)su + a(x)u = g(v), in R

N ,

ε2s(–�)sv + a(x)v = f (u), in R
N ,

where s ∈ (0, 1), N > 2s, and (–�)s is the s-Laplacian, ε > 0 is a small parameter. f and g
are power-type nonlinearities having superlinear and subcritical growth at infinity.
The corresponding energy functional is strongly indefinite, which is different from the
one of the single equation case and the one of a cooperative type. By considering
some truncated problems and establishing some auxiliary results, the semiclassical
solutions of the original system are obtained using “indefinite functional theorem”.
The concentration phenomenon is also studied. It is shown that the semiclassical
solutions can concentrate around the global minima of the potential.
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1 Introduction and main results
In these last years, a great deal of work has been devoted to the study of the weak solutions
for the following singularly perturbed fractional Schrödinger systems

⎧⎨
⎩ε2s(–�)su + a(x)u = f (u, v), in R

N ,

ε2s(–�)sv + a(x)v = g(u, v), in R
N ,

(1.1)

where s ∈ (0, 1) with N > 2s, ε > 0 is a small parameter, a(x) ∈ C(RN ) is the external po-
tential, and f , g satisfy appropriate conditions in order to use a variational method. To
describe the transition from quantum to classical mechanics, we let ε → 0, and thus the
existence of solutions to (1.1) for small ε, which are called semiclassical states, has an im-
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portant physical interest. For small value ε, the wave functions of (1.1) tend to concentrate
as a material particle.

Recently, there has been tremendous interest in developing the fractional Laplacian
problem in various fields, for instance, thin obstacle problems, optimization, population
dynamics, geophysical fluid dynamics, mathematical finance, phases transitions, anoma-
lous diffusion, crystal dislocation, ultra-relativistic limits of quantum mechanics, etc., see
[1]. Different from the classical Laplace operator, the analytical methods for elliptic PDEs
cannot be directly applied to (1.1) since the operator (–�)s is nonlocal. In [2], Caffaralli and
Silvestre gave a new formulation of the fractional Laplacian through Dirichlet-Neumann
maps. This is extensively used in the recent literature since it allows to transform nonlocal
problems into local ones, which enables the of use variational methods. For example, for
the single nonlocal problems, this is, u = v, f = g in (1.1), there have been many results
on the existence and concentration, which were studied using the idea of the s-harmonic
extension [3–9].

In the case of the standard Laplacian operator (s = 1, local case), the existence of a solu-
tion for the Schrödinger systems has been studied, and relatively complete methods have
been formed. However, for the fractional Schrödinger systems like (1.1), there are only
some literature on the semiclassical states for nonlocal singularly perturbed problems; for
example, see [7, 10–13].

In [7], Q. Guo and X.M. He considered the following nonlinear system of two weakly
coupled Schrödinger equations

⎧⎨
⎩ε2s(–�)su + P1(x)u = (|u|2p + b|u|p–1|v|p+1)u, in R

N ,

ε2s(–�)sv + P2(x)v = (|v|2p + b|v|p–1|u|p+1)v, in R
N ,

and investigated the existence of nontrivial nonnegative solutions which concentrate
around local minimal of the potentials.

Later, Vincenzo Ambrosio [10] applied penalization techniques, Nehari manifold ar-
guments, and Ljusternik-Schnirelmann theory and investigated the existence, multiplic-
ity, and concentration of positive solutions of the following nonlocal system of fractional
Schrödinger equations

⎧⎨
⎩ε2s(–�)su + V (x)u = Qu(u, v), in R

N ,

ε2s(–�)sv + W (x)v = Qv(u, v), in R
N ,

where V , W : RN → R are positive continuous potentials, Q is a homogeneous C2-
function with subcritical growth.

We note that Vincenzo Ambrosio [11] also dealt with the following nonlocal systems of
fractional Schrödinger equations

⎧⎨
⎩ε2s(–�)su + V (x)u = Qu(u, v) + γ Hu(u, v), in R

N ,

ε2s(–�)sv + W (x)v = Qv(u, v) + γ Hv(u, v), in R
N ,

(1.2)

where V , W : RN → R are continuous potentials, Q is a homogeneous C2-function with
subcritical growth, γ ∈ (0, 1) and H(u, v) = (2/(α + β))|u|α|v|β with α,β ≥ 1 such that α +
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β = 2∗
s . They investigated the subcritical case (γ = 0) and the critical case (γ = 1), and

using the Ljusternik-Schnirelmann theory, they related the number of solutions with the
topology of the set where the potentials V and W attain their minimum values.

We point out that Manassés de Souza in [12] also considered the existence and multi-
plicity of solutions of the following more general nonlocal system involving the fractional
Laplacian

ε2s(–�)sui + ai(x)ui = fi(x, u1, . . . , um), in R
N , i = 1, . . . , m,

where ai(x) are continuous and unbounded potentials that may change sign, and the non-
linearities fi(x, u1, . . . , um) are continuous functions that may be unbounded in x.

In line with the above works, it is worth mentioning that the nonlinearities are cooper-
ative type in [7, 10–13] hence the energy functions corresponding to them can be proved
to have mountain pass structure, and Nehari manifold arguments can be used. However,
when the nonlinearities are non-cooperative type, the corresponding energy functional
is strongly indefinite; that is, the quadratic part of the energy functional has no longer a
positive sign, the problems become rather complicated mathematically. In [14], Manasses
de Souza established a weighted Thudinger-Morse type inequality and, as the application
of this result using the Galerkin methods and a linking theorem, proved the existence of
weak solutions for the following elliptic system:

⎧⎨
⎩(–�) 1

2 u + V (x)u = g(x, v), in R
N ,

(–�) 1
2 v + V (x)v = f (x, u), in R

N .

However, another question arises: for the following more general non-cooperative type
singularly perturbed fractional systems:

⎧⎨
⎩ε2s(–�)su + a(x)u = g(v), in R

N ,

ε2s(–�)sv + a(x)v = f (u), in R
N ,

(1.3)

whether the results [7, 10–13] on the existence of semiclassical states and concentration
can be obtained? Answering this question constitutes the goal of this paper.

Since we are interested in positive solutions, we assume the continuous functions a(x),
f , g satisfy the following conditions:

(A0) 0 < a(0) := minx∈RN a(x) < lim inf|x|→∞ a(x);
(A1) f (0) = g(0) = f ′(0) = g ′(0) = 0, f (t) = g(t) = 0 for t ≤ 0;
(A2) there exist real numbers l1, l2 > 0 and p, q > 2 such that 1

p + 1
q > N–2s

N and

lim|t|→∞
f ′(t)
|t|p–2 = l1, lim|t|→∞

g ′(t)
|t|q–2 = l2;

(A3) there exists δ > 0 such that 0 < (1 + δ)f (t)t ≤ f ′(t)t2 for every t ∈ R and similarly
for g ;

(A4) for every μ > 0, there exists Cμ > 0 such that

∣∣f (u)v
∣∣ +

∣∣g(v)u
∣∣ ≤ μ

(
u2 + v2) + Cμ

(
f (u)u + g(v)v

)
, u, v ∈R.
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The main result of this paper is stated as follows:

Theorem 1.1 Suppose (A0), (A1)–(A4) are satisfied, s ∈ (0, 1), then for all small ε > 0,
(i) (Existence) the nonlocal system (1.2) admits a least energy solution (ωε , ξε);

(ii) (Concentration) both functions ωε and ξε attain their maximum value at some
unique and common point zε ∈R

N such that

lim
ε→0

a(zε) = a(0) = min
x∈RN

a(x);

(iii) (Decay estimates) there exist constants 0 < C1 < C2 and large R > 0 such that

C1ε
N+2s

|x – zε|N+2s ≤ ωε(x), ξε(x) ≤ C1ε
N+2s

|x – zε|N+2s

for all |x| ≥ R.

A typical example of functions verifying the assumption (A1)–(A4) is given by f (t) =
l1|t|p–2t, g(t) = l2|t|q–2t with l1, l2 > 0 and p, q > 2 such that 1

p + 1
q > N–2s

N .

Remark 1.2 The difficulties in treating system (1.3) originate in at least five facts:
(i) Although we have a variational problem, the functional Iε associated with (1.3) is

strongly indefinite, compared to the single equation case and cooperative type
systems, the quadratic part of the energy functional has no longer a positive sign,
and so we have to recourse to the “Indefinite Functional Theorem” introduced by
Benci and Rabinowitiz in [15], which is an extension of both the mountain-pass
theorem and the saddle point theorem.

(ii) There is a lack of compactness due to the fact that we are working in R
N , in order

to attain (PS) condition, we need to consider some truncated problems in Sect. 4.
(iii) No uniqueness and non-degenerate results seem to be known for the autonomous

system of (1.2), and thus, the Lyapunov-Schmidt reduction method can not be used.
(iv) We employ the ideas in [16] and [17] to prove Theorem 1.1; however, our systems

are nonlocal, a delicate analysis is needed to overcome the lack of localization. The
proof is different from that of the classical case s = 1.

(v) Under the natural assumption on p and q, that is p, q > 2 such that 1
p + 1

q > N–2s
N ,

which is more general than assuming that 2 < p, q < 2∗
s , the associated functional Iε

may not to be well defined in the space Hs(RN ) × Hs(RN ), because it may happen
that say p < 2∗

s = 2N
N–2s < q. However, as explained in Sect. 5, we only have to prove

Theorem 1.1 in the case of 2 < p = q < 2∗
s .

In fact, given n ∈ N, we can define the truncated functions,

gn(t) =

⎧⎨
⎩g(t), t ≤ n,

Antp–1 + Bn, t > n,

where the coefficients are chosen so that gn is C1. Thus, in view of (A2), we see that An =
( l2

p–1 +o(1)) ·nq–p, Bn = ( l2(p–q)
(p–1)(q–1) +o(1)) ·nq–1. We show in Sect. 5 that the solutions (uεn , vεn )

of the corresponding system obtained using Theorem 1.1 applied to the truncated problem
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are such that ‖uεn‖∞, ‖vεn‖∞ ≤ C for some C > 0 independent of n, and therefore they
solve the original problem (1.2) if n is taken sufficiently large. Thus, in Sects. 2–4, we
assume that 2 < p = q < 2∗

s .

This paper is organized as follows: In Sect. 2, we review certain notations related to the
fractional Laplacian and describe the appropriate functional setting, including the defini-
tion of the equivalent problems. In order to study the concentration phenomenon of semi-
classical states for system (1.3), Sect. 3 is devoted to studying the autonomous systems of
(1.3). We show that (PS) condition holds for the energy functional associated with (1.3) at
energy levels in a suitable range in Sect. 4.1; we discuss some auxiliary problems involving
appropriate truncated functions in the place of a(x) in Sect. 4.2. The proof of Theorem 1.1
is given in Sect. 4.3. In Sect. 5, we will show that the solutions are bounded in L∞(RN ); for
this, some Liouville-type theorems need to be established. Therefore, during the proof on
the existence of weak solutions for (1.3), we may assume that 2 < p = q < 2∗

s .

Notations Here, we list some notations that will be used throughout the paper.
• We denote by R

N+1
+ the upper half-space {(x, y) : x ∈R

N , y > 0}.
• The letter z represents a variable in the R

N+1
+ . Also, it is written as z = (x, y) with

x ∈R
N and y ∈ R

+.
• For k ∈N, we denote by Bk(x0, r) the ball {x ∈R

k : |x – x0| < r} for each x0 ∈R
k and

r > 0. B+
N+1(x0, r) := BN+1(x0, r) ∩R

N+1
+ .

• C > 0 is a generic constant that may vary from line to line.
• For a function U ∈ Xs(RN+1

+ ), we denote its trace on R
N × {y = 0} as u = Tr(U).

2 Preliminaries
In this section, we first introduce some definitions and notations. We consider the frac-
tional Sobolev space

Hs(
R

N)
=

{
u ∈ L2(

R
N)

: ‖u‖Hs :=
(∫

RN
|ξ |2s∣∣Fu(ξ )

∣∣dξ

) 1
2

< +∞
}

,

where Fu denotes the Fourier transform of u, and the fractional Laplacian (–�)s :
Hs(RN ) → H–s(RN ) is defined to be given u ∈ Hs(RN ),

̂(–�)su(ξ ) = |ξ |2sû(ξ ) for any ξ ∈R
N .

When u is assumed, in addition, sufficiently regular, we obtain the direct representation

(–�)su(x) = CN ,s

∫
RN

u(x) – u(y)
|x – y|N+2s dy,

for a suitable constant CN ,s and the integral is understood in a principal value sense.
The dual space H–s(RN ) is defined in the standard way, as well as the inverse operator

(–�)–s.
It is standard that (1.2) is equivalent to, by letting u(x) = ω(εx), v(x) = ξ (εx),

⎧⎨
⎩(–�)su + a(εx)u = g(v), in R

N ,

(–�)sv + a(εx)v = f (u), in R
N ,

(2.1)
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we now consider the problem (2.1). Since the above definition of the fractional Laplacian
allows integrating by parts in the proper spaces, a natural definition of the energy solution
to the problem (2.1) is the following.

Definition 2.1 We say that (u, v) ∈ H ×H (Here H := {u ∈ Hs(RN ) :
∫
RN a(εx)u2 dx < +∞})

are the weak solutions of (2.1) if the identity

∫
RN

(
(–�)

s
2 u(–�)

s
2 ψ + (–�)

s
2 ϕ(–�)

s
2 v

)
dx

+
∫
RN

a(εx)(uψ + ϕv) dx =
∫
RN

(
f (u)ϕ + g(v)ψ

)
dx

holds for every functions ψ ,ϕ ∈ H .
Associated to the problem (2.1), we consider the energy functionals

Iε(u, v) =
∫
RN

[
(–�)

s
2 u(–�)

s
2 v + a(εx)uv

]
dx –

∫
RN

F(u) dx –
∫
RN

G(v) dx,

where F(t) :=
∫ t

0 f (ξ ) dξ , G(t) :=
∫ t

0 g(ξ ) dξ . These functionals are well defined in H × H
when 2 < p = q < 2∗

s , and moreover, the critical points of Iε correspond to the weak solu-
tions of (2.1).

We now include the main ingredients of a recently developed technique by Caffarelli and
Silverstre [2]. Let u be a regular function in R

N , we say that U = Es(u) is the s-harmonic
extension of u to the upper half-space R

N+1
+ , if U is a solution to the problem

⎧⎨
⎩div(y1–2s∇U) = 0, in R

N+1
+ ,

U(x, 0) = u, on R
N .

(2.2)

In [8] it is proved that

lim
y→0+

y1–2s ∂U
∂y

(x, y) = –k–1
s (–�)su(x), (2.3)

where ks = 21–2s
(1–s)

(s) . Observe that ks = 1 for s = 1

2 and ks ∼ 1
2–2s as s → 1–. Identity (2.3)

allows the formulation of nonlocal problems involving the fractional powers of the Lapla-
cian in R

N as local problems in divergence form in the half-space R
N+1
+ .

Remarking (2.2), we introduce the function space Xs(RN+1
+ ) that is defined as the com-

pletion of C∞
0 (RN+1

+ ) with respect to the norm

‖U‖Xs =
(

ks

∫
R

N+1
+

y1–2s|∇U|2 dz
) 1

2
.

Then it is a Hilbert space endowed with the inner product

〈U , V 〉 = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dz, for U , V ∈ Xs(
R

N+1
+

)
.
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With the constant ks, we have the extension operator to be an isometry between Hs (RN )
and Xs(RN+1

+ ); that is

‖U‖2
Xs = ‖u‖2

Hs =
∥∥(–�)

s
2 u

∥∥2
2.

On the other hand, for a function U ∈ Xs(RN+1
+ ), we will denote its trace on R

N × {y = 0}
as Tr(U). This trace operator is also well defined, and it satisfies

∥∥Tr(U)
∥∥

Hs ≤ ‖U‖Xs .

For convenience, we will use the following notation:

Lsw := – div
(
y1–2s∇w

)
,

∂νw := –ks

(
lim

y→0+
y1–2s ∂w

∂y
(x, y)

)
, for x ∈R

N .

With the above extension, we can reformulate our problem (2.1) as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

LsU = LsV = 0 in R
N+1
+ ,

∂νU = g(V ) – a(εx)U in R
N × {y = 0},

∂νV = f (U) – a(εx)V in R
N × {y = 0},

U = u, V = v on R
N × {y = 0}.

(2.4)

The energy solutions to (2.4) are functions (U , V ) ∈ X × X such that

ks

∫
R

N+1
+

y1–2s(〈∇U ,∇�〉 + 〈∇�,∇V 〉)dz

+
∫
RN ×{y=0}

a(εx)(U� + �V ) dx =
∫
RN ×{y=0}

(
f (U)� + g(V )�

)
dx,

for any �,� ∈ X, here X := {U ∈ Xs(RN+1
+ ) :

∫
RN ×{y=0} a(εx)U2 dx < +∞}. For any energy

solutions (U , V ) ∈ X ×X to this problem, the functions (u, v) = (U(x, 0), V (x, 0)), defined in
the sense of traces, belong to the space H × H and are the energy solutions to the problem
(2.1). The converse is also true. Therefore, both formulations are equivalent.

The associated energy functionals Jε : X × X → R
1 to (2.4) are given by

Jε(U , V ) = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dz +
∫
RN ×{y=0}

a(εx)UV dx

–
∫
RN ×{y=0}

F(U) dx –
∫
RN ×{y=0}

G(V ) dx.
(2.5)

They are the C2 functionals well defined over the Hilbert space E := X × X,

∥∥(U , V )
∥∥2

E = ‖U‖2
X + ‖V‖2

X ,

‖U‖2
X = ks

∫
R

N+1
+

y1–2s|∇U|2 dz +
∫
RN ×{y=0}

a(εx)U2 dx.

Clearly, the critical points of Jε in E correspond to the ones of Iε in H × H .
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Remark 2.2 In the sequel, in view of the above equivalence, we will see both formulations
of the problem (2.1), in R

N or in R
N+1
+ , whenever we may take some advantages. In par-

ticular, we will use the extension version when dealing with the fractional operator acting
on products of functions since it is not clear how to calculate this action.

In Sect. 5, we will utilize the following Sobolev inequality on weighted spaces appeared
in Theorem 1.3 of [18].

Proposition 2.3 Let � be an open bounded set in R
N+1
+ . Then there exists a constant C =

C(N , s,�) > 0 such that

(∫
�

y1–2s∣∣U(x, y)
∣∣ 2(N+1)

N dx dy
) N

2(N+1) ≤ C
(∫

�

y1–2s∣∣∇U(x, y)
∣∣2 dx dy

) 1
2

holds for any function U whose support is contained in � whenever the right-hand side is
well-defined.

It can be observed that the following orthogonal splitting holds E = E– ⊕E+, where E± :=
{(�,±�) : � ∈ X} (Since for any (U , V ) ∈ E, (U , V ) = ( U+V

2 , U+V
2 ) + ( U–V

2 , V –U
2 )). So that,

denoting by Q the quadratic term of the energy functional Jε , namely

Q(U , V ) = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dz +
∫
RN ×{y=0}

a(εx)UV dx.

We have that Q is positive definite (respectively, negative definite) in E+ (respectively, in
E–). Therefore, Jε are indefinite functionals; we refer to “Indefinite functional theorem” in
[15] to obtain nontrivial critical points of Jε .

What as follows, we recall that the definitions of the relative Morse index and solutions
having finite index.

Let E be a real Hilbert space; for a closed subspace of V ⊂ E, we denote by PV the or-
thogonal projection onto V and by V ⊥ the orthogonal complement of V . Following [19]
and [20], we say that the closed subspaces V , W of E are commensurable if PV⊥PW and
PW⊥PV are compact operators.

If V and W are commensurable, the relative dimension of W with respect to V is defined
as

dimV W = dim
(
W ∩ V ⊥)

– dim
(
W ⊥ ∩ V

)
.

Commensurability guarantees that both terms in the above formula are finite.

Definition 2.4 The relative Morse index of a critical point (U , V ) of a functional J with
respect to the splitting E = E+ ⊕ E– can be defined as the integer

m(U , V ) = dimE–
[
negative eigenspace of J ′′(U , V )

]
.

We will also borrow the definition of solutions having a finite index as defined in [21].
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Definition 2.5 Let (U , V ) be a weak solution of (2.4), we say that m(U , V ) < +∞
if there exists R0 > 0 with the property that for every φ ∈ C∞

0 (RN+1
+ ) such that φ =

1 in B+
N+1(0, 2R0) \ B+

N+1(0, R0) and Suppφ ⊂ B+
N+1(0, 3.5R0) \ B+

N+1(0, 0.5R0), it holds
that

J ′′
ε (U , V )(φ,φ)(φ,φ) = 2‖φ‖2

X –
∫
RN ×{y=0}

f ′(U)φ2(x, 0) dx

–
∫
RN ×{y=0}

g ′(V )φ2(x, 0) dx ≥ 0.
(2.6)

3 The autonomous system
In order to investigate the semiclassical states and their concentration phenomenon of the
noncooperative type system (2.1), we firstly give some results on the autonomous system
as follows:

⎧⎨
⎩(–�)su + λu = g(v), in R

N ,

(–�)sv + λv = f (u), in R
N ,

(3.1)

where λ > 0 is any constant.

Theorem 3.1 Assume that f , g satisfy (A1)–(A4), s ∈ (0, 1), N > 2s, then the autonomous
problem (3.1) has at least one positive solution (u, v) ∈ Hs (RN ) × Hs(RN ), which, indeed,
is a least energy solution.

In view of hypothesis 2 < p = q < 2∗
s , we work with the space E := Xs(RN+1

+ ) × Xs(RN+1
+ ).

So, we consider the functional Jλ : E →R
1 defined by

Jλ(U , V ) = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dx dy + λ

∫
RN ×{0}

UV dx

–
∫
RN ×{0}

F(U) dx –
∫
RN ×{0}

G(V ) dx,

Jλ is a C2 functional and

J ′
λ(U , V )(�,�) = ks

∫
R

N+1
+

y1–2s[〈∇U ,∇�〉 + 〈∇�,∇V 〉]dx dy

+ λ

∫
RN ×{0}

[U� + �V ] dx –
∫
RN ×{0}

f (U)�dx

–
∫
RN ×{0}

g(V )� dx,

for any � ,� ∈ Xs(RN+1
+ ). So, the critical points of Jλ satisfy the equations

ks

∫
R

N+1
+

y1–2s〈∇U ,∇�〉dx dy + λ

∫
RN ×{0}

U� dx –
∫
RN ×{0}

g(V )� dx = 0, (3.2)
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and

ks

∫
R

N+1
+

y1–2s〈∇�,∇V 〉dx dy + λ

∫
RN ×{0}

�V dx –
∫
RN ×{0}

f (U)�dx = 0, (3.3)

for any � ,� ∈ Xs(RN+1
+ ). Equations (3.2)–(3.3) are the weak formulation of (3.1).

The following Lemma will play a significant role in the sequel, whose proof is similar to
[22], Lemma 2.1, so we omit it.

Lemma 3.2 Let (Un, Vn) be a (PS)c sequence for the functional Jλ, namely

Jλ(Un, Vn) → c ∈R
+,

μn := sup
{∣∣J ′

λ(Un, Vn)(�,�)
∣∣,�,� ∈ Xs(

R
N+1
+

)
,‖�‖Xs + ‖�‖Xs ≤ 1

} → 0.

Then (Un, Vn) is bounded in E and

sup
E–⊕R+(Un ,Vn)

Jλ = Jλ(Un, Vn) + O
(
μ2

n
)
.

Pproof of Theorem 3.1 By the assumptions (A1)–(A3), it is easy to check that the en-
ergy function Jλ possesses the linking structure; that is, Jλ ≤ 0 in E–, Jλ ≥ ρ > 0 in
E+ ∩ ∂B+

N+1(0, r), for some small r > 0, ρ > 0; moreover, if r > 0 is sufficiently large and
e = (e1, e2) ∈ E, e1 > 0, e2 > 0, then

sup
(E–⊕R+e)∩∂B+

N+1(0,r)
Jλ ≤ 0.

Then, according to “Indefinite functional theorem” [15], Jλ has a (PS)c sequence
{(Un, Vn)} ⊂ E, where 0 < ρ ≤ c ≤ supE–⊕R+e Jλ, using Lemma 3.2, (Un, Vn) are bounded
in E and may assume (Un, Vn) ⇀ (U , V ) as n → ∞, then clearly J ′

λ(U , V ) = 0. Next we
need to show that there exists a non-trivial critical point. For this purpose, by concentra-
tion compact principle [17], it is possible to find a sequence {xn} ⊂R

N and some constants
R > 0 and β > 0 such that

∫
BN (xn ,R)

u2
n dx > β ,

∫
BN (xn ,R)

v2
n dx > β , for any n ∈N.

Indeed, assuming the contrary, we have

un(x) → 0, vn(x) → 0 in Lp(
R

N) (
2 ≤ p < 2∗

s
)
.

But then, for large n and some constants a > 0 and C1, C2 > 0, we have

2c + o(1) = 2Jλ(Un, Vn) – J ′
λ(Un, Vn)(Un, Vn)

=
∫
RN

[
f (un)un – 2F(un) + g(vn)vn – 2G(vn)

]
dx

≤
∫
RN

C1
(|un|2 + |vn|2

)
+ C2

(|un|p + |vn|p
)

dx

proving a contradiction, since c > 0.
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Now we define Ũn(x, y) = Un(x + xn, y), Ṽn(x, y) = Vn(x + xn, y), then (Ũn, Ṽn) ⇀ (U0, V0) �=
(0, 0) is a non-trivial critical point of Jλ.

Let c(λ) = inf{Jλ(U , V ) : (U , V ) �= (0, 0), J ′
λ(U , V ) = 0}, using the standard arguments, the

infimum is actually a minimum, and it follows that Jλ admits a ground state critical level
c(λ). Follow the proof of Lemma 3.1 in [23], we have that the map λ → c(λ) is continuous
and increasing, and limλ→+∞ c(λ) = +∞. This completes the proof of Theorem 3.1. �

4 The noncooperative singularly perturbed system
4.1 For the original problem (2.1)
Now we temporarily come back to our original problem (2.1). Note that using the simi-
lar arguments as Sect. 3, Jε also possess the linking structure, and thus there exist (PS)cε

sequences with

0 < cε ≤ sup
E–⊕R+e

Jε , e = (e1, e2) ∈ E, e1 > 0, e2 > 0. (4.1)

On the other hand, according to the assumption (A0), we may fix a ∈R such that

0 < a(0) = min
x∈RN

a(x) < a < lim inf|x|→∞ a(x).

We denote by J0 and c0 the energy functional defined in (2.5) with a(0) in place of a(εx)
and least energy, respectively. Let (U0, V0) be a ground-state for J0, it is easy to check that

Jε(U0, V0) = J0(U0, V0) + oε(1) = c0 + o(1), (4.2)

and

J ′
ε(U0, V0)(�,�) = J ′

0(U0, V0)(�,�) + o(1),

uniformly for bounded �, � ∈ X. Applying Theorem 3.1 and Lemma 3.2 to the functionals
Jε , we deduce that

sup
E–⊕R+(U0,V0)

Jε = Jε(U0, V0) = c0 + o(1) < c(a) + o(1),

which complies with (4.1) to conclude that 0 < cε < c(a).

4.2 Some auxiliary problems
To apply “Indefinite functional theorem” to get the positive solutions of (2.1), we only need
to show that (PS)cε condition holds for 0 < cε < c(a). For this purpose, in this subsection,
we will study some auxiliary problems and establish several auxiliary results employing
the ideas from [16].

Consider the nonlocal system as follows:

⎧⎨
⎩(–�)su + b(x)u = g(v), in R

N ,

(–�)sv + b(x)v = f (u), in R
N ,

(4.3)

where b(x) ∈ C(RN ), b(x) ≥ b > 0 for any x ∈R
N and lim|x|→∞ b(x) = b∞ ∈R.
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The associated energy functional to the extension problem of (4.3) is defined by

Jb(U , V ) = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dz +
∫
RN ×{y=0}

b(x)UV dx

–
∫
RN ×{y=0}

(
F(U) + G(V )

)
dx.

We denote by J∞ the corresponding functional with b∞ in place of b(x). Of course, here
we work in the space E := X × X, X = {U ∈ Xs(RN+1

+ ) :
∫
RN ×{y=0} b(x)U2 dx < +∞}.

Now we prove the following Lemma.

Lemma 4.1 Under the assumptions (A1)–(A4), the (PS) condition holds for Jb at critical
level 0 < c < c(b∞). Moreover, Jb admits a ground-state critical level cb and cb ≥ c(b).

Proof Let (Un, Vn) be such that Jb(Un, Vn) → c ∈ (0, c(b∞)) and J ′
b(Un, Vn) → 0 as n → ∞. It

follows from Lemma 3.2 that (Un, Vn) is bounded in E and assumes that (Un, Vn) ⇀ (U , V )
in E, clearly, J ′

b(U , V ) = 0. In particular,

2Jb(U , V ) = 2Jb(U , V ) – J ′
b(U , V )(U , V )

=
∫
RN

(
f (u)u – 2F(u) + g(v)v – 2G(v)

)
dx ≥ 0.

(4.4)

Putting Un = Un – U , V n = Vn – V , we next show that Un → 0, V n → 0 in X.
Indeed, one has

Jb(Un, V n) = ks

∫
R

N+1
+

y1–2s〈∇(Un – U),∇(Vn – V )
〉
dz

+
∫
RN ×{y=0}

b(x)(Un – U)(Vn – V ) dx

–
∫
RN ×{y=0}

(
F(Un – U) + G(Vn – V )

)
dx

= Jb(Un, Vn) – Jb(U , V ) +
∫
RN ×{y=0}

(
F(Un) – F(U) – F(Un – U)

+ G(Vn) – G(V ) – G(Vn – V )
)

dx,

(4.5)

and

J ′
b(Un, V n)(�,�)

= ks

∫
R

N+1
+

y1–2s[〈∇�,∇(Vn – V )
〉
+

〈∇(Un – U),∇�
〉]

dz

+
∫
RN ×{y=0}

b(x)
[
�(x, 0)(Vn – V ) + �(x, 0)(Un – U)

]
dx

–
∫
RN ×{y=0}

[
f (Un – U)�(x, 0) + g(Vn – V )�(x, 0)

]
dx (4.6)

= J ′
b(Un, Vn)(�,�) – J ′

b(U , V )(�,�)
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+
∫
RN

[(
f (un – u) – f (un) + f (u)

)
�(x, 0)

+
(
g(vn – v) – g(vn) + g(v)

)
�(x, 0)

]
dx,

for any bounded functions �,� ∈ X.
Now we compute the third term of (4.5) and (4.6), respectively,

∣∣∣∣
∫
RN

(
F(un) – F(u) – F(un – u) + G(vn) – G(v) – G(vn – v)

)
dx

∣∣∣∣
=

∫
|x|≤R

+
∫

|x|>R

= on(1) + C
∫

|x|>R

(|un|2 + |un|p + |u|2 + |u|p

+ |vn|2 + |vn|p + |v|2 + |v|p)dx

≤ on(1) + oR(1).

Similarly,

∫
RN

[(
f (un – u) – f (un) + f (u)

)
�(x, 0)

+
(
g(vn – v) – g(vn) + g(v)

)
�(x, 0)

]
dx

≤ on(1) + oR(1),

uniformly for any bounded � and � in X.
Combining these estimates with (4.4)–(4.6) gives

Jb(Un, V n) = Jb(Un, Vn) – Jb(U , V ) + o(1) ≤ c + o(1), (4.7)

and

sup
{∣∣J ′

b(Un, V n)(�,�)
∣∣,‖�‖X + ‖�‖X ≤ 1

}
= o(1). (4.8)

Since Un ⇀ 0, V n ⇀ 0 in X and b∞ = lim|x|→∞ b(x), a similar conclusion as (4.7) and
(4.8) holds for J∞(Un, V n) and J ′∞(Un, V n); if lim infn→∞ J∞(Un, V n) > 0, we deduce from
Lemma 3.2 that

c(b∞) ≤ sup
E–⊕R+(Un ,V n)

J∞ = J∞(Un, V n) ≤ c + o(1),

which contradicts with the assumption c < c(b∞). Consequently,

lim inf
n→∞ J∞(Un, V n) ≤ 0.
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This implies that

lim inf
n→∞

[
2J∞(Un, V n) – J ′

∞(Un, V n)(Un, V n)
]

= lim inf
n→∞

∫
RN ×{y=0}

[
f (Un)Un – 2F(Un) + g(V n)V n

– 2G(V n)
]

dx

≤ 0,

and thus

lim inf
n→∞

∫
RN ×{y=0}

(
F(Un) + G(V n)

)
dx ≤ 0,

which turns to be

lim inf
n→∞

(‖Un‖X + ‖V n‖X
)

= 0.

Therefore, Un → U , Vn → V as n → ∞; that is the (PS)c condition holds for 0 < c < c(b∞).
Applying “Indefinite functional theorem”, we can derive that there exists a nontrivial crit-
ical point (U , V ) for the functional Jb.

We set

cb := inf
{

Jb(U , V ), (U , V ) �= (0, 0), J ′
b(U , V ) = 0

}
.

By the standard arguments, the infimum is actually a minimum, and it follows that Jb ad-
mits a ground-state critical level cb.

Finally, we compare the least energy levels of Jb with the ones of Jb̄; this estimate is crucial
for the proof of Theorem 1.1.

Assume that c(b̄) > cb. For t ∈ [0, 1], let bt(x) := (1 – t)b(x) + tb̄ and denote by c′, ct the
corresponding ground-state level and linking level, respectively. Since bt(x) = b(x) + t(b̄ –
b(x)) ≤ b(x), ct ≤ c′ ≤ c. Consequently, ct ≤ cb. It follows from the assumption c(b̄) > cb

and the fact (1 – t)b∞ + tb̄ ≥ b̄ and Lemma 3.2 that

ct ≤ cb < c(b̄) ≤ c
(
(1 – t)b∞ + tb̄

)
,

for every t ∈ [0, 1]. This is a contradiction for t = 1, since c1 = c(b̄), which ends the proof. �

Next, utilizing Lemma 4.1, we prove an important auxiliary result that is directly applied
to the proof of Theorem 1.1.

Lemma 4.2 Let b(x) ≥ b > 0 and suppose {(Un, Vn)} is a (PS)c sequence for Jb with
lim infn→∞ Jb(Un, Vn) > 0, then c(b) ≤ Jb(Un, Vn) + o(1).

Proof By Lemma 4.1, we can choose M so large that

sup
E–⊕R+e

Jb = Jb(Un, Vn) + o(1) < c(M). (4.9)
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Define the truncated functions

bn(x) =

⎧⎨
⎩b(x), |x| ≤ n,

M, |x| > n,

then bn(x) ≥ b > 0 and bn(x) → M as |x| → ∞. Take n so large that

Jbn (Un, Vn) = Jb(Un, Vn) + o(1) = c + o(1), (4.10)

and

J ′
bn (Un, Vn)(�,�) = o(1), (4.11)

uniformly for all bounded functions � and � in X. From (4.9)–(4.11), we can employ
Lemma 4.1 to get Jbn admitting a ground state critical level cbn > 0 and

c(b) ≤ cbn ≤ sup
E–⊕R+(Un ,Vn)

Jbn = Jbn (Un, Vn) + o(1) = Jb(Un, Vn) + o(1).

This completes the proof. �

4.3 The proof of Theorem 1.1
In this subsection, we prove Theorem 1.1 divided into three results. First of all, we give
the existence result.

Theorem 1.1(i) Assume that f , g satisfy (A1)–(A4), then for all small ε > 0, Jε have ground
states (Uε , Vε) ∈ E with critical values 0 < cε < c(a) and cε → c0 as ε → 0.

Proof Recall that there exists a (PS)cε sequence {(Un, Vn)} ⊂ E for Jε , assume that
(Un, Vn) ⇀ (U , V ) ∈ E, and for sufficiently small ε > 0, 0 < cε < c(a). And there exists a
constant R0 > 0 such that for some fixed ε > 0,

a(εx) ≥ a for all |x| ≥ R0.

According to “Indefinite functional theorem” [15], we only need to show that for fixed
ε > 0, the (PS)cε condition holds for Jε at critical levels 0 < cε < c(a).

Introduce the following truncated function

b(x) =

⎧⎨
⎩a(εx), |x| ≥ R0,

≥ a, |x| < R0,

then b(x) ≥ a for all x ∈R
N . Remark that Un = Un – U , V n = Vn – V and Un ⇀ 0, V n ⇀ 0

in X.
Observe that∫

RN ×{y=0}
b(x)UnV n dx =

∫
|x|≥R0

+
∫

|x|<R0

=
∫
RN ×{y=0}

a(εx)UnV n dx + on(1).
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Using the similar arguments as Lemma 4.1, it is easy to check that

Jb(Un, V n) = Jε(Un, V n) + on(1) ≤ cε + o(1),

J ′
b(Un, V n) = o(1).

If lim infn→∞ Jb(Un, V n) > 0, we can derive applying Lemma 4.2 that

c(a) ≤ Jb(Un, V n) ≤ cε + o(1),

which is a contradiction. As a result, lim infn→∞ Jb(Un, V n) ≤ 0. This gives Un → 0, V n →
0 in X.

Next, we show cε → c0 as ε → 0.
By (4.2), we obtain that lim supε→0 cε ≤ c0. On the other hand, let (Uε , Vε) be the ground

states for Jε , then (Uε , Vε) are bounded in E. In particular, we have

J0(Uε , Vε) = Jε(Uε , Vε) +
∫
RN ×{y=0}

(
a(0) – a(εx)

)
UεVε dx = cε + o(1),

and for any �,� ∈ X,

∣∣J ′
0(Uε , Vε)(�,�)

∣∣ =
∫
RN ×{y=0}

∣∣a(0) – a(εx)
∣∣|Uε� + Vε�|dx

≤ o(1)
(‖�‖X + ‖�‖X

)
.

By Lemma 3.2, we conclude that

c0 ≤ sup
E–⊕R+(Uε ,Vε)

J0 = J0(Uε , Vε) = cε + o(1).

Hence, c0 ≤ lim infε→0 cε . This completes the proof. �

From now, we consider the positive functions Uε > 0, Vε > 0 given by Theorem 1.1(i),
which satisfy uε = Uε(x, 0) ∈ H , vε = Vε(x, 0) ∈ H and

⎧⎨
⎩(–�)suε + a(εx)uε = g(vε), in R

N ,

(–�)svε + a(εx)vε = f (uε), in R
N .

Next, we study the concentration behavior of this family of solution (uε , vε) as ε → 0.

Theorem 1.1(ii) Suppose that (uε , vε) is the ground states of problem (2.1) for all ε suffi-
ciently small, then (uε , vε) attain their maximum value at some unique and common points
xε ∈R

N such that

lim
ε→0

a(εxε) = a(0) = min
x∈RN

a(x).
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Proof Since uε > 0, vε > 0, for each small ε > 0, there exist xε , yε ∈ R
N such that, respec-

tively,

uε(εxε) = max
x∈RN

uε , vε(εyε) = max
y∈RN

vε .

We split the proof into several steps.
Step 1. {εxε} and {εyε} are bounded.
Suppose by contradiction that there exists a subsequence {εjxεj} such that |εjxεj | → +∞

as εj → 0. Define the functions ũj(x) = uεj (x + xεj ) and ṽj(x) = vεj (x + xεj ). Observe that these
functions satisfy the following system:

⎧⎨
⎩(–�)s̃uj + aj(x)̃uj = g (̃vj),

(–�)s̃vj + aj(x)̃vj = f (̃uj),

here aj(x) = a(εjx + εjxεj ). Denote by Ij the corresponding energy functional,

Ij (̃uj, ṽj) =
∫
RN

(–�)s̃uj̃vj dx +
∫
RN

aj(x)̃uj̃vj dx –
∫
RN

(
F (̃uj) + G(̃vj)

)
dx. (4.12)

From Lemma 3.2, the families {(̃uj, ṽj)} are bounded in E, and let (̃uj, ṽj) ⇀ (u, v) �= (0, 0) ∈ E.
Recall from Theorem 1.1(i) that

0 < lim inf
j→∞ Ij (̃uj, ṽj) ≤ lim sup

j→∞
Ij (̃uj, ṽj) < c(a). (4.13)

Let bj(x) := max{a, aj(x)} and denote by Ij the corresponding energy functional defined as
in (4.12) with aj(x) replaced by bj(x). By the assumption |εjxεj | → +∞, it holds that (̃uj, ṽj)
is a (PS) sequence for Ij and

Ij (̃uj, ṽj) = Ij (̃uj, ṽj) + oεj (1).

Since bj(x) ≥ a for every x ∈R
N , it follows then from Lemma 4.2 that

c(a) ≤ Ij (̃uj, ṽj) + o(1) = Ij (̃uj, ṽj) + o(1),

which contradicts with (4.13). Hence {εxε} is bounded, the same is {εyε}.
Furthermore, we have that there is a subsequence {̃ujn} and {̃vjn} such that for any η > 0,

there exists rη > 0 satisfying

lim sup
n→∞

∫
BN (0,n)\BN (0,r)

(̃
uq

jn + ṽq
jn

)
dx ≤ η

for all r ≥ rη (see an argument to [24, Lemma 5.7]). Here q ∈ [2, 2∗
s ), which implies together

with the assumptions (A1)(A2) that for any η > 0, there exists rη > 0,

lim sup
n→∞

∫
BN (0,n)\BN (0,r)

(
f (̃ujn )̃ujn + g (̃vjn )̃vjn

)
dx ≤ η, (4.14)

for all r ≥ rη .
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According to the above arguments, assume that εxε → x0, εyε → y0 as ε → 0; now we
can conclude from a(εx + εxε) → a(x0), a(εx + εyε) → a(y0) pointwise and (4.14) that
cε → c(a(x0)) and cε → c(a(y0)), which combine with Lemma 4.3 that a(x0) = a(y0) = a(0) =
minx∈RN a(x). In conclusion, any maximum points εxε , εyε of uε , vε , respectively, have the
concentration point as ε → 0.

Step 2. xε = yε as ε → 0 and the maximum point of uε (and of vε as well) is unique if ε > 0
is sufficiently small.

Let us prove that there exists C > 0 such that, for every subsequence {εj} and every
large j,

|xεj – yεj | ≤ C. (4.15)

For this purpose, let uj = uεj (x + yεj ), vj = vεj (x + yεj ), we can follow Step 1 to assume
(uj, vj) ⇀ (u, v) �= (0, 0); it follows from (4.14) that there is a subsequence {ujn} and {vjn}
such that, for any η > 0 there exists R > 0 such that, for every large n,

∫
BN (0,R)c

(
f (ujn )ujn + g(vjn )vjn

)
dx ≤ η.

Denoting wjn := yεjn – xεjn , the above inequality reads as

∫
BN (wjn ,R)c

(
f (̃ujn )̃ujn + g (̃vjn )̃vjn

)
dx ≤ η.

So, if |wjn | → +∞, we conclude from (4.14) that for every η > 0, for every large n,

∫
RN

(
f (̃ujn )̃ujn + g (̃vjn )̃vjn

)
dx ≤ 2η,

which conclude that
∫
RN (f (u)u + g(v)v) dx = 0, and thus u = v = 0. This is a contradic-

tion.
Now, according to (4.15), let w0 ∈ R

N be such that yεj – xεj → w0(εj → 0). Since uj(x) =
ũj(x + yεj – xεj ) ⇀ u(x + w0), combining with the fact that both ũj(x) and uj(x) have the
same limit function u (and similarly for ṽj(x) and vj(x)), we can derive u(x) = u(x + w0)
(and similarly for v). u has 0 and w0 as maximum points, so that w0 = 0. This establishes
yε = xε as ε → 0.

Similarly, if zε ∈R
N is also a maximum point of uε , then the preceding arguments yield

that zε = xε(= yε) for small values of ε.
Step 3. uε , vε(x) → 0 as |x| → ∞ uniformly for all small ε.
Indeed, assume by contradiction that there exist δ > 0 and ξε ∈ R

N with |ξε| → ∞ such
that

δ ≤ ∣∣uε(ξε)
∣∣ ≤ C

∫
BN (ξε ,1)

∣∣uε(y)
∣∣dy.
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Assume that uε ⇀ u in H , we obtain, as ε → 0,

δ ≤ C
(∫

BN (ξε ,1)

∣∣uε(y)
∣∣2 dy

) 1
2

≤ C
(∫

BN (ξε ,1)

∣∣uε(y) – u(y)
∣∣2 dy

) 1
2

+ C
(∫

BN (ξε ,1)

∣∣u(y)
∣∣2 dy

) 1
2 → 0,

which is a contradiction completing the proof. �

Define

ωε(x) = uε

(
x
ε

)
, ξε(x) = vε

(
x
ε

)
and zε = εxε .

Then (ωε , ξε) is a solution to (1.2) for all small ε > 0. Since zε is a maximum point of ωε and
ξε , we have

lim
ε→0

a(zε) = a(0).

Now, we study the decay behavior of this family of solution (ωε , ξε).

Theorem 1.1(iii) There exist 0 < C1 ≤ C2 and R > 1 such that for all small ε > 0,

C1ε
N+2s

|x – zε|N+2s ≤ ωε(x), ξε(x) ≤ C2ε
N+2s

|x – zε|N+2s

for all |x| ≥ R.

Proof Firstly, we use the following Claims, according to [25].
(i) There is a continuous function w1 in R

N satisfying

(–�)sw1(x) + μw1(x) = 0, if |x| > 1,

and

w1(x) ≥ C1

|x|N+2s ,

for an appropriate C1 > 0, where μ := sup a(εx);
(ii) There is a continuous function w2 in R

N satisfying

(–�)sw2(x) + τw2(x) = 0, if |x| > 1.

and

w2(x) ≤ C2

|x|N+2s ,

for an appropriate C2 > 0, where 0 < τ < 1
2 inf a(εx).
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By uε(x), vε(x) → 0 as |x| → ∞ uniformly for all small ε and the condition (A0), (A1), we
conclude that there is a large R1 > 0 such that

(–�)s(uε + vε) +
a(εx)

2
(uε + vε) = g(vε) + f (uε) –

a(εx)
2

(uε + vε) ≤ 0 in BR1
c.

Moreover, by the continuity of solution (uε , vε) and w2, for all small ε > 0, there exists
C > 0 such that

uε(x) + vε(x) – Cw2(x) ≤ 0 in BR1 .

Therefore,

(–�)s(uε + vε – Cw2) + τ (uε + vε – Cw2) ≤ 0 in BR1
c.

Using comparison arguments, we get

uε + vε ≤ Cw2 ≤ C2

|x|N+2s for |x| ≥ R1.

Since (uε , vε) is a positive solution, then

uε(x) ≤ C
|x|N+2s , vε(x) ≤ C

|x|N+2s , for |x| ≥ R1.

Hence, by rescaling, it follows that there exists C2 > 0 such that

ωε(x), ξε(x) ≤ C2ε
N+2s

|x – zε|N+2s .

On the other hand, by the continuity of (uε , vε) and w1, there exist constants C2, C3 > 0
such that, respectively,

uε(x) – C2w1(x) ≥ 0 in B1,

vε(x) – C3w1(x) ≥ 0 in B1,

which imply that

(–�)s(uε – C2w1) + μ(uε – C2w1) ≥ 0 in B1
c,

(–�)s(vε – C3w1) + μ(vε – C3w1) ≥ 0 in B1
c.

By the similar comparison arguments, we conclude the second inequality, which ends the
proof of Theorem 1.1. �

5 The case p �= q
In Sect. 3 and Sect. 4, we have proved Theorem 1.1(i)(ii)(iii) except that we have worked
with a truncated problem as explained in Remark 1.2. The full statement of Theo-
rem 1.1(i)(ii)(iii) will be established once we prove uniform bounds in L∞ of the solu-
tions constructed so far. So, in this section, let us suppose that p, q > 2 are such that
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1
p + 1

q > N–2s
N with say, 2 < p < 2∗

s and p < q. We only show that the weak solutions to the
modified problem of (3.1) are bounded uniformly in L∞. In the same way, the weak solu-
tions to the modified problem of (2.1) are ones of the original system (2.1) for large value
of n.

Given n ∈N, we can define the truncated functions,

gn(t) =

⎧⎨
⎩g(t), t ≤ n,

Antp–1 + Bn, t > n,

where the coefficients are chosen in such a way that gn is C1. Thus, in view of (A2), we see
that An = ( l2

p–1 + o(1)) · nq–p, Bn = ( l2(p–q)
(p–1)(q–1) + o(1)) · nq–1. The energy functionals associated

to the modified problem of (3.1) are given by

Jn(U , V ) = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dx dy + λ

∫
RN ×{0}

UV dx

–
∫
RN ×{0}

F(U) dx –
∫
RN ×{0}

Gn(V ) dx,

where Gn is the primitive of gn. They are C2 functionals defined over the Hilbert space E.
The critical points of Jn correspond to weak solutions of the modified problem

⎧⎨
⎩(–�)su + λu = gn(v), in R

N ,

(–�)sv + λv = f (u), in R
N .

(5.1)

For a fixed n, thanks to the Sect. 3, there are positive solutions (un, vn) of the modified
problem (5.1) satisfying the conclusion of Theorem 3.1.

Remark 5.1 According to the Sect. 3, we find the solutions (un, vn) to the modified problem
(5.1), having relative Morse index ≤ 1.

Now, we state the main result of this section.

Theorem 5.2 Assume that (A1)–(A4), for any given n ∈ N; let (Un, Vn) be solutions to the
problem (5.1). If there exists k ∈ N such that m(un, vn) ≤ k for every n, then there exists
M > 0 such that

‖un‖∞ + ‖vn‖∞ ≤ M, ∀n.

In particular, un and vn are solutions to the problem (3.1) for large values of n.

The proof of Theorem 5.2 is based on the following simple fact, whose proof is the same
as Lemma 1.2 in [26].

Lemma 5.3 Assume that (A1)–(A4), and let (Un, Vn) be any solutions of the problem (5.1).
If there exist λ > 0 and k + 1 functions �1,�2, . . . ,�k+1 ∈ X having disjoint supports, such
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that

J ′′
n (Un, Vn)(�i,λ�i)(�i,λ�i) < 0, ∀i = 1, . . . , k + 1,

then m(Un, Vn) ≥ k + 1.

Next, we will prove a Liouville-type theorem, which is crucial for the proof of Theo-
rem 5.2.

Proposition 5.4 Let f∞, g∞ ∈ C1(R) and (u, v) satisfy

⎧⎨
⎩(–�)su = g∞(v), in R

N ,

(–�)sv = f∞(u), in R
N ,

(5.2)

and m(u, v) < +∞ in the sense of Definitions 2.4 and 2.5. Let f∞(t) = c|t|p–1t with c > 0 and
2 < p < 2∗

s .
(i) If g∞ = 0, then u = 0;

(ii) If g∞ satisfies the following conditions, for p ≤ q, 1
p + 1

q > N–2s
N and some C1, C2 > 0,

(a) C1|t|q ≤ g∞(t)t ≤ C2|t|q;
(b) g∞(t)t ≤ qG∞(t);
(c) (p – 1)g∞(t)t ≤ g ′∞(t)t2;
then u = 0 = v.

Proof (i) It is obvious.
(ii) We may assume that c = 1, suppose (–�)su = g∞(v), (–�)sv = |u|p–1u, with g∞ satisfy-

ing the conditions (a)–(c). The associated energy functionals J∞ : Xs(RN+1
+ ) × Xs(RN+1

+ ) →
R

1 to the extension problem of (5.2) are given by

J∞(U , V ) = ks

∫
R

N+1
+

y1–2s〈∇U ,∇V 〉dx dy –
1
p

∫
RN

|u|p dx –
∫
RN

G∞(v) dx.

Fix any smooth function � ∈ C∞
0 (RN+1

+ ) such that � = 0 in B+
N+1(0, 0.5R0), � = 1 in

B+
N+1(0, 2R0) \ B+

N+1(0, R0) and supp� ⊂ B+
N+1(0, 3.5R0) \ B+

N+1(0, 0.5R0). For any large R,
let � ∈ C∞

0 (RN+1
+ , [0, 1]) supported on B+

N+1(0, 2R) ⊂ R
N+1
+ satisfying � = 1 on B+

N+1(0, R)
and |∇�|2 ≤ ‖�‖.

In view of m(u, v) < +∞, replace φ with U�m� in (2.6), then the assumption (2.6) reads
as

(p – 1)
∫
RN ×{0}

Up�2m�2 dx +
∫
RN ×{0}

g ′
∞(V )U2�2m�2 dx

≤ Cks

∫
R

N+1
+

y1–2s(m2U2�2(m–1)�2|∇�|2 + U2�2m|∇�|2

+ �2m�2|∇U|2)dx dy +
∫
RN ×{0}

g∞(V )U�2m�2 dx,



Li et al. Boundary Value Problems         (2022) 2022:34 Page 23 of 24

which implies that

(p – 1)
∫
RN ×{0}

Up�2m�2 dx

≤ C(R0)ks

∫
supp�

y1–2s(U2�2(m–1)|∇�|2 + U2�2m + |∇U|2�2m)
dx dy

+ C(R0)
∫

supp�(x,0)×{0}
g∞(V )U�2m dx.

(5.3)

Now, we estimate the right terms of the above inequality. It follows from Proposition 2.3
and Hölder inequality with m large that

ks

∫
supp�

y1–2s(U2�2(m–1)|∇�|2 + U2�2m + |∇U|2�2m)
dx dy < C. (5.4)

On the other hand, in view of (5.2) and the similar arguments as (5.4), we arrive at

∫
supp�(x,0)×{0}

g∞(V )U�2m dx

= ks

∫
supp�

y1–2s〈∇U ,∇(
U�2m)〉

dx dy

≤ ks

∫
supp�

y1–2s(�2m|∇U|2 + m2�4m–2U2 + |∇U|2|∇�|2)dx dy < C.

(5.5)

We conclude by combing (5.3)–(5.5), which together lead to u ∈ Lp(RN ). Thanks to∫
RN (–�)suv dx =

∫
RN g∞(v)v dx =

∫
RN up dx < +∞ and the condition (a), v ∈ Lq(RN ) also.

Making use of the well-known Pohozăve–Rellich type identity,

∫
RN

(–�)suv dx =
N

N – 2s

∫
RN

(
F∞(u) + G∞(v)

)
dx.

By the condition (c), we deduce that

N – 2s
N

∫
RN

up dx =
1
p

∫
RN

up dx +
∫
RN

G∞(v) dx

≥ 1
p

∫
RN

up dx +
1
q

∫
RN

g∞(v)v dx =
(

1
p

+
1
q

)∫
RN

up dx.

Since 1
p + 1

q > N–2s
N , this implies that u = v = 0 and concludes the proof of Proposition 5.4. �

Once Proposition 5.4 is settled, we may use the classical blow-up argument to give the
proof of Theorem 5.2 that is similar to [27], we omit it.
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