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Abstract
In this paper, in a cylindrical domain D =� × (0, T ) with � ⊂ Rn, we consider a mixed
Cauchy problem with a potential lateral boundary condition for the following
noncharacteristic degenerated equation

Lu = utt – k(t)�xu(x, t) = f (x, t),

where k(t) ≥ 0. As in the case for strictly hyperbolic equations, we first establish that
u ∈W1

2 (D) and u ∈ W2
2 (D) under the assumptions ‖ f

k‖L2(�)(t) <∞ and

‖ gradx f
k ‖L2(�)(t) <∞ for every t ∈ [0, T ], respectively.

Keywords: Mixed Cauchy boundary value problem; Hyperbolic equation; Newton
potential

1 Introduction
A number of studies have been devoted to the mixed Cauchy problem for noncharac-
teristically degenerate second-order hyperbolic equations, starting from the work of M.L.
Krasnov [1]. Later these works were generalized for general degenerate higher-order equa-
tions by D.T. Dzhuraev [2], V.N. Vragov [3], and A.I. Kozhanov [4]. The study of bound-
ary value problems for an equation of the mixed type, started by F.G. Tricomi [5], led to
the study of new boundary value problems for hyperbolic equations in the characteristic
cone, first investigated in the works of S. Gellerstedt [6], A.V. Bitsadze [7] A.M. Nakhu-
shev [8], and T.S. Kal’menov [9–11]. In recent years, the well-posedness of the Cauchy
problem for the wave equation with strongly singular coefficients has been investigated
by M. Ruzhansky, N. Tokmagambetov [12]. More complete bibliography may be found
in the monographs of M.M. Smirnov [13], I.E. Egorov, S.G. Pyatkov, S.V. Popov [14], E.V.
Radkevich, O.A. Olejnik [15] and M. Ruzhansky, M. Sadybekov, D. Suragan [16].

In the study of the mixed Cauchy problem in a cylindrical domain, the lateral boundary
conditions are usually local boundary conditions of the Dirichlet type or periodic bound-
ary conditions.
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In [17], the boundary condition for the Newton (volume) potential was found, which
is a new integro-differential self-adjoint boundary condition for the Laplace equation. In
this paper, we study the mixed Cauchy problem for one class of noncharacteristic degen-
erate hyperbolic equations using this boundary condition. Unlike other works devoted to
this topic, where solutions of the mixed Cauchy problem with different lateral boundary
conditions of the problems under consideration are obtained in weighted spaces; in this
paper, all solutions of the mixed Cauchy problems under consideration are obtained in
classical Sobolev spaces.

Note that in [17], the Newton potential (volume potential) is given by a self-adjoint in-
tegral operator

u(x) =
∫

�

ε(x, ξ )ρ(ξ ) dξ , (1)

where ρ(ξ ) ∈ L2(�) and ε(x, ξ ) is a fundamental solution of the Laplace equation

–�xε(x, ξ ) = δ(x – ξ ), ε(x, ξ ) = ε(ξ , x), (2)

the function u ∈ W 2
2 (�) satisfies the equation

–�xu = ρ(x) (3)

and the lateral boundary condition

–
u(x)

2
+

∫
∂�

(
∂ε

∂nξ

(x, ξ ) · u(ξ ) – ε(x, ξ ) · ∂u
∂nξ

(ξ )
)

dξ = 0. (4)

Conversely, if u ∈ W 2
2 (�) satisfies equation (3) and boundary condition (4), then u(x)

coincides with the Newton potential (1).
The aim of this paper is to study the mixed Cauchy problem with condition (4).

2 Preliminaries
Let � ⊂ Rn be a finite domain with smooth boundary ∂� ⊂ C2, D = �× [0, T] a cylindrical
domain. In D, we consider the following mixed Cauchy problem.

Find a solution of the following equation

Lu = utt – k(t)�xu + b(t)
∂u
∂t

+ a(t)u = f (x, t), (5)

which satisfies the initial conditions

u|t=0 = 0,
∂u
∂t

∣∣∣∣
t=0

= 0 (6)

and the lateral boundary condition

N[u] ≡ –
u(x, t)

2
+

∫
∂�

(
∂ε

∂nξ

(x, ξ ) · u(ξ , t) – ε(x, ξ ) · ∂u
∂nξ

(ξ , t)
)

dξ = 0, (7)

0 < t < T , x ∈ ∂�,
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where k ∈ C1+α[0, T], 0 < α < 1, k(t) > 0, t > 0, k(0) = 0, k′(t) ≥ 0, and ε(x, ξ ) is the funda-
mental solution of the Laplace equation (2).

The eigenfunctions of the Newton potential satisfies the following equation

–�em(x) = λmem(x), (8)

and the boundary condition

N[em] ≡ –
em(x)

2
+

∫
∂�

(
∂ε

∂nξ

(x, ξ )em(ξ ) – ε(x, ξ )
∂em

∂nξ

(ξ )
)

dξ = 0, x ∈ ∂�. (9)

According to relations (1)–(4), the set of eigenfunctions {em(x)} of self-adjoint boundary
problem (8)–(9) forms a complete orthonormal system in L2(�).

For a(t) ≡ b(t) ≡ 0, two-dimensional equation (5) is the Chaplygin equation, which is
applied to model the supersonic flow of liquid and gas.

In what follows, the boundary condition (7) will be called a potential boundary con-
dition. Although the boundary condition of problem (5)–(7) is cumbersome, the Green
function of this problem coincides with the fundamental solution ε(x, ξ ) of the Laplace
equation, which means that the Green function is given explicitly in an arbitrary domain.

As in the case for strictly hyperbolic equations, we first show that u ∈ W 1
2 (D) and u ∈

W 2
2 (D) under the assumptions ‖ f

k ‖L2(�)(t) < ∞, t ∈ [0, T] and a
k ∈ C1+α(D̄), b

k ∈ C1+α(D̄),
respectively.

3 Mixed Cauchy problem with the condition a(t) ≡ b(t) ≡ 0
Let us consider the problems (5)–(7) in the case a(t) ≡ b(t) ≡ 0. Let

Lu = utt – k(t)�xu = f (x, t), k(t) > 0, t > 0, k(0) = 0, k′(t) ≥ 0, (10)

u|t=0 = 0,
∂u
∂t

∣∣∣∣
t=0

= 0, (11)

N[u] ≡ –
u(x, t)

2
+

∫
∂�

(
∂ε

∂nξ

(x, ξ ) · u(ξ , t) – ε(x, ξ ) · ∂u
∂nξ

(ξ , t)
)

dξ = 0, (12)

(x, t) ∈ ∂� × [0, T].

Due to the complexity of potential boundary condition (12), to establish an apriori esti-
mates for problem (10)–(12), we will use the spectral decomposition method.

Let {em(x)} be a complete orthonormal system of eigenvectors of problem (8)–(9).
The solution of (10)–(12) can be written in the form

u(x, t) =
∞∑

|m|=1

um(t)em(x), em = em1m2...mn , (13)

f (x, t) =
∞∑

|m|=1

fm(t)em(x), (14)

where

um(t) =
∫

�

u(x, t)em(x) dx, fm(t) =
∫

�

f (x, t)em(x) dx.
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Substituting (13) and (14) into equation (10), for um(t), we get the following one-
dimensional Cauchy problem:

d2um

dt2 + λmk(t)um(t) = fm(t), (15)

um(0) = 0,
d
dt

um(0) = 0. (16)

Lemma 3.1 All solutions um ∈ W 2
2 (0, T) of the Cauchy problem (15)–(16) satisfy the in-

equality

1
k(t)

∣∣∣∣∂um

∂t

∣∣∣∣
2

(t) + λmu2
m(t) +

∫ t

0

k(η)
k2(η)

∣∣∣∣∂um

∂η

∣∣∣∣
2

(η) dη ≤ d1

∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣
2

dη, (17)

where d1 is some positive constant independent of f .

Proof Since um(0) = 0 and dum
dt (0) = 0, we obtain

dum

dt
(t) =

∫ t

0

d2um

dη2 (η) dη and um(t) =
∫ t

0

dum

dη
dη. (18)

Integrating both sides of (15) from 0 to t and using equality (18), we get

∫ t

0

d2um

dη2 (η) dη + λm

∫ t

0
k(η)um(η) dη =

dum

dt
+ λm

∫ t

0
k(η)(t – η)

dum

dη
dη

=
∫ t

0
k(η)

fm(η)
k(η)

dη.
(19)

Assuming that fm
k ∈ L2(0, T), integral equation (19) is a Volterra integral equation.

Therefore, since k′ ≥ 0, the inequalities

∫ t

0
k(η)

∣∣∣∣ f (η)
k(η)

∣∣∣∣dη ≤ sup
0≤ξ≤t

k(ξ )
∫ t

0

∣∣∣∣ f (η)
k(η)

∣∣∣∣dη = k(t)
∫ t

0

∣∣∣∣ f (η)
k(η)

∣∣∣∣dη

hold, and we can see that

∣∣∣∣∂um

∂t

∣∣∣∣(t) ≤ Cmk(t)
∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣dη, (20)

where Cm depends on λm.
Now we obtain the necessary apriori estimates for problem (15)–(16) and rewrite this

problem in the form

1
k(t)

d2um

dt2 (t) + λmum(t) =
fm(t)
k(t)

, (21)

um(0) = u′
m(0) = 0.
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Let us calculate the inner product of (21) and dum(t)
dt in L2(0, T)

∫ t

0

1
2

k(η)
d2um

dη2 (η)
dum

dη
dη + λm

∫ t

0
um(η)

dum

dη
dη

=
1
2

∫ t

0

1
k(η)

d
dη

(
dum

dη

)2

dη +
λm

2

∫ t

0

du2
m

dη
(η) dη

=
1
2

1
k(t)

(
dum

dt

)2

(t) –
1
2

lim
t→0

1
k(t)

(
dum

dt

)2

(t)

–
1
2

∫ t

0

(
d

dη

1
k(η)

)(
dum

dη

)2

dη +
λm

2
u2

m(t)

=
∫ t

0

fm(η)
k(η)

dum(η)
dη

dη.

By inequality (20), we obtain

lim
t→0

1
k(t)

(
dum

dt

)2

(t) = 0.

From the equality – d
dη

1
k(η) = k′(η)

k2(η) and

∫ t

0

fm(η)
k(η)

dum(η)
dη

dη ≤ ε

2

∫ t

0

∣∣∣∣dum(η)
dη

∣∣∣∣
2

dη +
2
ε

∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣
2

dη, (22)

where ε is a positive real number, it is easy to verify that

∫ t

0

∣∣∣∣∂u
∂η

∣∣∣∣
2

dη ≤ t · sup
0≤η≤t

∣∣∣∣∂um

∂η

∣∣∣∣
2

. (23)

By (22)–(23), it is easy to check that

1
2

sup
0≤η≤t

1
k(η)

∣∣∣∣du
dη

∣∣∣∣
2

+
1
2
λmu2

m(t) +
1
2

∫ t

0

k′

k2

∣∣∣∣dum

dη

∣∣∣∣
2

dη

≤ ε

2

∫ t

0

∣∣∣∣dum(η)
dη

∣∣∣∣
2

dη +
2
ε

∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣
2

dη

≤ ε

2
· t · sup

0≤η≤t

∣∣∣∣∂um

∂η

∣∣∣∣
2

+
2
ε

∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣
2

dη.

Therefore,

1
2

sup
0≤η≤t

∣∣∣∣∂um

∂η

∣∣∣∣
2 1 – εk(η)t

k(η)
+

λm

2
u2

m(t) +
1
2

∫ t

0

k′(η)
k2(η)

∣∣∣∣∂um

∂η

∣∣∣∣
2

(η) dη ≤ 2
ε

∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣
2

dη.

Since k(t) is bounded in [0, T], for small ε, we have 1 – εk(t) · t > δ. Therefore, from the
above inequality, we get

1
2

1
k(t)

(
∂um

∂t

)2

(t) +
λm

2δ1
u2

m(t) +
1

2δ1

∫ t

0

k′(η)
k2(η)

∣∣∣∣∂um

∂η

∣∣∣∣
2

(η) dη ≤ 2
εδ1

∫ t

0

∣∣∣∣ fm(η)
k(η)

∣∣∣∣
2

dη,
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which is equivalent to

1
k(t)

∣∣∣∣∂um

∂t

∣∣∣∣
2

(t) + λmu2
m(t) +

∫ t

0

k(η)
k2(η)

∣∣∣∣∂um

∂η

∣∣∣∣
2

(η) dη ≤ 4
ε · δ1

·
∫ t

0

f 2
m(η)

k2(η)
dη. (24)

This completes the proof. �

Remark 3.1 Note that to prove the main inequality (24), we have used inequality (23).

Lemma 3.2 Let k ∈ C1+α[0, T], 1 > α > 0, k(t) > 0, t > 0, t > 0, k(0) = 0, k′(t) ≥ 0, fm
k ∈

L2(0, T). Then all solutions um ∈ W 2
2 (0, T) of the mixed Cauchy problem (16)–(19) satisfy

the inequality

1
k(t)

(√
λm

dum

dt

)2

(t) +
(
λmum(t)

)2 +
∫ t

0

(√
λm

dum

dt
(t)

)2

dη

≤ d2

[∫ t

0

(√
λmfm(η)
k(η)

)2

dη +
f 2
m(t)

k2(t)

]
.

(25)

Proof Multiplying both sides of (17) in Lemma 3.1 by λm, we get

1
k(t)

(√
λm

(
d2um

dt2

))2

+ λ2
mu2

m(t) +
∫ t

0

k′(η)
k2(η)

(√
λm

(
dum

dη

))2

(η) dη

≤ d3

∫ t

0

(√
λmfm(η)
k(η)

)2

dη.

(26)

Hence, we obtain λ2
mu2

m(t) ≤ d3
∫ t

0 (
√

λmfm(η)
k(η) )

2
dη.

From (16) and the above inequalities for

1
k(t)

∂2um

∂t2 (t) = –λmum(t) +
fm(t)
k(t)

,

we have

∣∣∣∣ 1
k(t)

∂2um

∂t2

∣∣∣∣
2

≤ 2
[
λ2

mu2
m(t) +

f 2
m(t)

k2(t)

]
≤ 2

[
d3

∫ t

0

(√
λmfm(η)
k(η)

)2

dη +
f 2
m(t)

k2(t)

]
. (27)

By (26) and (27), it is easy to see

1
k(t)

(√
λm

d2um

dt2

)2

+
(
λmum(t)

)2 +
∫ t

0

(√
λm

dum

dt

)2

dη

≤ d2

[∫ t

0

(√
λmfm(η)
k(η)

)2

dη +
f 2
m(t)

k2(t)

]
,

which finishes the proof. �

4 General case
Now we will consider the mixed Cauchy problem.
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Let � ⊂ Rn be a finite domain with smooth boundary ∂� ⊂ C2, D = � × [0, T] a cylin-
drical domain. Find a solution of the following equation in D

∂2u
∂t2 – k(t)�xu + b(t)

∂u
∂t

+ a(t)u = f (x, t) (28)

that satisfies the initial conditions

u|t=0 = 0 and
∂u
∂t

∣∣∣∣
t=0

= 0 (29)

and the potential lateral boundary condition

N[u] ≡ –
u(x, t)

2
+

∫
∂�

(
∂ε

∂ηξ

(x, ξ )u(ξ , t) – ε(x, ξ )
∂u
∂ηξ

(ξ , t)
)

dξ = 0. (30)

As in the case of Sect. 2, the solution of (28)–(30) has the form

u(x, t) =
∞∑

|m|=1

um(t)em(x), (31)

f (x, t) =
∞∑

|m|=1

fm(t)em(x), (32)

where {em(x)} is the complete orthonormal system of functions of the following spectral
problem

–�xem(x) = λmem(x),

N[em]|x∈∂� ≡ 0,

fm(t) =
∫

�

f (x, t)em(x) dx, um(t) =
∫

�

u(x, t)em(x) dx.

Substituting (31)–(32) into (28), we obtain the following Cauchy problem

d2um

dt2 (t) + k(t)λmum(t) + b(t)
dum

dt
(t) + a(t)um(t) = fm(t), (33)

um(0) = 0, u′
m(0) = 0. (34)

Due to initial conditions (34), it is easy to verify

dum

dt
(t) =

∫ t

0

∂2um

∂η2 (η) dη, um(t) =
∫ t

0

∂um

∂η
(η) dη.

Using these relations as in (20), we prove the following lemma.

Lemma 4.1 Let the following conditions be satisfied: k ∈ C1+α[0, T], 1 > α > 0, k(t) > 0,
t > 0, k(0) = 0, k′(t) ≥ 0, a

k ∈ C1+α[0, T], b
k ∈ C1+α[0, T] and fm

k ∈ L2[0, T]. Then solution
um ∈ W 2

2 (0, T) to problem (33)–(34) satisfy the following inequality

∣∣∣∣dum

dt

∣∣∣∣(t) ≤ d4 · ∣∣k(t)
∣∣
∣∣∣∣
∫ t

0

fm(η)
k(η)

dη

∣∣∣∣.
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Let conditions b(t) ≥ 0, a(t) ≥ 0, ∂
∂t

a(t)
k(t) ≤ 0 and all the conditions of Lemma 4.1 be sat-

isfied. Then, the regular solution u ∈ W 2
2 (0, T) of the Cauchy problem (33)–(34) satisfies

the following inequality

1
k(t)

(
dum

dt

)2

(t) + λmu2
m(t) +

a(t)
k(t)

u2
m(t) +

∫ t

0

b(η)
k(η)

(
dum

dη

)2

dη

+
1
2

∫ t

0

[(
k′(η)
k2η

dum

dη

)2

–
∂

∂η

a(η)
k(η)

]
u2

m(η) dη ≤ d5

∫ t

0

∣∣∣∣ f (η)
k(η)

∣∣∣∣
2

dη.

(35)

Multiplying both sides of equation (33) by λm, we have

λm

k(t)

(
d2um

dt2

)2

(t) + λ2
mu2

m(t) + λm
a(t)
k(t)

u2
m(t)

+ λm

∫ t

0

(
k′(η)
k2(η)

+
b(η)
k(η)

–
∂

∂η

(
a(η)
k(η)

))
u2

m(η) dη

≤ d6

[∫ t

0

(√
λmfm(η)
k(η)

)2

dη +
(

fm(η)
km(η)

)2]
.

(36)

By the Parseval equality, we rewrite (36) in terms of the space x, t.
Let g ∈ L2(D), then

g(x, t) =
∞∑

|m|=1

gm(t)em(x),

∥∥g(x, t)
∥∥2

l2(�) =
∞∑

|m|=1

∣∣gm(t)
∣∣2 < ∞, t ∈ [0, T],

where {em(x)} is the complete orthonormal system of eigenfunctions of the Newton (vol-
ume) potential corresponding to the eigenvalue λm.

Let α > 0, by (–�x)α , we will denote the operator acting on g(x, t) by the formula

(–�x)αg =
∞∑

|m|=1

gm(t)λα
mem(x), (37)

∥∥(–�x)αg
∥∥2

L2(�)(t) =
∞∑

|m|=1

∣∣gm(t)λα
m
∣∣2 < ∞, t ∈ [0, T]. (38)

Since (37)–(38), inequality (35) can be rewritten as

∥∥∥∥ 1√
k(t)

(
∂u
∂t

)∥∥∥∥
2

L2(�)
(t) +

∥∥(–�x)
1
2 u

∥∥2
L2(�)(t)

+
∫ t

0

∥∥∥∥
(

k′(η)
k2(η)

) 1
2
(

∂u
∂t

)∥∥∥∥
2

L2(�)
(η) dη ≤ d7

∥∥∥∥ f
k

∥∥∥∥
2

L2(�)
(t).

Since (31) and (32), from (36), it follows
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Theorem 4.1 Let k ∈ C1+α[0, T], 1 > α > 0, k(t) > 0, k(0) = 0, k′(t) ≥ 0. If ‖ f
k ‖L2(�)(t) < ∞

and ‖ (–�x)
1
2 f

k ‖L2(�)(t) < ∞ for all t ∈ [0, T], the solution u ∈ W 2
2,k(D) to the mixed Cauchy

problem (10)–(12) satisfies the inequality

‖u‖2
W 2

2,k (D) =
∥∥∥∥ 1√

k(t)
∂2u
∂t2

∥∥∥∥
2

L2(�)
(t) + ‖�xu‖2

L2(�)(t)

+
∫ t

0

∥∥∥∥(–�x)
1
2
∂u
∂η

∥∥∥∥
2

L2(�)
(η) dη + ‖u‖2

L2(�)(t)

≤ d8

(∥∥∥∥ f
k

∥∥∥∥
2

L2(�)
(t) +

∥∥∥∥ (–�x)
1
2 f

k

∥∥∥∥
2

L2(�)
(t)

)
, t ∈ [0, T].

(39)

From (39), it follows that u ∈ W 2
2,k(D) ⊂ W 2

2 (D).
Let us prove the existence of the solution of the mixed Cauchy problem (10)–(12). To

do this, we will consider the regularized mixed Cauchy problem:

Lεu =
1

k(t) + ε

∂2uε

∂t2 –�xuε =
f (x, t)

k(t) + ε
(40)

uε|t=0 =
∂uε

∂t

∣∣∣∣
t=0

= 0, N[uε] ≡ 0, (41)

where ε > 0 is an arbitrary positive number.
Since (31) and (32), using the spectral decomposition of uε(x, t) and f (x, t) by em(x), from

(40)–(41), we obtain

1
k(t) + ε

∂2uεm

∂t2 + λmuεm =
fm(t)

k(t) + ε

uεm|t=0 = 0,
∂uεm

∂t

∣∣∣∣
t=0

= 0.

Due to the properties of the solutions of the Cauchy problem, if fm ∈ L2(0, T), then its
solution is um ∈ W 2

2 [0, T]. Similarly to inequalities (24) and (25), we verify the following
inequalities

1
k(t) + ε

(
∂uεm

∂t

)2

(t) + λmu2
εm(t) +

∫ t

0

k′

k(t) + ε

(
∂uεm

∂η

)2

dη

≤ d9

∫ t

0

∣∣∣∣ fm(η)
k(η) + ε

∣∣∣∣
2

dη, (42)

((
1

k(t) + ε

) 1
2 ∂2uεm

∂t2 (t)
)2

+
(
λmuεm(t)

)2 +
∫ t

0

k′

k(t) + ε
λ

1
2
m

(
∂uεm

∂η

)2

dη

≤ d10

[∫ t

0

(
fm(η)
k(η)

)2

dη +
(√

λmf m(η)
k(η) + ε

)2

dη

]
. (43)
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Using the spectral decomposition of the functions uε(x, t) and f (x, t) in the terms of em(x)
from (42) when ε → 0, we get uε −→ u ∈ W 1

2 (D) and

‖u‖2
W 1

2,k (D) =
∥∥∥∥ 1√

k(t)
∂u
∂t

∥∥∥∥
2

L2(�)
(t) +

∥∥(–�x)
1
2 u

∥∥2

L2(�)(t)

+
∫ t

0

∥∥∥∥
√

k′

k
∂u
∂η

∥∥∥∥
2

L2(�)
(η) dη+‖u‖2

L2(�)(t)

≤ d11

∫ t

0

∥∥∥∥ f
k

∥∥∥∥
2

L2(�)
(η) dη.

From (43), it also follows

Theorem 4.2 Let k ∈ C1+α[0, T], 1 > α > 0, k(t) > 0, t > 0, k(0) = 0, k′(t) ≥ 0. If ‖ f
k ‖L2(�)(t) <

∞ and ‖ (–�x)
1
2 f

k ‖L2(�)(t), t ∈ [0, T], then there exists a unique solution u ∈ W 2
2,k(D) of the

mixed Cauchy problem (10)–(12) that satisfies the inequality

‖u‖2
W 2

2,k (D) =
∥∥∥∥ 1√

k(t)
∂2u
∂t2

∥∥∥∥
2

L2(�)
(t) + ‖�xu‖2

L2(�)(t)

+
∫ t

0

∥∥∥∥
√

k′

k
(–�x)

1
2
∂u
∂η

∥∥∥∥
2

L2(�)
(η) dη + ‖u‖2

L2(�)(t)

≤
∫ t

0

∥∥∥∥ f
k

∥∥∥∥
2

L2(�)
(η) dη +

∫ t

0

∥∥∥∥ (–�x)
1
2 f

k

∥∥∥∥
2

L2(�)
(η) dη.

Corollary 4.1 Note that the weighted Sobolev space W 2
2,k(D) is a subspace of the classical

space W 2
2 (D). As in the case of strictly hyperbolic equations, we have first established that

u ∈ W 1
2 (D) and u ∈ W 2

2 (D) under the condition ‖ f
k ‖L2(�)(t) < ∞ and ‖ gradxf

k ‖L2(�)(t) < ∞
for all t ∈ [0, T], respectively.

Using the inequalities (35)–(36), the unique solvability of the mixed Cauchy problem
(10)–(12) for the general equation ∂2u

∂t2 – k(t)�xu + b(t) ∂u
∂t + a(t)u = f (x, t) is established in

exactly the same way.
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