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Abstract
Recently, Hattori–Lagha established the global existence and asymptotic behavior of
the solutions for a three-dimensional compressible chemotaxis system with
chemoattractant and repellent (Hattori and Lagha in Discrete Contin. Dyn. Syst.
41(11):5141–5164, 2021). Motivated by Hattori–Lagha’s work, we further investigated
the optimal time-decay rates of strong solutions with small perturbation to the
three-dimensional Keller–Segel system coupled to the compressible Navier–Stokes
equations, which models for the motion of swimming bacteria in a compressible
viscous fluid. First, we reformulate the system into a perturbation form. Then we
establish a prior estimates of solutions and prove the existence of the global-in-time
solutions based on the local existence of unique solutions. Finally, we will establish
the optimal time-decay rates of the nonhomogeneous system by the decomposition
technique of both low and high frequencies of solutions as in (Wang and Wen in Sci.
China Math., 2020, https://doi.org/10.1007/s11425-020-1779-7). Moreover, the decay
rate is optimal since it agrees with the solutions of the linearized system.

Keywords: Compressible chemotactic fluids; Global existence; Uniqueness; Fourier
theory; Optimal time-decay rates

1 Introduction
As described in the pioneering literature Keller–Segel [26], chemotaxis as a biological pro-
cess is responsible for some instances of such demeanor, which is the directed movement
of living cells (e.g., bacteria) that move towards a chemically more favorable environment
under the effects of chemical gradients. We shall note that when no chemicals are present,
the movement of cells is completely random. When an attractant chemical is present, the
motility changes, and the tumbles become less frequent so that the cells move towards the
chemical attractant. It is important for microorganism to find food (e.g., glucose) by swim-
ming toward the highest concentration of food molecules. A lot of relevant mathematical
models have been developed; see [3, 14, 15] for examples. Furthermore, in [8], it can be
observed experimentally that bacteria are suspended in the fluid, which is influenced by
the gravitational forcing generated by the aggregation of cells. Moreover, oxygen plays an
important role in the reproduction of aerobic bacteria. For instance, bacillus subtilis often
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live in the thin fluid layers near the solid-air-water contact line in which the swimming
bacteria move towards a higher concentration of oxygen according to the mechanism of
chemotaxis. Further, we also note that oxygen concentration, chemical attractant, and bac-
teria density are transported by the fluid and diffuse through the fluid [6, 8, 29, 38].

Concerning the chemotaxis models based on fluid dynamics, i.e., the chemotaxis–fluid
system, there are two approaches: incompressible and compressible. For the incompress-
ible case, Chae–Kang–Lee [4] and Duan–Lorz–Markowich [9] showed the global-in-time
existence for the incompressible chemotaxis equations near the constant states if the ini-
tial data is sufficiently small. Rodriguez, Ferreira, and Villamizar-Roa [10] showed the
global existence of an attraction-repulsion chemotaxis–fluid system with a logistic source.
Tan–Zhou [35, 36] proved the global existence and time-decay estimate of solutions to
the chemotaxis–fluid system in R

3 with small initial data. Later Tan–Zhong–Wu fur-
ther obtained the time-decay estimates of time-periodic strong solutions [34]. The in-
terested readers are referred to [27, 28, 37, 39, 43–47, 49–52] for more mathematical re-
sults concerning the well-posedness and regularity of solutions of the various types of the
chemotaxis–fluid system. For the compressible case, Ambrosi–Bussolino–Preziosi [1] dis-
cussed vasculogenesis using the compressible fluid dynamics for the cells and the diffusion
equation for the attractant. Modeling aspects of vasculogenesis are studied in [2, 12, 33].
Recently Hattori–Lagha established the global existence and the temporal decay of the
solutions for a three-dimensional compressible chemotaxis system with chemoattractant
and repellent [13]. We mention that the temporal decay of solutions is hydrodynamic
equations are hot topics; see [11, 16–24, 42] and the references cited therein.

Motivated by Hattori–Lagha’s temporal decay results in [13], we further investigated
the optimal time-decay rates of strong solutions with small perturbation to the three-
dimensional Keller–Segel system coupled to the compressible Navier–Stokes equations,
which models for the motion of swimming bacteria in a compressible viscous fluid in R

3

and reads as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

ρut + ρu · ∇u + ∇P = λ1�u + λ2∇ div u – n∇φ,

nt + u · ∇n = �n – ∇ · (nS(n)∇c),

ct + u · ∇c = �c – nf (c).

(1.1)

Next we shall introduce the notations in the above system of equations, which is called
a (single) compressible chemotaxis–fluid system or compressible Keller–Segel–Navier–
Stokes system.

The unknown functions ρ = ρ(t, x) and u = u(t, x) denote the density and velocity of
fluids, resp. The unknown functions n = n(t, x) and c = c(t, x) represent density of amoebae
and oxygen concentration, resp. λ1 > 0 is the coefficient of shear viscosity, and λ2 := ν +
λ1/3 with ν being the positive bulk viscosity. φ = φ(t, x) is a given potential function. The
smooth function P(·) > 0 is the pressure of fluid (depending on ρ), S(n) a given sensitivity
parameter function, and the consumption rate of oxygen f (c) a step function [40], please
refer to [52] for the different mathematical expressions of S(n) and f (c) corresponding to
different environments. However, for the sake of simplicity, we assume that in this paper,

φ = 0, S(n) = 1 and f (c) = c.
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For the investigation of the Cauchy problem of the system (1.1), we should pose the
initial condition:

(ρ, u, n, c)|t=0 = (ρ0, u0, n0, c0) (1.2)

In this paper, we prove the global existence of small perturbation solutions around some
rest state for the Cauchy problem (1.1)–(1.2) and provide time-decay rates for the strong
solutions. Moreover, the decay rate is optimal since it agrees with the solutions of the lin-
earized system. It should be noted that Hattori–Lagha only gave the time-decay rates for
the zero-order derivative of solutions in [13]. However, the novelty of this paper is that we
further provide time-decay rates for all-order derivatives of solutions using a decomposi-
tion technique of both low and high frequencies of solutions as in [41].

1.1 Notations
Before stating our main result, we shall introduce some notations, which are used fre-
quently throughout the paper.

The notation Ci > 0 (i ∈ Z
+) represents a fixed constant. For simplicity, we use the ex-

pression m � n to mean m ≤ Cn, where C is a positive constant and varies from line to
line. ∇ = (∂1, ∂2, ∂3)T, where ∂1 = ∂x1 . ∂α

x = ∂
α1
1 ∂

α2
2 ∂

α3
3 with a multi-index α = (α1,α2,α3). We

set 〈·, ·〉 to represent the inner product in L2(R3), i.e.

〈f , g〉 =
∫

R3
f (x)g(x) dx for f (x), g(x) ∈ L2(

R
3).

For m ≥ 0 and p ≥ 1, the norms of Sobolev spaces Hm(R3) and W m,p(R3) are denoted by
‖ · ‖Hm and ‖ · ‖W m,p , resp. In particular, we will switch to use ‖ · ‖L2 and ‖ · ‖Lp for m = 0,
resp. In addition, f̂ (ξ ) is the Fourier transform of f (x) with respect to the variables x ∈R

3,
that is f̂ (ξ ) = F (f )(ξ ). We further define


mf = F–1(|ξ |m̂f
)

for m ∈R,

where 
m is a pseudo-differential operator.
Let χ0(ξ ) and χ1(ξ ) be two smooth cut-off functions satisfying 0 ≤ χ0(ξ ), χ1(ξ ) ≤ 1 (ξ ∈

R
3) and

χ0(ξ ) =

⎧
⎨

⎩

1, |ξ | < r0
2 ;

0, |ξ | > r0,
χ1(ξ ) =

⎧
⎨

⎩

0, |ξ | < R0;

1, |ξ | > R0 + 1

for r0 and R0 satisfying

0 < r0 ≤ min

{
1
2

√
μ

ν
,

1
2

}

and R0 > max

{

2
√

μ2 + μ

μ1
, 1
}

.

Let χ0(Dx) and χ1(Dx) be quasi-differential operators of χ0(ξ ) and χ1(ξ ) resp., then for
any given function f (x) ∈ L2(R3), we can define its frequency distribution (f l(x), f m(x),
f h(x)) as follows

f l(x) = χ0(Dx)f (x), f m(x) =
(
I – χ0(Dx) – χ1(Dx)

)
f (x), f h(x) = χ1(Dx)f (x),
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where Dx = 1√
–1∇ = 1√

–1 (∂1, ∂2, ∂3). Notice that f (x) can be expressed as follows

f (x) = f l(x) + f m(x) + f h(x),

where we have defined that f L(x) = f l(x) + f m(x) and f H (x) = f m(x) + f h(x).

1.2 Main results
Now we state the main result of this paper.

Theorem 1.1 Suppose that (ρ0 – ρ∞, u0, n0 – n∞, c0) ∈ H2(R3) for some constants ρ∞ > 0
and n∞ > 0. There exists a constant ε > 0 such that if

∥
∥(ρ0 – ρ∞, u0, n0 – n∞, c0)

∥
∥

H2(R3) ≤ ε, (1.3)

and

0 ≤ c0 ≤ 1,

then the Cauchy problem of (1.1)–(1.2) with initial data admits a unique global-in-time
solution (ρ, u, n, c), which satisfies

ρ – ρ∞ ∈ C0([0,∞); H2(
R

3))∩ C1([0,∞); H1(
R

3)),

u, n – n∞, c ∈ C0([0,∞); H2(
R

3))∩ C1([0,∞); L2(
R

3)),

0 ≤ c(t, x) ≤ 1.

(1.4)

Furthermore, if the initial data (ρ0 – ρ∞, u0, n0 – n∞, c0) is bounded in L1(R3), then there
exists a constant C > 0, such that, for any t ≥ 0,

∥
∥∇k(ρ – ρ∞, u, n – n∞, c)

∥
∥

L2(R3) ≤ C(1 + t)– 3
4 – k

2 , k = 0, 1, 2, (1.5)
∥
∥c(t)

∥
∥

H2(R3) ≤ Ce–Ct . (1.6)

Now we shall introduce our main idea for deriving the optimal time-decay rates in (1.5).
The main difficulty focuses on obtaining the energy estimates, which include only the
highest-order spatial derivative of the solution ∇2(ρ – 1, u), which is essentially caused by
the “degenerate” dissipative structure of the hyperbolic parabolic system. To get the dis-
sipative estimate for ∇2ρ , the usual energy method is to construct the interaction energy
functional between u and ∇ρ using the pressure term in linearized momentum equations;
see (3.27). It implies that both the first and second orders of the spatial derivatives of the
velocity and the density should be involved in the Lyapunov functional

L(t) = ‖∇ρ‖2
H1 +

∥
∥∇u(t)

∥
∥2

H1 +
∫

R3
∇u · ∇∇ρ dx ∼ ∥∥∇(ρ, u)(t)

∥
∥2

H1 .

Consequently, the L2-norms of the highest order and the first-order derivative of solutions
have the same time-decay rate.
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One of the main goals of this paper is to develop a way to capture the optimal time-decay
rates for the highest order derivative of the solution to the Cauchy problem (1.1)–(1.2) if
the initial perturbation is bounded in L1(R3). Firstly, using the standard energy method,
we establish estimate (3.24) of the energy functional Dh(t) in (3.22). Secondly, motivated
by the decomposition technique of both the low and high frequencies of solutions in [41],
to get rid of the obstacle from the term

∫

R3 ∇u · ∇ρ dx, we shall remove the low-medium-
frequency part of the term from Dh(t) in (4.12), which requires a new estimate for the
low-medium-frequency term (see Lemma 4.1 for detailed derivation).

The rest of this paper is organized as follows. In Sect. 2, for the convenience of analysis,
we write the original system (1.1) as a perturbation form (2.3). In Sect. 3, we establish
a prior estimates of solutions, and provide the global unique solvability for the Cauchy
problem of (1.1)–(1.2). Finally, in Sect. 4, we will derive the optimal time decay rate for
the non-homogeneous system (2.3) by the decomposition technique of both low and high
frequencies of solutions as in [41].

2 Reformation of motion equations
To facilitate the proof of Theorem 1.1, we shall first reformulate the Cauchy problem (1.1)–
(1.2). Obviously, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + ρu · ∇u + P′(ρ)∇ρ = λ1�u + λ2∇ div u,

nt + u · ∇n = �n – ∇ · (n∇c),

ct + u · ∇c = �c – nc.

(2.1)

Let

σ = ρ – ρ∞, u = u, N = n – n∞, c = c, (2.2)

then the following inhomogeneous system of equations is equivalent to (1.1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σt + ρ∞ div u = M̃1,

ut + P′(ρ∞)
ρ∞ ∇σ – λ1

ρ∞ �u – λ2
ρ∞ ∇ div u = M̃2,

Nt – �N + n∞∇2c = M̃3,

ct – �c + n∞c = M̃4,

(2.3)

where we have defined that

M̃1 = – div(σu),

M̃2 = –u · ∇u – h1∇σ + λ1g1�u + λ2g1∇ div u,

M̃3 = –u · ∇N – ∇N∇c – N∇2c,

M̃4 = –u · ∇c – Nc (2.4)
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with
⎧
⎨

⎩

h1 = P′(σ+ρ∞)
ρ∞+σ

– P′(ρ∞)
ρ∞ ,

g1 = 1
ρ∞+σ

– 1
ρ∞ .

(2.5)

From now on, we renew to define βu by u, then the system (2.3) is reformulated as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σt + μdiv u = M1,

ut + μ∇σ – μ1�u – μ2∇ div u = M2,

Nt – �N + n∞∇2c = M3,

ct – �c + n∞c = M4,

(2.6)

with the initial data

(σ , u, N , c)|t=0 = (σ0, u0, N0, c0)(x)

:= (ρ0 – ρ∞, u0, n0 – n∞, c0)(x) → 0 as |x| → +∞, (2.7)

where

μ1 =
λ1

ρ∞
, μ2 =

λ2

ρ∞
,

β =
ρ∞

√
P′(ρ∞) + n∞φ′(ρ∞)

, μ =
√[

P′(ρ∞) + n∞φ′(ρ∞)
]
, (2.8)

(M1, M2, M3, M4) := (M̃1,βM̃2, M̃3, M̃4)
(

σ ,
1
β

u, N , c
)

. (2.9)

3 Global existence and uniqueness for the nonlinear system
In this section, we will prove the global well-posedness result in Theorem 1.1, that is, the
global existence and uniqueness for the solutions of the chemotaxis–fluid system.

3.1 Unique solvability
First of all, we define a work space for the Cauchy problem of (2.6) and (2.7) as follows

X(0, T) =
{

(σ , u, N , c) | σ ∈ C0((0, T); H2(
R

3))∩ C1((0, T); H1(
R

3)),

u, N , c ∈ C0((0, T); H2(
R

3))∩ C1((0, T); L2(
R

3)),

∇σ ∈ L2((0, T); H2(
R

3),∇u,∇N ∈ L2((0, T); H1(
R

3),

c ∈ L2((0, T); H3(
R

3)}

for any 0 ≤ T ≤ +∞.
Then, we further introduce the results of local existence and a priori estimates of solu-

tions in sequence.

Proposition 3.1 (Local existence) Let (σ0, u0, N0, c0) ∈ H2(R3) and

inf
x∈R3

{σ0 + ρ∞, N + n∞} > 0 and 0 ≤ c0 ≤ 1.
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Then, there exists a constant T0 > 0 depending on ‖σ0, u0, N0, c0‖H2(R3) such that the Cauchy
problem (2.6) and (2.7) has a unique solution (σ , u, N , c) ∈ (0, T0), which satisfies

inf
x∈R3,0≤t≤T0

{σ + ρ∞, N + n∞} > 0 and 0 ≤ c(x, t) ≤ 1.

Proof We can easily prove the above conclusion using an iterative method, the fixed point
theorem, and the maxima principle. Interested readers can refer to [5, 31] for the proof. �

Proposition 3.2 (A priori estimate) Suppose that the Cauchy problem of (2.6) and (2.7)
has a solution (σ , u, N , c) ∈ (0, T), where T > 0, then there exists a sufficiently small constant
δ > 0 and a positive constant C1 independent of T , such that if the solution satisfies

sup
0≤t≤T

∥
∥(σ , u, N , c)(t)

∥
∥

H2 ≤ δ, (3.1)

then we have

∥
∥(σ , u, N , c)(t)

∥
∥2

H2 +
∫ t

0

(∥
∥∇σ (τ )

∥
∥2

H1 +
∥
∥∇(u, N)(τ )

∥
∥2

H2 +
∥
∥c(τ )

∥
∥2

H3
)

dτ

≤ C1
∥
∥(σ0, u0, N0, c0)(t)

∥
∥2

H2 (3.2)

hold for any t ∈ [0, T].

Proof The proof of Proposition 3.2 will be given in Sect. 3.2. �

Remark 3.1 Here C1 is independent of ε and δ, and δ = max {2ε, 3
√

C1ε

2 } such that

∥
∥(σ , u, N , c)(t)

∥
∥2

H2 ≤ C1
∥
∥(σ0, u0, N0, c0)(t)

∥
∥2

H2 ≤
(

2δ

3

)2

.

In addition, by (3.1), we have

∣
∣
(
h1(ρ), g1(ρ)

)∣
∣≤ C|ρ|, ∣

∣∇k(h1(ρ), g1(ρ)
)∣
∣≤ C, for any given k ≥ 1.

Thanks to Propositions 3.1 and 3.2, we immediately get the global existence of unique
solutions of the Cauchy problem (2.6)–(2.7) using a standard continuity argument.

3.2 Proof of Proposition 3.2
In this section, we aim to complete the proof of Proposition 3.2. The key step is to derive
the energy estimates of the lower and higher derivatives of the solution (σ , u, N , c) of the
Cauchy problem (2.6)–(2.7).

Lemma 3.1 Let the functional Dl(t) be defined as follows

Dl(t) :=
1
2

{

‖σ‖2
H1 + 2α1

∫

R3
∇σ · u dx + ‖u‖2

H1 + ‖N‖2
H1 + 2γ ‖c‖2

H1

}

, (3.3)
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then we have

d
dt

Dl(t) +
α1μ

4
‖∇σ‖2

L2 +
μ1

4
‖∇u‖2

H1 +
μ2

4
‖div u‖2

H1

+
1
4
‖∇N‖2

H1 +
γ

2
‖∇c‖2

H1 +
n2∞γ

4
‖c‖2

H1 ≤ 0, (3.4)

where α1 and γ are two given constants.

Proof Multiplying ∇k(2.6)1–∇k(2.6)3 by ∇kσ , ∇ku and ∇kN in L2(R3) resp., then sum-
ming the resulting identities up, and finally, using Young inequality and the integral by
parts, we get

1
2

d
dt
(∥
∥∇kσ

∥
∥2

L2 +
∥
∥∇ku

∥
∥2

L2 +
∥
∥∇kN

∥
∥2

L2
)

+ μ1
∥
∥∇k∇u

∥
∥2

L2 + μ2
∥
∥∇k div u

∥
∥2

L2 +
∥
∥∇k∇N

∥
∥2

L2

= –n∞
∫

R3
∇k∇2c∇kN dx +

∫

R3
∇kσ∇kM1 dx

+
∫

R3
∇ku∇kM2 dx +

∫

R3
∇kN∇kM3 dx

≤ n2∞
2
∥
∥∇k∇c

∥
∥2

L2 +
1
2
∥
∥∇k∇N

∥
∥2

L2 +
∫

R3
∇kσ∇kM1 dx

+
∫

R3
∇ku∇kM2 dx +

∫

R3
∇kN∇kM3 dx. (3.5)

Multiplying ∇(2.6)1, (2.6)2 by u and ∇σ , resp., and then integrating by parts, we have

d
dt

∫

R3
∇σ · u dx + μ

∫

R3
|∇σ |2 dx

= μ‖div u‖2
L2 + μ1

∫

R3
∇σ · �u dx

+ μ2

∫

R3
∇σ · ∇ div u dx +

∫

R3
u · ∇M1 dx +

∫

R3
∇σ · M2 dx. (3.6)

For any given constant α1 > 0, we use Young’s inequality to get

α1μ1

∫

R3
∇σ · �u dx ≤ α1μ

4
‖∇σ‖2

L2 +
α1μ

2
1

μ
‖�u‖2

L2 ,

α1μ2

∫

R3
∇σ · ∇ div u dx ≤ α1μ

4
‖∇σ‖2

L2 +
α1μ

2
2

μ
‖∇ div u‖2

L2 .

Adding
∑

0≤k≤1 (3.5) to (3.6) and then using the above two inequalities, we get

1
2

d
dt

{

‖σ‖2
H1 + 2α1

∫

R3
∇σ · u dx + ‖u‖2

H1 + ‖N‖2
H1

}

+
α1μ

2
‖∇σ‖2

L2 + μ1‖∇u‖2
H1 + μ2‖div u‖2

H1 +
1
2
‖∇N‖2

H1

≤ α1μ
2
1

μ
‖�u‖2

L2 +
α1μ

2
2

μ
‖∇ div u‖2

L2 + α1μ‖div u‖2
L2 +

n2∞
2

‖∇c‖2
H1
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+
∫

R3
σM1 dx +

∫

R3
∇σ∇M2 dx +

∫

R3
u · M2 dx

+
∫

R3
∇u · ∇M2 dx +

∫

R3
NM3 dx +

∫

R3
∇N∇M3 dx

+ α1

∫

R3
u · ∇M1 dx + α1

∫

R3
∇σ · M2 dx. (3.7)

Next, we estimate the nonlinear part on the right-hand side of (3.7). By exploiting the
Hölder inequality, Young inequality, Lemmas A.4–A.5, assumption (3.1), and integral by
parts, we can get

∫

R3
σM1 dx ≤ C‖σ‖L6

(‖∇σ‖L2‖u‖L3 + ‖σ‖L3‖∇u‖L2
)

≤ C‖∇σ‖L2 (‖∇σ‖L2‖u‖H1 +
(‖σ‖H1‖∇u‖L2

)

≤ Cδ
∥
∥∇(σ , u)

∥
∥2

L2 (3.8)

and

∫

R3
∇σ∇M1 dx ≤ C

∥
∥∇2σ

∥
∥

L2
(‖∇σ‖L2‖u‖L∞ + ‖σ‖L∞‖∇u‖L2

)

≤ C
∥
∥∇2σ

∥
∥

L2
(‖∇σ‖L2‖u‖H2 + ‖σ‖H2‖∇u‖L2

)

≤ Cδ
(∥
∥∇(σ , u)

∥
∥2

L2 +
∥
∥∇2σ

∥
∥2

L2
)
. (3.9)

Recalling the definition of hi (i = 1, 2, 3) and then using the Hölder inequality, Young
inequality, assumption (3.1), and integral by parts, we know that

∫

R3
u · M2 dx ≤ C‖u‖L6

(‖∇u‖L2‖u‖L3 + ‖∇σ‖L2
∥
∥h1(σ )

∥
∥

L3

+ ‖∇σ‖L2
∥
∥h2(σ )

∥
∥

L3 + ‖N∇σ‖L2
∥
∥h3(σ )

∥
∥

L3
)

+ C‖u‖L6
∥
∥g1(σ )

∥
∥

L3

∥
∥∇2u

∥
∥

L3

≤ C‖∇u‖L2
(‖∇u‖L2‖u‖H1 + ‖∇σ‖L2

∥
∥h1(σ )

∥
∥

L3

+ ‖∇σ‖L2
∥
∥h2(σ )

∥
∥

L3 + ‖∇σ‖L2‖N‖L∞
∥
∥h3(σ )

∥
∥

L3

+
∥
∥g1(σ )

∥
∥

L3

∥
∥∇2u

∥
∥

L3
)

≤ Cδ
(∥
∥∇(σ , u)

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

(3.10)

and

∫

R3
∇u · ∇M2 dx ≤ C

∥
∥∇2u

∥
∥

L2
(‖∇u‖L2‖u‖L∞ + ‖∇σ‖L2

∥
∥h1(σ )

∥
∥

L∞

+ ‖∇σ‖L2
∥
∥h2(σ )

∥
∥

L∞ + ‖N∇σ‖L2
∥
∥h3(σ )

∥
∥

L∞

+
∥
∥g1(σ )

∥
∥

L∞
∥
∥∇2u

∥
∥

L2
)

≤ C‖∇u‖L2
(‖∇u‖L2‖u‖H2 + ‖∇σ‖L2

∥
∥h1(σ )

∥
∥

H2
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+ ‖∇σ‖L2
∥
∥h2(σ )

∥
∥

H2 + ‖∇σ‖L2‖N‖L∞
∥
∥h3(σ )

∥
∥

L∞
)

≤ Cδ
(∥
∥∇(σ , u)

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)
. (3.11)

Similarly, we have

∫

R3
NM3 dx ≤ C‖N‖L6

(‖∇N‖L2‖u‖L3 + ‖∇N‖L3‖∇c‖L2
)

≤ C‖∇N‖L2
(‖∇N‖L2‖u‖H1 + ‖N‖H2‖∇c‖L2

)

≤ Cδ
∥
∥∇(N , c)

∥
∥2

L2 (3.12)

and
∫

R3
∇N∇M3 dx ≤ C

∥
∥∇2N

∥
∥

L2
(‖∇N‖L2‖u‖L∞ + ‖N‖L∞

∥
∥∇2c

∥
∥

L2
)

≤ C
∥
∥∇2N

∥
∥

L2
(‖∇N‖L2‖u‖H2 + ‖N‖H2

∥
∥∇2c

∥
∥

L2
)

≤ Cδ
(∥
∥∇2(N , c)

∥
∥2

L2
)
. (3.13)

For the last two nonlinear terms in (3.7), we can use the integral by parts, Young inequal-
ity, Hölder inequality, assumption (3.1), and Lemmas A.4–A.5 to estimate that

α1

∫

R3
u · ∇M1 dx = –α1

∫

R3
div uM1 dx

≤ Cα1‖div u‖L2‖M1‖L2

≤ Cα1‖div u‖L2
(‖σ‖L∞‖∇u‖L2 + ‖u‖L∞‖∇σ‖L2

)

≤ Cα1δ
∥
∥∇(σ , u)

∥
∥2

L2 (3.14)

and

α1

∫

R3
∇σ · M1 dx ≤ Cα1‖∇σ‖L2‖M2‖L2

≤ Cα1‖∇σ‖L2
(‖u‖L∞‖∇u‖L2 +

∥
∥h1(σ )

∥
∥

L∞‖∇σ‖L2

+
∥
∥h2(σ )

∥
∥

L∞‖∇σ‖L2 +
∥
∥h3(σ )

∥
∥

L∞‖N‖‖L∞∇σ‖L2
)

≤ Cα1δ
∥
∥∇(σ , u)

∥
∥2

L2 . (3.15)

Putting (3.8)–(3.15) into (3.7) yields

1
2

d
dt

{

‖σ‖2
H1 + 2α1

∫

R3
∇σ · u dx + ‖u‖2

H1 + ‖N‖2
H1

}

+
α1μ

2
‖∇σ‖2

L2 + μ1‖∇u‖2
H1 + μ2‖div u‖2

H1 +
1
2
‖∇N‖2

H1

≤ α1μ
2
1

μ
‖�u‖2

L2 +
α1μ

2
2

μ
‖∇ div u‖2

L2 + α1μ‖div u‖2
L2 +

n2∞
2

‖∇c‖2
H1

+ C(1 + α1)δ
(∥
∥∇(σ , u, N , c)

∥
∥2

L2 +
∥
∥∇2(σ , u, N , c)

∥
∥2

L2
)
. (3.16)
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Now we proceed to estimate for c. Multiplying ∇k(2.6)4 by ∇kc in R
3, and then we inte-

grate by parts to get

1
2

d
dt
∥
∥∇kc

∥
∥2

L2 +
∥
∥∇k∇c

∥
∥2

L2 + n∞
∥
∥∇kc

∥
∥2

L2 =
∫

R3
∇kc∇kM4 dx. (3.17)

It is easy to estimate that

∫

R3
cM4 dx ≤ C

∫

R3
cu · ∇c dx + C

∫

R3
N |c|2 dx

≤ C
(‖u‖L∞‖∇c‖L∞‖c‖L2 + ‖N‖L∞‖c‖L2 + ‖c‖L2

)

≤ Cδ
(‖c‖2

L2 + ‖∇c‖2
L2
)

(3.18)

and

∫

R3
∇c∇M4 dx ≤ C

∥
∥∇2c

∥
∥

L2‖M4‖L2

≤ C
∥
∥∇2c

∥
∥

L2‖u‖L∞‖∇c‖L2 + C
∥
∥∇2c

∥
∥

L2‖N‖L∞‖c‖L2

≤ Cδ
(‖c‖2

L2 + ‖∇c‖2
L2 +

∥
∥∇2c

∥
∥2

L2
)
. (3.19)

Putting (3.18) and (3.19) into
∑

0≤k≤1 (3.17) and using the smallness of δ, we have

d
dt

‖c‖2
H1 + ‖∇c‖2

H1 + n∞‖c‖2
H1 ≤ 0. (3.20)

By (3.16) and (3.20), we get

1
2

d
dt

{

‖σ‖2
H1 + 2α1

∫

R3
∇σ · u dx + ‖u‖2

H1 + ‖N‖2
H1 + 2γ ‖c‖2

H1

}

+
α1μ

2
‖∇σ‖2

L2 + μ1‖∇u‖2
H1 + μ2‖div u‖2

H1

+
1
2
‖∇N‖2

H1 + γ ‖∇c‖2
H1 + n∞γ ‖c‖2

H1

≤ α1μ
2
1

μ
‖�u‖2

L2 +
α1μ

2
2

μ
‖∇ div u‖2

L2 + α1μ‖div u‖2
L2 +

n2∞
2

‖∇c‖2
H1

+ C(1 + α1)δ
(‖c‖2

L2 +
∥
∥∇(σ , u, N , c)

∥
∥2

L2 +
∥
∥∇2(σ , u, N , c)

∥
∥2

L2
)
, (3.21)

where α1 is a fixed parameter that satisfies the following definition

0 ≤ α1 ≤ min

{
μ

4μ1
,

μ

4μ2
,
μ2

4μ
,

1
2

}

,

and γ := n2∞. This completes the proof of Lemma 3.1. �

Next, we focus on the energy estimate of the highest derivatives of solutions.
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Lemma 3.2 Let the functional Dh(t) be defined as follows

Dh(t) :=
1
2

{
∥
∥∇2σ

∥
∥2

L2 + 2α2

∫

R3
∇∇σ · ∇u dx

+
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2N

∥
∥2

L2 + 2γ
∥
∥∇2c

∥
∥2

L2

}

. (3.22)

Then we have

d
dt

Dh(t) +
α2μ

4
∥
∥∇2σ

∥
∥2

L2 +
μ1

2
∥
∥∇3u

∥
∥2

L2 +
μ2

4
∥
∥∇2 div u

∥
∥2

L2

+
1
4
∥
∥∇3N

∥
∥2

L2 +
γ

2
∥
∥∇3c

∥
∥2

L2 +
n∞γ

2
∥
∥∇2c

∥
∥2

L2

≤ μ2

8
‖∇ div u‖2

L2 + Cδ‖c‖2
H1 + Cδ

∥
∥∇2(u, N)

∥
∥2

L2 , (3.23)

where α1 and γ are two given constant.

Proof Multiplying ∇2(2.6)1–∇2(2.6)3 by ∇2σ , ∇2u and ∇2N in L2(R3), resp., then sum-
ming the resulting identities up, and finally, using the Young inequality and integral by
parts, we can get

1
2

d
dt
(∥
∥∇2σ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2N

∥
∥2

L2
)

+ μ1
∥
∥∇2∇u

∥
∥2

L2 + μ2
∥
∥∇2 div u

∥
∥2

L2 +
∥
∥∇2∇N

∥
∥2

L2

= n∞
∫

R3
∇2∇c∇2∇N dx +

∫

R3
∇2σ∇2M1 dx

+
∫

R3
∇2u∇2M2 dx +

∫

R3
∇2N∇2M3 dx

≤ n2∞
2
∥
∥∇2∇c

∥
∥2

L2 +
1
2
∥
∥∇2∇N

∥
∥2

L2 +
∫

R3
∇2σ∇2M1 dx

+
∫

R3
∇2u∇2M2 dx +

∫

R3
∇2N∇2M3 dx. (3.24)

Multiplying ∇2(2.6)1, ∇(2.6)2 by ∇u and ∇2σ , resp., and integrating by parts, we have

d
dt

∫

R3
∇σ · u dx + μ

∫

R3
|∇σ |2 dx

= μ‖∇ div u‖2
L2 + μ1

∫

R3
∇∇σ · ∇�u dx + μ2

∫

R3
∇∇σ · ∇∇ div u dx

+
∫

R3
∇u · ∇∇M1 dx +

∫

R3
∇∇σ · ∇M2 dx

≤ μ

2
‖∇∇σ‖2

L2 + μ‖∇ div u‖2
L2 +

μ2
1

μ
‖∇�u‖2

L2

+
μ2

2
μ

‖∇∇divu‖2
L2 +

∫

R3
∇u · ∇∇M1 dx +

∫

R3
∇∇σ · ∇M2 dx. (3.25)
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Let α2 be a fixed constant. Addition of α2× (3.25) and (3.24) yields

1
2

d
dt

{
∥
∥∇2σ

∥
∥2

L2 + 2α2

∫

R3
∇∇σ · ∇u dx +

∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2N

∥
∥2

L2

}

+
α2μ

2
‖∇∇σ‖2

L2 + μ1
∥
∥∇2∇u

∥
∥2

L2 + μ2
∥
∥∇2 div u

∥
∥2

L2 +
∥
∥∇2∇N

∥
∥2

L2

≤ α2μ
2
1

μ
‖∇�u‖2

L2 +
α2μ

2
2

μ
‖∇ div u‖2

L2 + α1μ‖∇ div u‖2
L2 +

n2∞
2
∥
∥∇2∇c

∥
∥2

L2

+
1
2
∥
∥∇2∇N

∥
∥2

L2 +
∫

R3
∇2σ∇2M1 dx +

∫

R3
∇2u∇2M2 dx

+
∫

R3
∇2N∇2M3 dx + α2

∫

R3
u · ∇M1 dx + α2

∫

R3
∇σ · M2 dx. (3.26)

Next, we estimate the nonlinear term on the right-hand side of formula (3.26). By the
Hölder inequality, Young inequality, assumption (3.1), Lemmas A.3–A.4, and the integral
by parts, we have

∫

R3
∇2σ∇2M1 dx ≤ C

∣
∣
〈∇2σ ,∇2(σ div u)

〉∣
∣ + C

∣
∣
〈∇2σ ,∇2(∇σ · u)

〉∣
∣

≤ C
∥
∥∇2σ

∥
∥

L2
(∥
∥∇2σ

∥
∥

L2‖div u‖L∞ + ‖σ‖L∞
∥
∥∇2 div u

∥
∥

L2
)

+ C‖div u‖L∞
∥
∥∇2σ

∥
∥2

L2 + C
∥
∥∇2σ

∥
∥

L2

∥
∥∇2(∇σ · u) – ∇2∇σ · u

∥
∥

L2

≤ C
∥
∥∇2σ

∥
∥2

L2‖div u‖L∞ + C
∥
∥∇2σ

∥
∥

L2‖σ‖L∞
∥
∥∇2 div u

∥
∥

L2

+ C
∥
∥∇2σ

∥
∥

L2
(∥
∥∇2σ

∥
∥

L2‖∇u‖L∞ + ‖∇σ‖L3 +
∥
∥∇2u

∥
∥

L6
)

≤ C
∥
∥∇2σ

∥
∥2

L2‖∇u‖H2 + C
∥
∥∇2σ

∥
∥

L2‖σ‖H2
∥
∥∇3u

∥
∥

L2

+ C
∥
∥∇2σ

∥
∥

L2
(∥
∥∇2σ

∥
∥

L2‖∇u‖H2 + ‖∇σ‖H1
∥
∥∇3u

∥
∥

L2
)

≤ Cδ
(∥
∥∇2(σ , u)

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)
. (3.27)

Exploiting the integral by parts, we have

∫

R3
∇2u∇2M2 dx ≤ C

∣
∣
〈∇3u,∇(u · div u)

〉∣
∣ + C

∣
∣
〈∇3u,∇[h1(σ )∇σ

]〉∣
∣

+ C
∣
∣
〈∇3u,∇[h2(σ )N∇σ

]〉∣
∣ + C

∣
∣
〈∇3u,∇[g1(σ )�u

]〉∣
∣

+ C
∣
∣
〈∇3u,∇[g1(σ )∇ div u

]〉∣
∣ + C

∣
∣
〈∇3u,∇[h3(σ )N∇σ

]〉∣
∣. (3.28)

Making use of Lemmas A.3–A.5, assumption (3.1), and the definition of h1, we can derive
from the above inequality that

∫

R3
∇2u∇2M2 dx ≤ C

∥
∥∇3u

∥
∥

L2
(‖∇u‖L6‖∇u‖L3 + ‖u‖L∞

∥
∥∇2u

∥
∥

L2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥h1(σ )

∥
∥

L∞
∥
∥∇2σ

∥
∥

L2 +
∥
∥∇h1(σ )

∥
∥

L6‖∇σ‖L3
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥h2(σ )

∥
∥

L∞
∥
∥∇2σ

∥
∥

L2 +
∥
∥∇h2(σ )

∥
∥

L6‖∇σ‖L3
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥g1(σ )

∥
∥

L∞
∥
∥∇3u

∥
∥

L2 +
∥
∥∇g1(σ )

∥
∥

L6‖∇u‖L3
)
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+ C
∥
∥∇3u

∥
∥

L2

∥
∥∇2σ

∥
∥

L2

∥
∥h3(σ )

∥
∥

L∞‖N‖L∞

+ C
∥
∥∇3u

∥
∥

L2‖∇σ‖L∞
(∥
∥h3(σ )

∥
∥

L∞‖∇N‖L2 +
∥
∥∇h3(σ )

∥
∥

L6‖N‖L3
)

≤ C
∥
∥∇3u

∥
∥

L2
(∥
∥∇2u

∥
∥

L2‖u‖H2 + ‖u‖H2
∥
∥∇2u

∥
∥

L2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥h1(σ )

∥
∥

H2

∥
∥∇2σ

∥
∥

L2 +
∥
∥∇2σ

∥
∥

L2‖σ‖H2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥h2(σ )

∥
∥

H2

∥
∥∇2σ

∥
∥

L2 +
∥
∥∇2σ

∥
∥

L2‖σ‖H2
)

+ C
∥
∥∇3u

∥
∥

L2

∥
∥∇2σ

∥
∥

L2

∥
∥h3(σ )

∥
∥

L∞‖N‖L∞

+ C
∥
∥∇3u

∥
∥

L2‖∇σ‖L6
(∥
∥h3(σ )

∥
∥

L6‖∇N‖L6 +
∥
∥∇h3(σ )

∥
∥

L6‖N‖L6
)

≤ Cδ
(∥
∥∇2(σ , u)

∥
∥2

L2 +
∥
∥∇3(u)

∥
∥2

L2
)
, (3.29)

where we have used the fact that

∥
∥∇hi(σ )

∥
∥

L6 ≤ C‖∇σ‖L6 ≤ C
∥
∥∇2σ

∥
∥

L2 for i = 1, 2.

Similarly, it is easy to estimate that

∫

R3
∇2N∇2M3 dx ≤ C

∣
∣
〈∇3N ,∇(u · ∇N)

〉∣
∣ + C

∣
∣
〈∇2N ,∇2(∇N∇c)

〉∣
∣

+ C
∣
∣
〈∇2N ,∇2(N∇2c

)〉∣
∣, (3.30)

which gives

∫

R3
∇2N∇2M3 dx ≤ C

∥
∥∇3N

∥
∥

L2
(‖∇u‖L6‖∇N‖L3 + ‖u‖L∞

∥
∥∇2N

∥
∥

L2
)

+ C
∥
∥∇3N

∥
∥

L2

∥
∥∇2N

∥
∥

L6‖∇c‖L3 + C
∥
∥∇3c

∥
∥

L2

∥
∥∇2N

∥
∥

L6‖∇N‖L3

+ C‖∇N‖L3
∥
∥∇2∇N

∥
∥

L2

∥
∥∇2c

∥
∥

L6 + C‖∇N‖L3
∥
∥∇2N

∥
∥

L6

∥
∥∇3c

∥
∥

L2

+ C
∥
∥∇3N

∥
∥

L2‖N‖L∞
∥
∥∇3c

∥
∥

L2 + ‖∇N‖L3
∥
∥∇3c

∥
∥

L2

∥
∥∇2N

∥
∥

L6

≤ Cδ
(∥
∥∇2(u, N , c)

∥
∥2

L2 +
∥
∥∇3(N , c)

∥
∥2

L2
)
. (3.31)

Using Lemma A.5, Young inequality, assumption (3.1), and Hölder inequality, we obtain

α2

∫

R3
∇u · ∇∇M1 dx = –α2

∫

R3
∇ div u∇M1 dx

≤ Cα2‖∇ div u‖L2‖∇M1‖L2

≤ Cα2
∥
∥∇2u

∥
∥

L2
(∥
∥∇2u

∥
∥

L2‖σ‖L∞ + ‖u‖L∞
∥
∥∇2σ

∥
∥

L2
)

≤ Cα2δ
∥
∥∇2(σ , u)

∥
∥2

L2 (3.32)

and

α2

∫

R3
∇∇σ · ∇M2 dx

≤ Cα2‖∇∇σ‖L2‖∇M2‖L2
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≤ Cα2‖∇∇σ‖L2
(‖∇u‖L6‖∇u‖L3 + ‖u‖L∞ +

∥
∥∇2u

∥
∥

L2
)

+ Cα2‖∇∇σ‖L2
(∥
∥∇h1(σ )

∥
∥

L6‖∇σ‖L3 +
∥
∥h1(σ )

∥
∥

L∞
∥
∥∇2σ

∥
∥

L2
)

+ Cα2‖∇∇σ‖L2
(∥
∥∇h2(σ )

∥
∥

L6‖∇σ‖L3 +
∥
∥h2(σ )

∥
∥

L∞
∥
∥∇2σ

∥
∥

L2
)

+ Cα2
∥
∥∇2σ

∥
∥

L2

∥
∥∇2σ

∥
∥

L2

∥
∥h3(σ )

∥
∥

L∞‖N‖L∞

+ Cα2
∥
∥∇2σ

∥
∥

L2‖∇σ‖L6
(∥
∥h3(σ )

∥
∥

L6‖∇N‖L6 +
∥
∥∇h3(σ )

∥
∥

L6‖N‖L6
)

≤ Cα2δ
∥
∥∇2(σ , u)

∥
∥2

L2 . (3.33)

Substituting the above result into (3.26), we have

1
2

d
dt

{
∥
∥∇2σ

∥
∥2

L2 + 2α2

∫

R3
∇∇σ · ∇u dx +

∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2N

∥
∥2

L2

}

+
α2μ

2
‖∇∇σ‖2

L2 + μ1
∥
∥∇2∇u

∥
∥2

L2 + μ2
∥
∥∇2 div u

∥
∥2

L2 +
1
2
∥
∥∇2∇N

∥
∥2

L2

≤ α2μ
2
1

μ
‖∇�u‖2

L2 +
α2μ

2
2

μ
‖∇∇ div u‖2

L2 + α2μ‖∇ div u‖2
L2 +

n2∞
2
∥
∥∇2∇c

∥
∥2

L2

+ C(1 + α2)δ
(∥
∥∇2(σ , u, N , c)

∥
∥2

L2 +
∥
∥∇3(u, N , c)

∥
∥2

L2
)
. (3.34)

Multiplying ∇2(2.6)4 by ∇2c in L2(R3), we find that

1
2

d
dt
∥
∥∇2c

∥
∥2

L2 +
∥
∥∇2∇c

∥
∥2

L2 + n∞
∥
∥∇2c

∥
∥2

L2 =
∫

R3
∇2c∇2M4 dx. (3.35)

It is also easy to estimate that

∫

R3
∇2c∇2M4 dx ≤ C

∥
∥∇3c

∥
∥

L2‖∇M4‖L2

≤ C
∥
∥∇3c

∥
∥

L2
(‖∇u‖L3‖∇c‖L6 + ‖u‖L∞

∥
∥∇2c

∥
∥

L2
)

+ C
∥
∥∇3c

∥
∥

L2
(‖∇N‖L6‖c‖L3 + ‖N‖L3‖∇c‖L6

)

≤ Cδ
(‖c‖2

L3 +
∥
∥∇2c

∥
∥2

L2 +
∥
∥∇3c

∥
∥2

L2
)

≤ Cδ
(‖c‖2

H1 +
∥
∥∇2c

∥
∥2

L2 +
∥
∥∇3c

∥
∥2

L2
)
. (3.36)

Combining (3.35) with (3.36) yields

d
dt
∥
∥∇2c

∥
∥2

L2 +
∥
∥∇2∇c

∥
∥2

L2 + n∞
∥
∥∇2c

∥
∥2

L2 ≤ Cδ‖c‖2
H1 . (3.37)

Let α2 be a constant satisfying

0 < α2 ≤ min

{
μ

8μ1
,

μ

8μ2
,
μ2

8μ
,

1
4

}

.

By the smallness of δ, we immediately get Lemma 3.2. �
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With Lemmas 3.1–3.2 in hand, we easily further obtain Proposition 3.2. In fact, keeping
in mind the Young inequality and the definitions of Dl , Dh, we have

1
C2

∥
∥(σ , u, N , c)(t)

∥
∥2

H2 ≤ Dl(t) + Dh(t) ≤ C2
∥
∥(σ , u, N , c)(t)

∥
∥2

H2 , (3.38)

which yields

Dl(t) + Dh(t) ≈ ∥∥(σ , u, N , c)(t)
∥
∥2

H2 , (3.39)

where C2 > 0 is a constant. Integrating the two inequalities in the above two lemmas
over [0, t], thus (3.2) holds for the small enough δ. This completes the proof of Propo-
sition 3.2.

4 Decay rates
In this section, we shall derive the decay-in-time rates for the Cauchy problem (2.6)–(2.7).
The proof will be broken up into three subsections. First, in Sect. 4.1, we obtain the L∞

t L2
x-

norm estimate of the second derivatives of solutions of the Cauchy problem. Secondly,
we establish the decay estimate of the low-medium-frequency parts based on the idea of
the decomposition technique of both low and high frequencies of solutions in Sect. 4.2.
Finally, in Sect. 4.3, we estimate the nonlinear part and derive the time decay rates for
solutions of the Cauchy problem.

4.1 Cancellation of a low-frequency part
Inspired by the observation of canceling the low-frequency part of solutions, we have the
following conclusion.

Lemma 4.1 It holds that

∥
∥∇2(σ , u, N , c)(t)

∥
∥2

L2 ≤ Ce–C3t∥∥∇2(σ0, u0, N0, c0)(t)
∥
∥2

L2 + Cδ

∫ t

0
e–C3(t–τ )∥∥c(τ )

∥
∥2

H1 dτ

+ C
∫ t

0
e–C3(t–τ )∥∥∇2(σ L, uL, NL, cL)(τ )

∥
∥2

L2 dτ , (4.1)

where the positive constants C are independent of δ.

Proof Multiplying ∇(2.6)2 by ∇∇σ L in L2, we integrate by parts and use (2.6)1 to get

d
dt

∫

R3
∇∇σ L · ∇u dx = μ

∫

R3

(∇ div u∇ div uL – ∇∇σ · ∇∇σ L)dx

+ μ1

∫

R3
∇∇σ L · ∇�u dx + μ2

∫

R3
∇∇σ L · ∇∇ div u dx

+
∫

R3
∇∇σ L · ∇M2 dx –

∫

R3
∇ div u∇ML

1 dx. (4.2)
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Then, thanks to the Young inequality, we have

–
d
dt

∫

R3
∇∇σ L · ∇u dx ≤ μ + 1

2
‖∇ div u‖2

L2 +
μ

8
‖∇∇σ‖2

L2 +
μ1

2
‖∇�u‖2

L2

+
μ2

2
‖∇∇ div u‖2

L2 +
(

2μ +
1 + μ1 + μ2

2

)
∥
∥∇∇σ L∥∥2

L2

+
1
2
∥
∥∇ div uL∥∥2

L2 +
1
2
‖∇M2‖2

L2 +
1
2
∥
∥∇ML

1
∥
∥2

L2 . (4.3)

By virtue of the Plancherel theorem and Lemma A.3, we have

‖∇M2‖2
L2 +

∥
∥∇ML

1
∥
∥2

L2 ≤ Cδ
∥
∥∇2(σ , u)

∥
∥2

L2 . (4.4)

Adding α2 × (4.3) and (3.23) together and using (4.4) and (A.1), we estimate that

d
dt

(

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx

)

+
α2μ

4
∥
∥∇2σ

∥
∥2

L2

+
μ1

4
∥
∥∇3u

∥
∥2

L2 +
μ1

4
R2

0
∥
∥∇2uh∥∥2

L2 +
μ2

4
∥
∥∇2 div u

∥
∥2

L2

+
1
8
∥
∥∇3N

∥
∥2

L2 +
1
8

R2
0
∥
∥∇2Nh∥∥2

L2 +
γ

2
∥
∥∇3c

∥
∥2

L2 +
n∞γ

2
∥
∥∇2c

∥
∥2

L2

≤
[

μ2

8
+

α2(μ + 1)
2

]

‖∇ div u‖2
L2 +

α2μ

8
‖∇∇σ‖2

L2 +
α2μ1

2
‖∇�u‖2

L2

+
α2μ2

2
‖∇∇ div u‖2

L2 + Cα2
∥
∥∇2σ L∥∥2

L2 + Cα2
∥
∥∇ div uL∥∥2

L2

+ Cδ(1 + α2)
∥
∥∇2(σ , u, N , c)

∥
∥2

L2 + Cδ‖c‖2
H1 . (4.5)

In addition, using frequency decomposition and adding μ1
4 R2

0‖∇2uL‖2
L2 + 1

4 R2
0‖∇2NL‖2

L2

to both sides of (4.5), we can get

d
dt

(

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx

)

+
α2μ

8
∥
∥∇2σ

∥
∥2

L2

+
μ1

4
∥
∥∇3u

∥
∥2

L2 +
μ1

8
R2

0
∥
∥∇2u

∥
∥2

L2 +
μ2

4
∥
∥∇2 div u

∥
∥2

L2

+
1
8
∥
∥∇3N

∥
∥2

L2 +
1

16
R2

0
∥
∥∇2N

∥
∥2

L2 +
γ

2
∥
∥∇3c

∥
∥2

L2 +
n∞γ

2
∥
∥∇2c

∥
∥2

L2

≤ Cα2
∥
∥∇2σ L∥∥2

L2 +
(

Cα2 +
μ1

4
R2

0

)
∥
∥∇2uL∥∥2

L2

+
[

μ2

8
+

α2(μ + 1)
2

]

‖∇ div u‖2
L2 +

α2μ1

2
‖∇�u‖2

L2

+
α2μ2

2
∥
∥∇2 div u

∥
∥2

L2 +
1
4

R2
0
∥
∥∇2NL∥∥2

L2

+ Cδ(1 + α2)
∥
∥∇2(σ , u, N , c)

∥
∥2

L2 + Cδ‖c‖2
H1 . (4.6)
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Choosing α2 < 1
4 and R2

0 > max { 4(μ2+μ+1)
μ1

, 1}, and then using the smallness of δ, we get

d
dt

(

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx

)

+
α2μ

16
∥
∥∇2σ

∥
∥2

L2

+
μ1

8
∥
∥∇3u

∥
∥2

L2 +
μ1

16
R2

0
∥
∥∇2u

∥
∥2

L2 +
μ2

8
∥
∥∇2 div u

∥
∥2

L2

+
1
8
∥
∥∇3N

∥
∥2

L2 +
1

32
R2

0
∥
∥∇2N

∥
∥2

L2 +
γ

2
∥
∥∇3c

∥
∥2

L2 +
n∞γ

8
∥
∥∇2c

∥
∥2

L2

≤ C
∥
∥∇2(σ L, uL, NL, CL)∥∥2

L2 + Cδ‖c‖2
H1 . (4.7)

In view of frequency decomposition, one gets

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx

=
1
2
∥
∥∇2σ

∥
∥2

L2 + α2

∫

R3
∇∇σ h · ∇u dx +

1
2
∥
∥∇2u

∥
∥2

L2 +
1
2
∥
∥∇2N

∥
∥2

L2 + γ
∥
∥∇2c

∥
∥2

L2 . (4.8)

It follows from the Young inequality and integral by parts that

α2

∫

R3
∇∇σ h · ∇u dx = –α2

∫

R3
∇σ h∇ div u dx

≤ α2

2
∥
∥∇σ h∥∥2

L2 +
α2

2
‖∇ div u‖2

L2

≤ α2

2
∥
∥∇2σ

∥
∥2

L2 +
α2

2
∥
∥∇2u

∥
∥2

L2 , (4.9)

which implies

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx ∼ ∥∥∇2(σ , u, N , c)

∥
∥2

L2 , (4.10)

where we have used the fact 0 < α2 < 1
4 .

Thanks to (4.7) and (4.10), we can deduce that for a suitable constant C3,

d
dt

(

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx

)

+ C3

(

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx

)

≤ C
∥
∥∇2(σ L, uL, NL, cL)∥∥2

L2 + Cδ‖c‖2
H1 . (4.11)

Consequently, by the Gronwall inequality, we conclude that

Dh(t) – α2

∫

R3
∇∇σ L · ∇u dx ≤ e–C3t

(

Dh(0) – α2

∫

R3
∇∇σ L

0 · ∇u0 dx
)

+ C
∫ t

0
e–C3(t–τ )∥∥∇2(σ L, uL, NL, cL)(τ )

∥
∥2

L2 dτ

+ Cδ

∫ t

0
e–C3(t–τ )‖c‖2

H1 dτ . (4.12)

This completes the proof of Lemma 4.1. �
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4.2 Decay estimates of the low-medium-frequency parts
Based on the temporal decay estimates from Fourier analysis of linearized systems, we
can derive the estimates of the low-medium frequency part of solutions of the Cauchy
problem. Next, we divide the derivation into three steps.

Step 1: we decouple the velocity u.
First, we define that


 =: (–�)
1
2 , b := 
–1 div u and pu = 
–1 curl u.

Then we have div u = 
b and (curl u)ij := ∂jui – ∂iuj. The system (2.6) can be decoupled
into the following systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σt + μ
b = M1,

bt – μ
σ – ν�b – n∞φ′(ρ∞)
σ = M2,

Nt – �N + n∞
2c = M3,

ct – �c + n∞c = M4,

(σ , b, N , c))(x, t)|t=0 = (σ0, b0, N0, c0)(x)

(4.13)

and

⎧
⎨

⎩

(pu)t – �pu = pM2,

pu(x, t)|t=0 = pu0(x),
(4.14)

where

ν := μ1 + μ2, M2 := 
–1 div M2, b0 := 
–1 div u0.

In fact, the estimate of u translates into the estimate of b and the estimate of pu.
Applying the Fourier transform to (4.13), we get that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ̂t + μ|ξ |b = M̂1,

b̂t – μ|ξ |̂σ + ν|ξ |2̂b – n∞φ′(ρ∞)|ξ |̂σ = M̂2,

N̂t + |ξ |2N̂ + n∞|ξ |2̂c = M̂3,

ĉt + |ξ |2̂c + n∞̂c = M̂4.

(4.15)

We rewrite the above equations in a vector form:

d
dt

⎛

⎜
⎜
⎜
⎝

σ̂

b̂
N̂
ĉ

⎞

⎟
⎟
⎟
⎠

+ H
(|ξ |)

⎛

⎜
⎜
⎜
⎝

σ̂

b̂
N̂
ĉ

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

M̂1

M̂2

M̂3

M̂4

⎞

⎟
⎟
⎟
⎠

, (4.16)
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where

H
(|ξ |) =

⎛

⎜
⎜
⎜
⎝

0 μ|ξ | 0 0
–μ|ξ | – n∞φ′(ρ∞)|ξ | ν|ξ |2 0 0

0 0 |ξ |2 n∞|ξ |2
0 0 0 |ξ |2 + n∞

⎞

⎟
⎟
⎟
⎠

. (4.17)

Define g = |ξ |, then the characteristic polynomial of matrix H is given as follows:

P(λ) =
∣
∣H(g) – λI

∣
∣

:= a0λ
4 – a1λ

3 + a2λ
2 – a3λ + a4, (4.18)

where

a0 = 1, a1 = (2 + ν)g2 + n∞,

a2 = (1 + 2ν)g4 +
(
μ2 + n∞ + n∞ν + n∞φ′(ρ∞)μ

)
g

2,

a3 = νg6 +
(
2μ2 + n∞ν + 2n∞φ′(ρ∞)μ

)
g

4 +
(
n∞μ2 + n2

∞φ′(ρ∞)μ
)
g

2,

a4 =
(
μ2 + n∞φ′(ρ∞)μ

)
g

6 +
(
n∞μ2 + n2

∞φ′(ρ∞)μ
)
g

4. (4.19)

The four solutions of the equation P(λ) = 0 are


1 = g
2 + O

(
g

3), 
2,
3 = ±ig
√|ν2|g2 – 4(μ2 + n∞φ′(ρ∞)μ)

2
+

ν

2
g

2 + O
(
g

3)

and


4 = g
2 + n∞ + O

(
g

3).

Step 2: We shall analyze the asymptotic of the low-intermediate frequency.

Proposition 4.1 For a solution to (̂σ , b̂, N̂ , ĉ), there exists a constant C4, and the following
inequality holds

∣
∣(̂σ , b̂, N̂ , ĉ)(t, ξ )

∣
∣2 ≤ ∣∣Ce–c4|ξ |2t∣∣

∣
∣(̂σ , b̂, N̂ , ĉ)(0, ξ )

∣
∣2. (4.20)

Proof We can derive from the homogeneous linear equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ̂t + μ|ξ |̂b = 0,

b̂t – μ|ξ |̂σ + ν|ξ |2̂b – n∞φ′(ρ∞)|ξ |̂σ = 0,

N̂t + |ξ |2N̂ + n∞|ξ |2̂c = 0,

ĉt + |ξ |2̂c + n∞̂c = 0

(4.21)

that

1
2

d
dt
{|̂σ |2 + |̂b|2 + |N̂ |2} + ν|ξ |2 |̂b|2 + |ξ |2|N̂ |2

x = n∞φ′(ρ∞)|ξ |Re( ¯̂σ b̂) – n∞|ξ |2 Re(¯̂cN̂), (4.22)
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and

1
2

d
dt

|̂c|2 + |ξ |2 |̂c|2 + n∞|̂c|2 = 0. (4.23)

Multiplying (4.21)1 and (4.21)2 by ¯̂b and σ̂ , resp., and then adding the resulting identities
up, we have

d
dt

Re(̂σ ¯̂b) –
[
μ + n∞φ′(ρ∞)

]|ξ |̂σ 2 + μ|ξ |̂b2 = –ν|ξ |2 Re( ¯̂bσ̂ ). (4.24)

Combining –α3|ξ | × (4.24) and (4.22) yields

1
2

d
dt
{|̂σ |2 – 2α3|ξ |Re(̂σ ¯̂b) + |̂b|2 + |N̂ |2}

+
[
μ + n∞φ′(ρ∞)

]
α3|ξ |2σ̂ 2 + (ν – μα3)|ξ |2̂b2 + |ξ |2|N̂ |2

= n∞φ′(ρ∞)|ξ |Re( ¯̂σ b̂) – n∞|ξ |2 Re(¯̂cN̂) + να3|ξ |3 Re( ¯̂bσ̂ ). (4.25)

For any fixed constant α3 > 0, by the Young inequality and a simple calculation, one gets

1
2

d
dt
{|̂σ |2 – 2α3|ξ |Re(̂σ ¯̂b) + |̂b|2 + |N̂ |2}

+
[
μ + n∞φ′(ρ∞)

]
α3|ξ |2σ̂ 2 + (ν – μα3)|ξ |2̂b2 + |ξ |2|N̂ |2

≤ n∞φ′(ρ∞)
2

|ξ |2 |̂σ |2 +
1
2
|̂b|2 +

1
2
|ξ |2|N̂ |2

+
n∞
2

|ξ |2 |̂c|2 +
α3μ

2
|ξ |2 |̂σ |2 +

ν2α3

μ
|ξ |4 |̂b|2. (4.26)

Now we choose the constant α3 satisfying

0 < α3 ≤ min

{
1
2

,
ν

4μ

}

.

Then, we can get from (4.25) and (4.26) that

1
2

d
dt
{|̂σ |2 – 2α3|ξ |Re(̂σ ¯̂b) + |̂b|2 + |N̂ |2}

+
μα3

2
|ξ |2σ̂ 2 +

ν

4
|ξ |2̂b2 +

1
2
|ξ |2|N̂ |2

≤ +
1
2
|̂b|2 +

n∞
2

|ξ |2 |̂c|2 +
ν2α3

μ
|ξ |4 |̂b|2. (4.27)

Let the small constant r0 satisfy |ξ | ≤ r0 ≤ min{ 1
2

√
μ

ν
, 1

2 }. We derive from (4.23) and
(4.27) that

d
dt

Ll(t, ξ ) +
α3μ

2
|ξ |2 |̂σ |2 +

ν

8
|ξ |2 |̂b|2 +

1
2
|ξ |2|N̂ |2 +

r̄0

2
|̂b|2 +

n∞r̄0

2
|ξ |2 |̂c|2 ≤ 0, (4.28)
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where γ̄0 = 2 and

Ll(t, ξ ) :=
1
2
|̂σ |2 – 2α3|ξ |Re(̂σ ¯̂b) +

1
2
|̂b|2 +

1
2
|N̂ |2 + γ̄0 |̂c|2. (4.29)

Since 2α3r0 ≤ 1
2 , we have

Ll(t, ξ ) ∼ |̂σ |2 + |̂b|2 + |N̂ |2 + |̂c|2, (4.30)

which implies that there is a positive constant C4, such that for any |ξ | ≤ r0,

C4|ξ |2Ll(t, ξ ) ≤ α3μ

2
|ξ |2 |̂σ |2 +

ν

8
|ξ |2 |̂b|2 +

1
2
|ξ |2|N̂ |2 +

γ̄0

2
|̂b|2 +

n∞γ̄0

2
|ξ |2 |̂c|2. (4.31)

Consequently, we immediately get (4.20). �

Lemma 4.2 For any given constants r and R with 0 < r < R, there exists a positive constant
j such that

∣
∣e–tG(|ξ |)∣∣≤ Ce(j t) for all r ≤ |ξ | ≤ R and t ∈R

+. (4.32)

For the system (4.21), the inequality (4.32) yields

∣
∣(̂σ , b̂, N̂ , ĉ)(t, ξ )

∣
∣ =
∣
∣e–tG(|ξ |)(̂σ , b̂, N̂ , ĉ)(0, ξ )

∣
∣

≤ Ce–j t∣∣(̂σ , b̂, N̂ , ĉ)(0, ξ )
∣
∣ for all |ξ | ∈ [r, R], (4.33)

where r and R are any given positive constants.

Proof It is easy to check that the eigenvalues of H(ξ ) have positive real parts for sufficiently
small g. Next, we further extend this fact to the case that no condition is required for
large g.

By the Routh–Hurwitz theorem, the roots of the function P(λ) have a positive real part
if and only if the following determinants are positive:

H1 := a1, H2 :=

∣
∣
∣
∣
∣

a1 a0

a3 a2

∣
∣
∣
∣
∣
,

H3 :=

∣
∣
∣
∣
∣
∣
∣

a1 a0 0
a3 a2 a1

0 a4 a3

∣
∣
∣
∣
∣
∣
∣

, H4 :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a0 0 0
a3 a2 a1 0
0 a4 a3 0
0 0 0 a4

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (4.34)

It is clear that H1 > 0 and sgnH3 = sgnH4. Then, we can check that

H2 = a1a2 – a0a3

:= H21g
6 + H22g

4 + H23g
2 > 0, (4.35)
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where the coefficients H21, H22, and H23 are defined by

H21 := 2
(
1 + 2ν + ν2) > 0,

H22 := μ2ν + 3n∞ + 4n∞ν + n∞ν2 + n∞φ′(ρ∞)μν,

H23 := n2
∞ + n2

∞ν. (4.36)

By calculation, we obtain H3 = a3(a1a2 –a0a3)–a2
1a4 > 0. We mediately see the conclusions

in Lemma 4.2 hold; please refer to Sect. 3.3 in [7] for details. �

Step 3: Next, we estimate for p̂u(t, ξ ).
The linearized equations of (4.14) under Fourier transform take the following form:

d
dt

p̂u + μ|ξ |2p̂u = 0. (4.37)

By a direct calculation, it follows from (4.37) that for all |ξ | ≥ 0,

∣
∣p̂u(t, ξ )

∣
∣2 ≤ Ce–μ|ξ |2t∣∣p̂u(0, ξ )

∣
∣2. (4.38)

Finally, exploiting the Fourier analysis of linear systems, we can show the temporal decay
estimates for the low-intermediate part of the Cauchy problem solution in L2

t L2
x-norm.

Let H be a matrix of the differential operators, which enjoys the following form

H =

⎛

⎜
⎜
⎜
⎝

0 μdiv 0 0
μ∇ + n∞φ′(ρ∞)∇ –μ1� – μ2∇ div 0 0

0 0 –� n∞∇2

0 0 0 |ξ |2 + n∞

⎞

⎟
⎟
⎟
⎠

(4.39)

and

U(t) :=
(
σ (t), u(t), N(t), c(t)

)T, U(0) := (σ0, u0, N0, c0)T. (4.40)

Then, we can get the corresponding linear equation problem

⎧
⎨

⎩

d
dtU(t) + HU = 0 for t > 0,

U|t=0 = U(0).
(4.41)

Applying the Fourier transform to (4.41) with respect to the variables x and solving the
ordinary equation with respect to t, we obtain

U(t) = H(t)U(0), (4.42)
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where H(t) = e–tH (t ≥ 0) is the semigroup that generated by the linear operator H and
H(t)f := F–1(e–tHξ f̂ (ξ )) with

Hξ =

⎛

⎜
⎜
⎜
⎝

0 iξT 0 0
iξ μ1|ξ |2δij + μ2ξiξj 0 0
0 0 |ξ |2 n∞|ξ |2
0 0 0 |ξ |2 + n∞

⎞

⎟
⎟
⎟
⎠

. (4.43)

Then, we have the following decay estimate.

Lemma 4.3 Let 1 ≤ p ≤ 2. Then, for any integer k ≥ 0,

∥
∥∇k(

h(t)UL(0)
)∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2
∥
∥U(0)

∥
∥

Lp . (4.44)

Proof Exploiting the Plancherel theorem and (4.20) and then taking r = r0 and R = R0 in
(4.33), we obtain

∥
∥∂k

x
(
σ L, bL, NL, cL)(t)

∥
∥

L2 =
∥
∥(iξ )k(σ̂ L, b̂L, N̂L, ĉL

)∥
∥

L2
ξ

=
(∫

R3

∣
∣(iξ )k(σ̂ L, b̂L, N̂L, ĉL

)
(ξ , t)

∣
∣2 dξ

) 1
2

≤ C
(∫

|ξ |≤R0

∣
∣(ξ )
∣
∣2k∣∣(̂σ , b̂, N̂ , ĉ)(ξ , t)

∣
∣2 dξ

) 1
2

≤ C
(∫

|ξ |≤r0

∣
∣(ξ )
∣
∣2ke–c6|ξ |2t∣∣(̂σ , b̂, N̂ , ĉ)(ξ , 0)

∣
∣2 dξ

) 1
2

+ C
(∫

r0≤|ξ |≤R0

∣
∣(ξ )
∣
∣2ke–j t∣∣(̂σ , b̂, N̂ , ĉ)(ξ , 0)

∣
∣2 dξ

) 1
2

. (4.45)

Using the Hausdorff–Young inequality and Hölder inequality, we get from (4.45) that

∥
∥∂k

x
(
σ L, bL, NL, cL)(t)

∥
∥

L2 ≤ C
∥
∥(̂σ , b̂, N̂ , ĉ)(0)

∥
∥

Lq
ξ
(1 + t)– 3

2 ( 1
2 – 1

q )– k
2

≤ C
∥
∥(σ , u, N , c)(0)

∥
∥

Lp (1 + t)– 3
2 ( 1

p – 1
2 )– k

2 . (4.46)

Here 1 ≤ p ≤ 2 ≤ q ≤ ∞ and 1
p + 1

q = 1. Similarly to the estimate (4.46), using (4.38), we
get

∥
∥∂k

x (pu)L(t)
∥
∥

L2 ≤ C
∥
∥u(0)

∥
∥

Lp (1 + t)– 3
2 ( 1

p – 1
2 )– k

2 . (4.47)

Thanks to (4.46) and (4.47), we immediately get the desired estimate (4.44). �

4.3 Decay rates for the nonlinear system
Next, we establish the time decay estimates of solutions to the nonlinear problem (2.6)
and (2.7). Let us consider the nonhomogeneous problem:

⎧
⎨

⎩

d
dtU + HU = S(U) for t > 0,

U|t=0 = U(0),
(4.48)
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where

S(U) = (M1, M2, M3, M4)T. (4.49)

Based on Duhamel’s principle, the solution of (4.48) can be written as follows

U(t) = h(t)U(0) +
∫ t

0
h(t – τ )S(U)(τ ) dτ . (4.50)

Thus, we have the following conclusion.

Lemma 4.4 Suppose that 1 ≤ p ≤ 2, then for any integer k ≥ 0, there is a positive constant
C5 such that

∥
∥∇k

U
L(t)
∥
∥

L2 ≤ C5(1 + t)– 3
4 – k

2
∥
∥U(0)

∥
∥

L1

+ C5

∫ t
2

0
(1 + t – τ )– 3

4 – k
2
∥
∥S(U)(τ )

∥
∥

L1 dτ

+ C5

∫ t

t
2

(1 + t – τ )– k
2
∥
∥S(U)(τ )

∥
∥

L2 dτ . (4.51)

By combining Lemma 3.2 with Lemma 4.4, we get the time decay rates of solutions to
the nonlinear problem.

Lemma 4.5 By the assumption of Theorem 1.1, we have

∥
∥∇k(σ , u, N)(t)

∥
∥

L2 ≤ C(1 + t)– 3
4 – k

2 for k = 0, 1, 2, (4.52)
∥
∥c(t)

∥
∥

H2 ≤ Ce–Ct . (4.53)

Proof Adding (3.20) and (3.37) together and then using the smallness of δ, we have

d
dt
∥
∥c(t)

∥
∥2

H2 +
1
2
∥
∥∇c(t)

∥
∥2

H2 +
n∞
2
∥
∥∇c(t)

∥
∥2

H2 ≤ 0. (4.54)

Multiplying (4.54) by e
n∞

2 t and integrating the resulting identity over [0, t], we have

∥
∥∇c(t)

∥
∥2

H2 ≤ e– n∞
2 t‖c0‖2

H2 . (4.55)

Thus, we obtain (4.53).
Denote that

G(t) := sup
0≤τ≤t

2∑

m=0

(1 + τ )
3
4 + m

2
∥
∥∇m(σ , u, N)(τ )

∥
∥

L2 . (4.56)

It is easy to see that G(t) is non-decreasing, and we have for 0 ≤ m ≤ 2

∥
∥∇m(σ , u, N)(τ )

∥
∥

L2 ≤ C6(1 + τ )– 3
4 – m

2 G(t) (4.57)

for some positive constant C6 independent of δ, where 0 ≤ τ ≤ t.



Guo et al. Boundary Value Problems         (2022) 2022:37 Page 26 of 30

Thanks to the Hölder inequality (4.57) and assumption (3.1), we get

∥
∥S
(
U(τ )

)∥
∥

L1 �
∥
∥(σ , u, N)

∥
∥

L2

∥
∥∇(σ , u, N , c)

∥
∥

L2

+ ‖N‖L2‖c‖L2 + ‖∇N‖L2‖∇c‖L2

� δG(t)(1 + τ )– 5
4 + δ‖c0‖H2 e– n∞

4 τ (4.58)

and

∥
∥S
(
U(τ )

)∥
∥

L2 �
∥
∥(σ , u, N)

∥
∥

L3

∥
∥∇(σ , u, N , c)

∥
∥

L6

+ ‖N‖L∞‖c‖L2 + ‖∇N‖L3‖∇c‖L6

�
∥
∥(σ , u, N)

∥
∥

H1

∥
∥∇2(σ , u, N , c)

∥
∥

L2

+ ‖∇N‖H1‖c‖L2 + ‖∇N‖H1
∥
∥∇2c

∥
∥

L2

� δ1–ε1 G1+ε1 (t)(1 + τ )–( 7
4 + 3

4 ε1) + δ‖c0‖H2 e– n∞
4 τ , (4.59)

where ε1 ∈ (0, 1
2 ) is a small fixed position constant.

By Lemma 4.4, (4.58), and (4.59), we have for 0 ≤ k ≤ 2

∥
∥∇k

U
L(t)
∥
∥

L2 ≤ C(1 + t)– 3
4 – k

2
∥
∥U(0)

∥
∥

L1 + Cδ‖c0‖H2

∫ t
2

0
(1 + t – τ )– 3

4 – k
2 e– n∞

4 τ dτ

+ Cδ‖c0‖H2

∫ t

t
2

(1 + t – τ )– k
2 e– n∞

4 τ dτ

+ CδG(t)
∫ t

2

0
(1 + t – τ )– 3

4 – k
2 (1 + τ )– 5

4 dτ

+ Cδ1–ε1 G(t)1+ε1

∫ t

t
2

(1 + t – τ )– k
2 (1 + τ )– 7

4 – 3
4 ε1 dτ

≤ C
(∥
∥U(0)

∥
∥

L1 + ‖c0‖H2 + δG(t) + δ1–ε1 G(t)1+ε1
)
(1 + t)– 3

4 – k
2 . (4.60)

From (4.1) and (4.60), we obtain

∥
∥∇2

U(t)
∥
∥2

L2 ≤ Ce–C2t∥∥∇2
U(0)

∥
∥2

L2 + Cδ

∫ t

0
e–C2(t–τ )∥∥c(τ )

∥
∥2

H1 dτ + C
(∥
∥U(0)

∥
∥2

L1 + ‖c0‖2
H2

+ δ2G2(t) + δ2–2ε1 G(t)2+2ε1
)
∫ t

0
e–C2(t–τ )(1 + τ )– 7

2 dτ . (4.61)

Putting (4.55) into (4.61) yields

∥
∥∇2

U(t)
∥
∥2

L2 ≤ C
(∥
∥U(0)

∥
∥2

H2∩L1 + δ2G2(t) + δ2–2ε1 G(t)2+2ε1
)
(1 + τ )– 7

2 . (4.62)

Moreover, by the Frequency decomposition and (A.1), we get for 0 ≤ k ≤ 2

∥
∥∇k

U(t)
∥
∥2

L2 ≤ C
∥
∥∇k

U
L(t)
∥
∥2

L2 +
∥
∥∇k

U
h(t)
∥
∥2

L2

≤ C
∥
∥∇k

U
L∥∥2

L2 +
∥
∥∇2

U
∥
∥2

L2 . (4.63)
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Exploiting (4.60), (4.62), and (4.63) for 0 ≤ k ≤ 2, we have

∥
∥∇k

U(t)
∥
∥2

L2 ≤ C
(∥
∥U(0)

∥
∥2

H2∩L1 + δ2G2(t) + δ2–2ε1 G2+2ε1 (t)
)
(1 + t)– 3

2 –k . (4.64)

Recalling the definition of G(t) and the smallness of δ, we derive from (4.64) that there is
a positive constant C7 independent of δ such that

G2(t) ≤ C7

2
{∥
∥(σ , u, N , c)(0)

∥
∥2

H2∩L1 + δ2G2(t) + δ2–2ε1 G2+2ε1 (t)
}

. (4.65)

Thanks to the Young inequality, we obtain

C7δ
2–2ε1 G2+2ε1 (t) ≤ 1 – ε1

2
C

2
1–ε1

7 +
1 + ε1

2
δ

2(2–ε1)
1+ε1 G4(t). (4.66)

Now we denote

K0 = C7
∥
∥(σ , u, N , c)(0)

∥
∥2

H2∩L1 +
1 – ε1

2
C

2
1–ε1

7 (4.67)

and

Cδ =
1 + ε1

2
δ

4(1–ε1)
1+ε1 . (4.68)

In view of (4.65) and the smallness of δ, we have

G2(t) ≤ K0 + CδG4(t). (4.69)

Now we claim G(t) ≤ C. Assume that G2(t) > 2K0 for any t ∈ [t̄, +∞) with a constant
t̄ > 0. Since G2(0) = ‖(σ0, u0, N0, c0)‖H2 is small and G(t) ∈ C0[0, +∞), there is t0 ∈ (0, t̄)
such that G2(t0) = 2K0.

We obtain from (4.69) that

G2(t0) ≤ K0 + CδG4(t0).

By direct calculation, we obtain

G2(t0) ≤ K0

1 – CδG2(t0)
. (4.70)

Suppose that δ is a small constant such that Cδ < 1
4K0

, i.e. CδG2(t0) < 1
2 . Then we get G2(t0) <

2K0 by (4.70). That is a contradiction with the assumption G2(t0) < 2K0. So, G2(t0) ≤ 2K0

for any t ∈ [t̄, +∞). Noticing that G(t) is non-decreasing, we further get G(t) ≤ C for any
t ∈ [0, +∞). By the definition of G(t) in (4.56), we arrive at (4.52). �

Appendix: Analytic tools
In this section, we will introduce some well-known Sobolev inequalities and a decay esti-
mate, which have been used in the previous sections.



Guo et al. Boundary Value Problems         (2022) 2022:37 Page 28 of 30

Lemma A.1 ([41]) For any given integers q, q0, q1 with q0 ≤ q ≤ q1 ≤ m, it holds that

∥
∥∇qf l∥∥

L2 ≤ rq–q0
0
∥
∥∇q0 f l∥∥

L2 ,
∥
∥∇qf l∥∥

L2 ≤ ∥∥∇q1 f
∥
∥

L2 , (A.1)
∥
∥∇qf h∥∥

L2 ≤ 1
Rq1–q

0

∥
∥∇q1 f h∥∥

L2 ,
∥
∥∇qf h∥∥

L2 ≤ ∥∥∇q1 f
∥
∥

L2 (A.2)

and

rq
0
∥
∥f m∥∥

L2 ≤ ∥∥∇qf m∥∥
L2 ≤ Rq

0
∥
∥f m∥∥

L2 . (A.3)

Proof The above inequalities can be easily verified by the definition of the frequency dis-
tribution and using the Plancherel theorem. �

Lemma A.2 ([25]) Let m ≥ 1 be an integer, then we have

∥
∥∇m(fg)

∥
∥

Lp(Rn) ≤ C‖f ‖Lp1 (Rn)
∥
∥∇mg

∥
∥

Lp2 (Rn) + C
∥
∥∇mf

∥
∥

Lp3 (Rn)‖g‖Lp4 (Rn), (A.4)

where 1 ≤ pi ≤ +∞ (1 ≤ i ≤ 4) and

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4

. (A.5)

Lemma A.3 ([30]) Let f ∈ H2(R3). Then

⎧
⎪⎪⎨

⎪⎪⎩

‖f ‖L∞ ≤ C‖∇f ‖ 1
2 ‖∇‖ 1

2
H1 ≤ C‖∇f ‖H1 ;

‖f ‖L6 ≤ C‖∇f ‖;

‖f ‖Lq ≤ C‖∇f ‖H1 for 2 ≤ q ≤ 6.

(A.6)

Lemma A.4 ([48]) Assume that ‖ψ‖L∞(Rn) ≤ 1. Let f (ψ) be a smooth function of ψ with
bounded derivatives of any order, then for any integer m ≥ 1 and 1 ≤ p ≤ +∞, we have

∥
∥∇mf (ψ)

∥
∥

Lp(Rn) ≤ ∥∥∇mψ
∥
∥

Lp(Rn). (A.7)

Lemma A.5 ([32]) If 0 ≤ i, j ≤ k, we get

∥
∥∇ if

∥
∥

Lq �
∥
∥∇kf

∥
∥1–δ

Lq1

∥
∥∇kf

∥
∥δ

Lq2 . (A.8)

In particular, when q = ∞, we require that δ must satisfy 0 < δ < 1.

Lemma A.6 ([53]) Let a1, a2, a3 ∈ R and a2 > 1, 0 ≤ a1 ≤ a2, a3 > 0, so we have

∫ t

0
(1 + t – τ )–a1 (1 + τ )–a2 dτ ≤ C(a1, a2)(1 + t)–a1 , (A.9)

∫ t

0
(1 + t – τ )–a1 e–a3(t–τ ) dτ ≤ C(a1, a3)(1 + t)–a1 , (A.10)

where t ∈R+, C(a1, a2) > 0 and C(a1, a3) > 0.
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