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Abstract
In this paper, we consider the exterior Dirichlet problem of Hessian equations
σk(λ(D2u)) = g(x) with g being a perturbation of a general positive function at infinity.
By estimating the eigenvalues of the solution, we obtain the necessary and sufficient
conditions of existence of radial symmetric solutions with asymptotic behavior at
infinity.
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1 Introduction
Let � ⊂ R

n be a bounded set, n ≥ 3. In this paper, we consider the exterior Dirichlet
problem of Hessian equations

σk
(
λ
(
D2u

))
= ω(x), x ∈ R

n\�, (1.1)

u = φ(x), x ∈ ∂�, (1.2)

where λ(D2u) are the eigenvalues λ1, . . . ,λn of the Hessian matrix D2u,

σk
(
λ
(
D2u

))
=

∑

1≤i1<···<ik≤n

λi1 · · ·λik

is the kth elementary symmetric function for k = 1, . . . , n, ω ∈ C0(Rn\�) is positive and
φ ∈ C2(∂�). Note that, for k = 1, (1.1) is the Poisson equation �u = ω(x) which is a linear
elliptic equation; for k = n, (1.1) is the notable Monge–Ampère equation det D2u = ω(x)
which is a fully nonlinear elliptic equation.

The exterior Dirichlet problem of Monge–Ampère equations is closely related to the
classical theorem of Jörgens [18] (n = 2), Calabi [8] (n ≤ 5), and Pogorelov [26] (n ≥ 2)
which states that any classical convex solution of det D2u = 1 in R

n must be a quadratic
polynomial. Cheng and Yau [10], Caffarelli [6], Jost and Xin [19], and Trudinger and Wang
[27] also gave related results with the Jörgens–Calabi–Pogorelov theorem. The cases of
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det D2u = f in R
n with f being a periodic function can be referred to Li and Lu [25] and

the references therein.
In 2003, Caffarelli and Li [7] extended the Jörgens–Calabi–Pogorelov theorem to ex-

terior domains and also investigated the existence of solutions to the exterior Dirichlet
problem

⎧
⎨

⎩
det D2u = 1, x ∈R

n\�,

u = φ, x ∈ ∂�.
(1.3)

They got that if � is a smooth, bounded, strictly convex open subset and φ ∈ C2(∂�), then
for any given b ∈ R

n and any given n × n real symmetric positive definite matrix A with
det A = 1, there exists some constant c∗ depending only on n, �, φ, b, and A, such that for
every c > c∗ there exists a unique function u ∈ C∞(Rn\�) ∩ C0(Rn\�) which satisfies (1.3)
and

lim sup
|x|→∞

(
|x|n–2

∣∣
∣∣u(x) –

(
1
2

xT Ax + b · x + c
)∣∣

∣∣

)
< ∞.

Since then, many results of the exterior problem for the fully nonlinear elliptic equations
have been obtained. For instance, in 2011, the first author and Bao [13], the first author
[11] studied the Dirichlet problem of Hessian equation

σk
(
λ
(
D2u

))
= 1 (1.4)

and got the existence and uniqueness of viscosity solutions with the asymptotic behavior

lim sup
x→∞

(
|x|α–2

∣
∣∣
∣u(x) –

(
c∗
2

|x|2 + c
)∣

∣∣
∣

)
< ∞, (1.5)

where α = n or k, c ∈R and

c∗ =
(
1/Ck

n
) 1

k .

In 2013, Wang and Bao [28] studied the necessary and sufficient conditions on the exis-
tence of radially symmetric solutions for the Dirichlet problem outside a unit ball B1 =
B1(0),

⎧
⎨

⎩
σk(λ(D2u)) = 1, x ∈R

n \ B1,

u = constant, x ∈ ∂B1,

with the asymptotic behavior

u(x) =
c∗
2

|x|2 + c + O
(|x|2–n), |x| → ∞, n ≥ 3,

and

u(x) =
1
2
|x|2 +

d
2

ln |x| + c + O
(|x|2–n), |x| → ∞, n = 2,
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where c, d ∈ R. Recently, Li and Lu [24] characterized the existence and nonexistence of
solutions for exterior problem of Monge–Ampère equations

⎧
⎪⎪⎨

⎪⎪⎩

det D2u = 1, x ∈R
n\�,

u = φ(x), x ∈ ∂�,

lim|x|→∞ |u(x) – ( 1
2 x′Ax + b̃ · x + c̃))| = 0,

with det A = 1, b̃ ∈ R
n, c̃ ∈ R. Bao, Li, and Li [2] and Cao and Bao [9] studied the solu-

tions with the generalized asymptotic behavior for exterior Dirichlet problem of Hessian
equation (1.1). The results of the exterior Dirichlet problem for Monge–Ampère equa-
tions can also be referred to [1, 3–5, 17, 20] and the references therein. However, for the
Hessian quotient equations

σk(λ(D2u))
σl(λ(D2u))

= 1,

where 0 ≤ l < k ≤ n, n ≥ 3, and σ0(λ) = 1, one can refer to [12, 21–23]. Note that if l = 0,
the Hessian quotient equation is the Hessian equation. Moreover, for n = 2, the exterior
Dirichlet problem of Monge–Ampère equations can be referred to the earlier works by
Ferrer, Martínez, and Milán [15, 16] using the complex variable methods. One can also
refer to Delanoë [14].

To work in the realm of elliptic equations, we restrict the class of functions. Let


k =
{
λ ∈R

n|σj(λ) > 0, j = 1, . . . , k
}

.

Suppose that u ∈ C2(Rn\�). If λ(D2u) ∈ 
k in R
n\�, we say that u is k-convex.

We shall discuss the necessary and sufficient conditions of existence for radially sym-
metric solutions to the exterior Dirichlet problem of Hessian equation.

Let ω0 ∈ C0(Rn) be positive and radially symmetric in x,

0 < inf
Rn

ω0 ≤ sup
Rn

ω0 < +∞,

and ω ∈ C0(Rn\B1) be a radially symmetric function satisfying for β > 2

ω(x) = ω
(|x|) = ω0

(|x|) + O
(|x|–β

)
, |x| → ∞, (1.6)

and

0 < inf
Rn\B1

ω ≤ sup
Rn\B1

ω < +∞. (1.7)

Suppose that, for k ≤ m ≤ n,

b1 := inf
Rn\B1

(
m|x|nω(x)

m – k
–

∫ |x|

1
ntn–1ω(t) dt

)
> 0. (1.8)

For l = 1, 2, . . . , n, let

�l :=
{

u ∈ C1(
R

n \ B1
) ∩ C2(

R
n \ B1

)|u is an l-convex radially symmetric function
}

,
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and the radially symmetric function

f0
(|x|) =

∫ |x|

0
c∗s1– n

k

[∫ s

0
ntn–1ω0(t) dt

] 1
k

ds, x ∈ R
n.

Theorem 1.1 Let n ≥ 3, 2 ≤ k ≤ m ≤ n, ω satisfy (1.6)–(1.8), and ĉ be a constant. Then,
for m = k, there exists a unique radially symmetric function u ∈ �m satisfying

σk
(
λ
(
D2u

))
= ω(x), x ∈R

n \ B1, (1.9)

u = ĉ, x ∈ ∂B1, (1.10)

and as |x| → ∞,

u(x) =

⎧
⎨

⎩
c + f0(|x|) + O(|x|2–min{β ,n}), if β �= n,

c + f0(|x|) + O(|x|2–n ln |x|), if β = n,
(1.11)

if and only if c ∈ [μ(0), +∞); for m > k, there exists a unique radially symmetric function
u ∈ �m satisfying (1.9)–(1.11) if and only if c ∈ [μ(0),μ(b1)], where

μ(τ ) = ĉ +
∫ ∞

1
c∗s1– n

k

[(∫ s

1
ntn–1ω(t) dt + τ

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds

–
∫ 1

0
c∗s1– n

k

(∫ s

0
ntn–1ω0(t) dt

) 1
k

ds.

(1.12)

Remark 1.2 In fact, f0(|x|) satisfies σk(λ(D2f0)) = ω0(|x|), x ∈R
n\{0}.

Remark 1.3 From Theorem 1.1, we know that if c < μ(0), then (1.9)–(1.11) has no solution.

2 Proof of Theorem 1.1
We first give several lemmas in order to prove Theorem 1.1.

Lemma 2.1 ([28]) Assume that λ = (β̂ , δ̂, . . . , δ̂) ∈ 
m, n ≥ m ≥ 2, then δ̂ > 0.

Lemma 2.2 Assume that λ = (β̂ , δ̂, . . . , δ̂), σk(λ) = ω(r̂), r̂ = |x| > 1, 2 ≤ k ≤ n, then λ ∈ 
m,
k ≤ m ≤ n if and only if 0 < δ̂ < δ̂m(r̂), where

δ̂m(r̂) =

⎧
⎨

⎩

c∗( ω(r̂)
1– k

m
)

1
k , m > k,

+∞, m = k,
(2.1)

and c∗ = (Ck
n)– 1

k .

Proof Since σk(λ) = ω(r̂), r̂ > 1, then

Ck–1
n–1β̂δ̂k–1 + Ck

n–1δ̂
k = ω(r̂).
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So,

β̂ =
δ̂

k
[
nck

∗ω(r̂)δ̂–k – n + k
]
. (2.2)

Because λ ∈ 
m, then for j = 1, 2, . . . , m,

σj(λ) = Cj–1
n–1β̂δ̂j–1 + Cj

n–1δ̂
j > 0,

and so

δ̂j–1(jβ̂ + (n – j)δ̂
)

> 0.

From Lemma 2.1, we know that δ̂ > 0, so

jβ̂ + (n – j)δ̂ > 0.

Then from (2.2) we have that

j
δ̂

k
(
nck

∗δ̂
–kω(r̂) – n + k

)
+ (n – j)δ̂ > 0.

Thus

ck
∗δ̂

–kω(r̂) > 1 –
k
j

, j = 1, 2, . . . , m,

which is equivalent to

ck
∗δ̂

–kω(r̂) > 1 –
k
m

.

That is, for any r̂ > 1,

0 < δ̂ < δ̂m(r̂),

where δ̂m is defined by (2.1). �

Lemma 2.3 Assume that u ∈ C1(Rn \ B1) ∩ C2(Rn \ B1) is a radially symmetric solution to
(1.9) and (1.10). Let

τ := Ck
n
(
u′(1)k).

Then u is k-convex if and only if τ ∈ [0, +∞), and u is m-convex if and only if τ ∈ [0, b1] for
m = k + 1, . . . , n, where b1 is defined by (1.8).

Proof Let

u(x) = u(r̂) = u
(|x|) ∈ C1(

R
n \ B1

) ∩ C2(
R

n \ B1
)
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be a radially symmetric solution to (1.9) and (1.10). By a direct computation, we have

Diju =
(
r̂u′′ – u′)xixj

r̂3 + u′ δij

r̂
, i, j = 1, . . . , n, r̂ > 1,

where

δij =

⎧
⎨

⎩
0, i �= j,

1, i = j.

Then the eigenvalues of the Hessian matrix D2u are

λ1 = u′′, λ2 = · · · = λn =
u′

r̂
.

By Lemma 2.1, we know that

δ̂ =
u′

r̂
> 0 for r̂ > 1.

So τ ≥ 0. From (1.9), we have that

Ck–1
n–1u′′

(
u′

r̂

)k–1

+ Ck
n–1

(
u′

r̂

)k

= ω(r̂),

i.e.,

(
r̂n–k(u′)k)′ =

nr̂n–1ω(r̂)
Ck

n
.

Then

(
u′)k =

r̂k–n

Ck
n

[∫ r̂

1
ntn–1ω(t) dt + Ck

n
(
u′(1)

)k
]

, r̂ > 1. (2.3)

According to Lemma 2.2 and (2.3), we can get that u is m-convex for k ≤ m ≤ n if and only
if

0 < δ̂k =
(

u′

r̂

)k

=
r̂–n[

∫ r̂
1 ntn–1ω(t) dt + τ ]

Ck
n

< δ̂k
m(r),

which is equivalent to

0 ≤ τ < +∞, if m = k,

and

0 ≤ τ <
mr̂nω(r̂)

m – k
–

∫ r̂

1
ntn–1ω(t) dt, r̂ > 1, if m > k. (2.4)
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(2.4) is equivalent to

0 ≤ τ ≤ b1 if m > k.

Then the lemma is proved. �

Lemma 2.4 Let n ≥ 3, and μ(τ ) be defined by (1.12). Then μ(τ ) is strictly increasing in
[0, +∞) and μ(+∞) = +∞.

Proof It is clear that μ(τ ) is strictly increasing in [0, +∞) and μ(+∞) = +∞. �

Proof of Theorem 1.1 In virtue of (2.3), we can get that

u(x) = ĉ +
∫ |x|

1
c∗s1– n

k

[∫ s

1
ntn–1ω(t) dt + τ

] 1
k

ds.

By (1.6), we can assume that ω(|x|) = ω0(|x|) + C0|x|–β , |x| > s0, where C0, s0 are positive
constants and s0 is sufficiently large. Again by (1.12), we have that

u(x) = ĉ +
∫ ∞

1
c∗s1– n

k

[∫ s

1
ntn–1ω(t) dt + τ

] 1
k

ds

–
∫ ∞

|x|
c∗s1– n

k

[∫ s

1
ntn–1ω(t) dt + τ

] 1
k

ds

= ĉ +
∫ ∞

1
c∗s1– n

k

[∫ s

1
ntn–1ω(t) dt + τ

] 1
k

ds

–
∫ ∞

1
c∗s1– n

k

[∫ s

0
ntn–1ω0(t) dt

] 1
k

ds

+
∫ ∞

1
c∗s1– n

k

[∫ s

0
ntn–1ω0(t) dt

] 1
k

ds

–
∫ ∞

|x|
c∗s1– n

k

[∫ s

1
ntn–1ω(t) dt + τ

] 1
k

ds

= ĉ +
∫ ∞

1
c∗s1– n

k

[(∫ s

1
ntn–1ω(t) dt + τ

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds

–
∫ 1

0
c∗s1– n

k

[∫ s

0
ntn–1ω0(t) dt

] 1
k

ds

+
∫ |x|

0
c∗s1– n

k

[∫ s

0
ntn–1ω0(t) dt

] 1
k

ds

+
∫ ∞

|x|
c∗s1– n

k

[∫ s

0
ntn–1ω0(t) dt

] 1
k

ds

–
∫ ∞

|x|
c∗s1– n

k

[∫ s

1
ntn–1ω(t) dt + τ

] 1
k

ds

= μ(τ ) + f0
(|x|)
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–
∫ ∞

|x|
c∗s1– n

k

[(∫ s

1
ntn–1ω(t) dt + τ

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds

= μ(τ ) + f0
(|x|)

–
∫ ∞

|x|
c∗s1– n

k

[(∫ s

s0

ntn–1ω(t) dt + d1

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds

= μ(τ ) + f0
(|x|)

–
∫ ∞

|x|
c∗s1– n

k

[(∫ s

s0

ntn–1(ω0(t) + C0t–β
)

dt + d1

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds, (2.5)

where d1 = τ +
∫ s0

1 ntn–1ω(t) dt.
If β �= n, then (2.5) becomes

μ(τ ) + f0
(|x|)

–
∫ ∞

|x|
c∗s1– n

k

[(∫ s

0
ntn–1ω0(t) dt + d4sn–β + d5 –

∫ s0

0
ntn–1ω0(t) dt

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds

= μ(τ ) + f0
(|x|)

–
∫ ∞

|x|
c∗s1– n

k

(∫ s

0
ntn–1ω0(t) dt

) 1
k
[(

1 +
d4sn–β + d6∫ s

0 ntn–1ω0(t) dt

) 1
k

– 1
]

ds, (2.6)

where d4 = nC0
n–β

, d5 = d1 – d4sn–β
0 , and d6 = d5 –

∫ s0
0 ntn–1ω0(t) dt. Since ω0(t) is bounded,

then as s → +∞,

d4sn–β + d6∫ s
0 ntn–1ω0(t) dt

→ 0.

Therefore, (2.6) approximately equals

μ(τ ) + f0
(|x|) –

∫ ∞

|x|
c∗s1– n

k

(∫ s

0
ntn–1ω0(t) dt

) 1
k 1

k
d4sn–β + d6∫ s

0 ntn–1ω0(t) dt
ds

= μ(τ ) + f0
(|x|) –

∫ ∞

|x|
1
k

c∗d4

(∫ s

0
ntn–1ω0(t) dt

) 1
k –1

s1– n
k +n–β ds

–
∫ ∞

|x|
1
k

c∗d6

(∫ s

0
ntn–1ω0(t) dt

) 1
k –1

s1– n
k ds

= μ(τ ) + f0
(|x|) + O

((∫ |x|

0
ntn–1ω0(t) dt

) 1
k –1

|x|2– n
k +n–β

)

+ O
((∫ |x|

0
ntn–1ω0(t) dt

) 1
k –1

|x|2– n
k

)
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= μ(τ ) + f0
(|x|) + O

(|x|2–β
)

+ O
(|x|2–n)

= μ(τ ) + f0
(|x|) + O

(|x|2–min{β ,n}) as |x| → ∞.

If β = n, then (2.5) becomes

μ(τ ) + f0
(|x|)

–
∫ ∞

|x|
c∗s1– n

k

[(∫ s

0
ntn–1ω0(t) dt + C0n ln s + d2

) 1
k

–
(∫ s

0
ntn–1ω0(t) dt

) 1
k
]

ds

= μ(τ ) + f0
(|x|)

–
∫ ∞

|x|
c∗s1– n

k

(∫ s

0
ntn–1ω0(t) dt

) 1
k
[(

1 +
C0n ln s + d2∫ s

0 ntn–1ω0(t) dt

) 1
k

– 1
]

ds, (2.7)

where d2 = d1 – C0n ln s0 –
∫ s0

0 ntn–1ω0(t) dt. Since

C0n ln s + d2∫ s
0 ntn–1ω0(t) dt

→ 0, s → +∞,

therefore (2.7) approximately equals

μ(τ ) + f0
(|x|) –

∫ ∞

|x|
c∗s1– n

k

(∫ s

0
ntn–1ω0(t) dt

) 1
k 1

k
C0n ln s + d2∫ s

0 ntn–1ω0(t) dt
ds

= μ(τ ) + f0
(|x|) –

∫ ∞

|x|
c∗s1– n

k
1
k

C0n ln s + d2

(
∫ s

0 ntn–1ω0(t) dt)1– 1
k

ds

= μ(τ ) + f0
(|x|) + O

((∫ |x|

0
ntn–1ω0(t) dt

) 1
k –1

|x|2– n
k ln |x|

)

= μ(τ ) + f0
(|x|) + O

(|x|2–n ln |x|) as |x| → ∞.

Consequently, we have that as |x| → ∞,

u(x) =

⎧
⎨

⎩
μ(τ ) + f0(|x|) + O(|x|2–min{β ,n}), if β �= n,

μ(τ ) + f0(|x|) + O(|x|2–n ln |x|), if β = n.
(2.8)

Comparing (2.8) with (1.11), by Lemmas 2.3 and 2.4, we know that, for m = k, u is m-
convex if and only if c ∈ [μ(0), +∞); for m > k, u is m-convex if and only if c ∈ [μ(0),μ(b1)].
Theorem 1.1 is proved. �
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