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Abstract
In this paper, we discuss the oscillatory behavior of solutions of a class of Super-linear
fourth-order differential equations with several sub-linear neutral terms using the
Riccati and generalized Riccati transformations. Some Kamenev–Philos-type
oscillation criteria are established. New oscillation criteria are deduced in both
canonical and non-canonical cases. An illustrative example is given.
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1 Introduction
The aim of this paper is to discuss the oscillatory behavior of solutions of a class of super-
linear fourth-order neutral differential equations of the type,

(
r(t)

(
z′′′(t)

)γ )′ +
m∑

i=1

fi
(
t, x

(
τi(t)

))
= 0, t ≥ t0, (1.1)

where z(t) = x(t) +
∑n

j=1 aj(t)xαj (σj(t)), m, n are positive integers, and αj, γ are ratios of odd
positive integers and 0 < αj ≤ 1, γ ≥ 1, under the conditions

R(t0) =
∫ ∞

t0

1

r
1
γ (t)

dt = ∞, (1.2)

and

R(t0) =
∫ ∞

t0

1

r
1
γ (t)

dt < ∞. (1.3)

Throughout the paper, we assume the following assumptions
(A1) r(t) ∈ C1([t0,∞), (0,∞)), r′(t) ≥ 0;
(A2) aj(t),σj(t), τi(t) ∈ C[t0,∞)), σj(t) ≤ t, limt→∞ σj(t) = ∞;
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(A3) there exists a function τ ∈ C1([t0,∞), R) such that τ (t) ≤ τi(t) for i = 1, 2, . . . , m,
τ (t) ≤ t, τ ′(t) > 0 and limt→∞ τ (t) = ∞;

(A4) 0 ≤ aj(t) ≤ a0j(t),
∑n

j=1 a0j(t) < 1, fi(t, x) ∈ C([t0,∞) × R, R) satisfy xfi(t, x) > 0 for
all x �= 0, and there exist positive continuous functions qi(t) defined on [t0,∞) such
that |fi(t, x)| ≥ qi(t)|x|γ .

By a solution of (1.1), we mean a nontrivial real function x(t) such that r(t)([x(t) +
∑n

j=1 aj(t)xαj (σj(t))]′′′)γ is continuously differentiable satisfying (1.1) for any t1 ≥ t0.
A solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually

negative; otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all
its solutions are oscillatory.

Oscillation phenomena take part in different models from real-world applications; see,
e.g., paper [8] for more details. In the last three decades, there has been considerable in-
terest in studying the oscillation of solutions of several kinds of differential equations [1–
5, 7, 8, 10–20, 22–24, 26–39]. The half-linear equations have numerous applications in
the study of p-Laplace equations, non-Newtonian fluid theory, porous medium, etc.; see,
e.g., papers [6, 21, 25] for more details. In particular, papers [11, 24] were concerned with
the oscillation of various classes of half-linear differential equations, whereas the papers
[3–5, 7, 10, 20, 26, 38] were concerned with the oscillatory behavior of the fourth-order
differential equation (1.1) and its special cases. In what follows, we briefly comment on
a number of closely related results which motivated our work. The authors in [3, 4, 26]
discussed in their recent papers, the special case of (1.1) of the form,

(
r(t)

([
x(t) + p(t)x

(
τ (t)

)]′′′)α)′ + q(t)xβ
(
δ(t)

)
= 0. (1.4)

Under the condition (1.2), Dassios and Bazighifan in [10] discussed the oscillation of the
same equation under condition (1.3). In [20], Li et al. studied the oscillatory behavior of a
class of fourth-order differential equations with the p-Laplacian-like operator of the type,

(
r(t)

∣∣z′′′(t)
∣∣p–2z′′′(t)

)′ +
l∑

i=1

qi(t)
∣∣x

(
τi(t)

)∣∣p–2x
(
τi(t)

)
= 0, (1.5)

where z(t) = x(t)+a(t)x(σ (t)). Under the condition
∫ ∞

t0
1

r
1

p–2 (t)
dt < ∞, they used the Riccati

transformation and integral averaging technique and presented a Kamenev-type oscilla-
tion criterion.

More recently, Bazighifan et al. [5] studied the asymptotic behavior of solutions of the
fourth-order neutral differential equation with the continuously distributed delay of the
form

(
r(t)

([
x(t) + p(t)x

(
φ(t)

)]′′′)α)′ +
∫ b

a
q(t, θ )xβ

(
δ(t, θ )

)
dθ = 0, (1.6)

where α, β are quotients of odd positive integers, and β ≥ α under the condition (1.2).

2 Preliminaries
The following preliminary results will be needed for our proofs.
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Lemma 1 ([9]) Let h > 0. Then

hα ≤ αh + (1 – α), 0 < α ≤ 1.

Lemma 2 ([28]) Let z(t) be a positive and n-times differentiable function on an interval
[T ,∞) with non-positive nth derivative z(n)(t) on [T ,∞), which is not identically zero on
any interval of the form [T ′,∞), T ′ ≥ T and such that z(n–1)(t)z(n)(t) ≤ 0. Then, there exist
constants 0 < θ < 1 and N > 0 such that z′(θ t) ≥ Ntn–2z(n–1)(t) for all sufficient large t.

Lemma 3 ([26]) Let z(n)(t) be of fixed sign and z(n–1)(t)z(n)(t) ≤ 0 for all t ≥ t1. If
limt→∞ z(t) �= 0, then for every λ ∈ (0, 1), there exists tλ ≥ t such that z(t) ≥ λ

(n–1)! t
n–1 ×

|z(n–1)(t)| for t ≥ tλ.

Lemma 4 ([2]) Let α is a ratio of two odd numbers. Suppose that U , V are constants with
V > 0. Then, UY – VY

(γ +1)
γ ≤ γ γ

(γ +1)γ +1
Uγ +1

Vγ .

Lemma 5 Assume that x(t) is an eventually positive solution of (1.1), z′(t) > 0, and there
exists a positive decreasing function δ(t) ∈ C([t0,∞)) tending to zero such that θ (τi(t)) > 0
for t ≥ t0 where θ (t) = 1 –

∑n
j=1 αjaj(t) – 1

δ(t)
∑n

j=1(1 – αj)aj(t). Then,

(
r(t)

(
z′′′(t)

)γ )′ ≤ –
m∑

i=1

qi(t)θγ
(
τi(t)

)
zγ

(
τ (t)

)
. (2.1)

Proof Let x be an eventually positive solution of Eq. (1.1). Then, there exists a t1 ≥ t0 such
that x(t) > 0, x(σj(t)) > 0 and x(τi(t)) > 0 for t ≥ t1. Now from the definition of z, we have

x(t) = z(t) –
n∑

j=1

aj(t)xαj
(
σj(t)

) ≥ z(t) –
n∑

j=1

aj(t)zαj
(
σj(t)

) ≥ z(t) –
n∑

j=1

aj(t)zαj (t).

Then, by Lemma 1, we have

x(t) ≥
(

1 –
n∑

j=1

αjaj(t)

)

z(t) –
n∑

j=1

(1 – αj)aj(t).

Now since z(t) is positive and increasing, and δ(t) is a positive decreasing function tending
to zero, then there exists a t2 ≥ t1 such that z(t) ≥ δ(t), and

x(t) ≥
[

1 –
n∑

j=1

αjaj(t) –
1

δ(t)

n∑

j=1

(1 – αj)aj(t)

]

z(t), for t ≥ t2.

That is x(t) ≥ θ (t)z(t). Therefore, from (1.1), it follows that

(
r(t)

(
z′′′(t)

)γ )′ ≤ –
m∑

i=1

qi(t)θγ
(
τi(t)

)
zγ

(
τi(t)

) ≤ –
m∑

i=1

qi(t)θγ
(
τi(t)

)
zγ

(
τ (t)

)
.

Thus, the proof is completed. �

The following two auxiliary results are very similar to those reported in [3] and [10].
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Lemma 6 Let x(t) be a positive solution of (1.1). If (1.2) is satisfied, then there exists t ≥ t1

such that

z(t) > 0, z′(t) > 0, z′′′(t) > 0, z(4)(t) < 0,
(
r(t)

(
z′′′(t)

)γ )′ ≤ 0.

Lemma 7 Let x(t) be a positive solution of (1.1). If (1.3) is satisfied, then there exist three
possible cases for sufficiently large t ≥ t1

(S1) z(t) > 0, z′(t) > 0, z′′′(t) > 0, z(4)(t) ≤ 0;
(S2) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) < 0;
(S3) z(t) > 0, z′(t) < 0, z′′(t) > 0, z′′′(t) < 0.

3 Main results
We first consider the case R(t0) = ∞.

Theorem 8 If there exist η(t) ∈ C1([t0,∞), (0,∞)), b(t) ∈ C1([t0,∞), [0,∞)), ζ ∈ (0, 1) and
ε > 0 such that

lim sup
t→∞

∫ t

t0

[
Q(s) –

r(s)η(s)
(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds = ∞, (3.1)

then (1.1) is oscillatory, where Q(t) = η(t)
∑m

i=1 qi(t)θγ (τi(t))–η(t)[r(t)b(t)]′ +ζ ετ ′(t)τ 2(t) ×
r(t)η(t)b1+ 1

γ (t).

Proof Suppose for the contrary that x is an eventually positive solution of (1.1). Then there
exists a t1 ≥ t0 such that x(t) > 0, x(σj(t)) > 0 and x(τi(t)) > 0 for t ≥ t1. Using Lemma 5, we
obtain (2.1). Define

ψ(t) = η(t)
[

r(t)(z′′′(t))γ

zγ (ζ τ (t))
+ r(t)b(t)

]
, t ≥ t1. (3.2)

It is clear that ψ(t) > 0 for t ≥ t1, and

ψ ′(t) =
η′(t)
η(t)

ψ(t) + η(t)
[
r(t)b(t)

]′ + η(t)
(r(t)(z′′′(t))γ )′

zγ (ζ τ (t))

– η(t)
γ ζ r(t)τ ′(t)(z′′′(t))γ z′(ζ τ (t))

zγ +1(ζ τ (t))
.

Thus, by (2.1), it follows that

ψ ′(t) ≤ η′(t)
η(t)

ψ(t) + η(t)
[
r(t)b(t)

]′ – η(t)
∑m

i=1 qi(t)θγ (τi(t))zγ (τ (t))
zγ (ζ τ (t))

– η(t)
γ ζ r(t)τ ′(t)(z′′′(t))γ z′(ζ τ (t))

zγ +1(ζ τ (t))
.

By Lemma 2, we have

z′(ζ τ (t)
) ≥ ετ 2(t)z′′′(τ (t)

) ≥ ετ 2(t)z′′′(t).
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However, since z(t) is increasing, then z(τ (t)) ≥ z(ζ τ (t)). Therefore,

ψ ′(t) ≤ η′(t)
η(t)

ψ(t) + η(t)
[
r(t)b(t)

]′ – η(t)
m∑

i=1

qi(t)θγ
(
τi(t)

)

– η(t)
γ ζεr(t)τ ′(t)τ 2(t)(z′′′(t))γ +1

zα+1(ζ τ (t))
.

Moreover, since from (3.2), we have

z′′′(t)
z(ζ τ (t))

=
1

r
1
γ (t)

[
ψ(t)
η(t)

–
[
r(t)b(t)

]]
1
γ

,

then

ψ ′(t) ≤ η′(t)
η(t)

ψ(t) + η(t)
[
r(t)b(t)

]′ – η(t)
m∑

i=1

qi(t)θγ
(
τi(t)

)

– γ ζετ ′(t)τ 2(t)
η(t)

r
1
γ (t)

(
ψ(t)
η(t)

–
[
r(t)b(t)

])
γ +1
γ

. (3.3)

As in [35], we use the inequality

M1+ 1
γ – (M – N)1+ 1

γ ≤ N
1
γ

[(
1 +

1
γ

)
M –

1
γ

N
]

, MN ≥ 0,γ ≥ 1,

with

M =
ψ(t)
η(t)

and N = r(t)b(t),

to get

(
ψ(t)
η(t)

–
[
r(t)b(t)

])
γ +1
γ

≥
[

ψ(t)
η(t)

]1+ 1
γ

+
1
γ

[
r(t)b(t)

]1+ 1
γ

–
(

1 +
1
γ

)
[r(t)b(t)]

1
γ

η(t)
ψ(t). (3.4)

Using inequalities (3.3) and (3.4), for t ≥ T , we have

ψ ′(t) ≤ η′(t)
η(t)

ψ(t) + η(t)
[
r(t)b(t)

]′ – η(t)
m∑

i=1

qi(t)θγ
(
τi(t)

)

+ γ ζετ ′(t)τ 2(t)
η(t)

r
1
γ (t)

[(
1 +

1
γ

)
[r(t)b(t)]

1
γ

η(t)
ψ(t)

–
1
γ

[
r(t)b(t)

]1+ 1
γ –

ψ
1+ 1

γ (t)

η
1+ 1

γ (t)

]
.
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Then,

ψ ′(t) ≤ η(t)

(
[
r(t)b(t)

]′ –
m∑

i=1

qi(t)θγ
(
τi(t)

)
)

+
[

η′(t)
η(t)

+ (γ + 1)ζ ετ ′(t)τ 2(t)b
1
γ (t)

]
ψ(t)

–
γ ζετ ′(t)τ 2(t)

r
1
γ (t)η

1
γ (t)

ψ
1+ 1

γ (t) – ζ ετ ′(t)τ 2(t)r(t)η(t)b1+ 1
γ (t),

i.e.

ψ ′(t) ≤ –Q(t) +
[

η′(t)
η(t)

+ (γ + 1)ζ ετ ′(t)τ 2(t)b
1
γ (t)

]
ψ(t)

–
γ ζετ ′(t)τ 2(t)

r
1
γ (t)η

1
γ (t)

ψ
1+ 1

γ (t). (3.5)

Now let

U =
η′(t)
η(t)

+ (γ + 1)ζ ετ ′(t)τ 2(t)b
1
γ (t),

V =
γ ζετ ′(t)τ 2(t)

r
1
γ (t)η

1
γ (t)

and Y = ψ(t).

Then, by Lemma 4, we obtain

[
η′(t)
η(t)

+ (γ + 1)ζ ετ ′(t)τ 2(t)b
1
γ (t)

]
ψ(t) –

γ ζετ ′(t)τ 2(t)

r
1
γ (t)η

1
γ (t)

ψ
1+ 1

γ (t)

≤ γ γ r(t)η(t)
(γ + 1)γ +1

[ η′(t)
η(t) + (γ + 1)ζ ετ ′(t)τ 2(t)b

1
γ (t)]γ +1

γ γ [ζ ετ ′(t)τ 2(t)]γ
.

Thus, we have

ψ ′(t) ≤ –Q(t) +
r(t)η(t)

(γ + 1)γ +1

[ η′(t)
η(t) + (γ + 1)ζ ετ ′(t)τ 2(t)b

1
γ (t)]γ +1

[ζ ετ ′(t)τ 2(t)]γ
. (3.6)

Integrating (3.6) from T to t, we get

∫ t

T

[
Q(s) –

r(s)η(s)
(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds ≤ ψ(T),

which contradicts (3.1), and this completes the proof. �

The following result deals with the Kamenev-type oscillation for Eq. (1.1) under the
condition (1.2).



El-Gaber et al. Boundary Value Problems         (2022) 2022:41 Page 7 of 14

Theorem 9 If

lim sup
t→∞

1
tn

∫ t

t0

(t – s)n
[

Q(s) –
r(s)η(s)

(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds

= ∞, (3.7)

then (1.1) is oscillatory.

Proof Let x be a nonoscillatory solution of (1.1) on [t0,∞). Without loss of generality,
we may assume that x is an eventually positive solution. Define ψ(t) as in (3.2). Then,
following the same steps as in the proof of Theorem 8, we arrive at (3.6). Multiplying (3.6)
by (t – s)n and integrating the resulting inequality from t0 to t, we have

–
∫ t

t0

(t – s)nψ ′(s) ds

≥
∫ t

t0

(t – s)n
[

Q(s) –
r(s)η(s)

(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds. (3.8)

However, since
∫ t

t0

(t – s)nψ ′(s) ds = n
∫ t

t0

(t – s)n–1ψ(s) ds – (t – t0)nψ(t0),

then from (3.8), we get

(t – t0)nψ(t0) – n
∫ t

t0

(t – s)n–1ψ(s) ds

≥
∫ t

t0

(t – s)n
[

Q(s) –
r(s)η(s)

(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds.

Hence,

1
tn

∫ t

t0

(t – s)n
[

Q(s) –
r(s)η(s)

(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds

≤
(

t – t0

t

)n

ψ(t0),

and so

lim sup
t→∞

1
tn

∫ t

t0

(t – s)n
[

Q(s) –
r(s)η(s)

(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds

→ ψ(t0),

which contradicts (3.7), and this completes the proof. �

Now we are going to discuss the so called Philos-type oscillation criteria for Eq. (1.1)
under condition (1.2), but we first outline the following definition.
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Definition 10 Let D = {(t, s) ∈ R2 : t ≥ s ≥ t0} and D0 = {(t, s) ∈ R2 : t > s ≥ t0}. The func-
tions Ki(t, s) ∈ C(D, R), i = 1, 2 are said to belong to the class X (written Ki ∈ X) if they
satisfy

(I) Ki(t, t) = 0 for t ≥ t0, Ki(t, s) > 0, (t, s) ∈ D0

(II) ∂Ki(t,s)
∂s ≤ 0, and there exist ρ(t) ∈ C1([t0,∞), (0,∞)) and Li(t, s) ∈ C(D, R) such that

–
∂K1(t, s)

∂s
= K1(t, s)

[
η′(t)
η(t)

+ (γ + 1)ζ ετ ′(t)τ 2(t)b
1
γ (t)

]
+ L1(t, s),

and

∂K2(t, s)
∂s

+
ρ ′(t)
ρ(t)

K2(t, s) =
L2(t, s)
ρ(t)

[
K2(t, s)

] γ
γ +1 .

Theorem 11 Assume that there exists a function K1 ∈ X such that

lim sup
t→∞

1
K1(t, t0)

∫ t

t0

[
K1(t, s)Q(s) –

r(s)η(s)
(γ + 1)γ +1

[|L1(t, s)|]γ +1

[ζ ετ ′(s)τ 2(s)K1(t, s)]γ

]
ds = ∞. (3.9)

Then, Eq. (1.1) is oscillatory.

Proof Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume
that x is an eventually positive solution of (1.1). Now define ψ(t) as in (3.2). Following the
same steps as in the proof of Theorem 8, we arrive at (3.5). Multiplying (3.5) by K1(t, s) and
integrating the resulting inequality from T to t, we have

∫ t

T
K1(t, s)Q(s) ds ≤

∫ t

T
K1(t, s)

[
–ψ ′(s) + A(s)ψ(s) – B(s)ψ1+ 1

γ (s)
]

ds,

where

A(t) =
η′(t)
η(t)

+ (γ + 1)ζ ετ ′(t)τ 2(t)b
1
γ (t), B(t) =

ζγ ετ ′(t)τ 2(t)

r
1
γ (t)η

1
γ (t)

.

Then, we have

∫ t

T
K1(t, s)Q(s) ds ≤ K1(t, T)ψ(T) +

∫ t

T

[
∂K1(t, s)

∂s
+ K1(t, s)A(s)

]
ψ(s) ds

–
∫ t

T
K1(t, s)B(s)ψ1+ 1

γ (s) ds

= K1(t, T)ψ(T) –
∫ t

T
L1(t, s)ψ(s) ds –

∫ t

T
K1(t, s)B(s)ψ1+ 1

γ (s) ds

≤ K1(t, T)ψ(T) +
∫ t

T

[∣∣L1(t, s)
∣
∣ψ(s) – K1(t, s)B(s)ψ1+ 1

γ (s)
]

ds.

Putting U = |L1(t, s)|, V = K1(t, s)B(s) and then using Lemma 4, we obtain

∣∣L1(t, s)
∣∣ψ(s) – K1(t, s)B(s)ψ1+ 1

γ (s) ≤ γ γ

(γ + 1)γ +1
|L1(t, s)|γ +1

[K1(t, s)B(s)]γ
.
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Then,

∫ t

T
K1(t, s)Q(s) ds ≤ K1(t, T)ψ(T) +

∫ t

T

r(s)η(s)
(γ + 1)γ +1

[|L1(t, s)|]γ +1

[ζ ετ ′(s)τ 2(s)K1(t, s)]γ
ds.

Hence,

1
K1(t, T)

∫ t

T

[
K1(t, s)Q(s) –

r(s)η(s)
(γ + 1)γ +1

[|L1(t, s)|]γ +1

[ζ ετ ′(s)τ 2(s)K1(t, s)]γ

]
ds ≤ ψ(T),

for all sufficiently large t, which contradicts (3.9). �

Theorem 12 Assume that

lim inf
t→∞

1
φ∗

1 (t)

∫ ∞

t
φ2(s)

[
φ∗

1 (s)
] γ +1

γ ds >
γ

(γ + 1)
γ +1
γ

(3.10)

where

φ1(t) =
m∑

i=1

qi(t)θγ
(
τi(t)

)
, φ2(t) =

γ ζετ ′(t)τ 2(t)

r
1
γ (t)

, and

φ∗
1 (t) =

∫ ∞

t
φ1(s) ds.

Then, (1.1) is oscillatory.

Proof Assume that x(t) is an eventually positive solution of (1.1). Then, there exists a t1 ≥
t0 such that x(t) > 0, x(σj(t)) > 0 and x(τi(t)) > 0 for t ≥ t1. Using Lemma 5, we arrive at
(2.1). Define

ω(t) =
r(t)(z′′′(t))γ

zγ (ζ τ (t))
.

Then, it is clear by (2.1) that

ω′(t) ≤ –
∑m

i=1 qi(t)θγ (τi(t))zγ (τ (t))
zγ (ζ τ (t))

–
γ ζτ ′(t)r(t)(z′′′(t))γ z′(ζ τ (t))

zγ +1(ζ τ (t))

Since, by Lemma 2, we have

z′(ζ τ (t)
) ≥ ετ 2(t)z′′′(τ (t)

) ≥ ετ 2(t)z′′′(t),

then

ω′(t) ≤ –
m∑

i=1

qi(t)θγ
(
τi(t)

)
–

γ ζετ ′(t)τ 2(t)r(t)(z′′′(t))γ +1

zγ +1(ζ τ (t))

i.e.

ω′(t) + φ1(t) + φ2(t)ω
γ +1
γ (t) ≤ 0.
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Integrating the above inequality from t to l, we get

ω(l) – ω(t) +
∫ l

t
φ1(s) ds +

∫ l

t
φ2(s)ω

γ +1
γ (s) ds ≤ 0.

Letting l → ∞ and using the fact that ω(t) is positive and decreasing, we get

ω(t)
φ∗

1 (t)
≥ 1 +

1
φ∗

1 (t)

∫ ∞

t
φ2(s)

[
φ∗

1 (s)
] γ +1

γ

[
ω(s)
φ∗

1 (s)

] γ +1
γ

ds. (3.11)

Let δ = inft≥T
ω(t)
φ∗

1 (t) . Then obviously δ ≥ 1, and by (3.10) and (3.11), it follows that

δ ≥ 1 + γ

(
δ

γ + 1

) γ +1
γ

,

which contradicts the admissible values of δ ≥ 1 and γ ≥ 1. Therefore, the proof is com-
pleted. �

4 The case R(t0) < ∞
Now we are going to discuss the oscillatory behavior of Eq. (1.1) under the condition (1.3).
First we need the following lemma.

Lemma 13 Assume that x is an eventually positive solution of Eq. (1.1) and (S2) holds. If

ϑ(t) = ρ(t)
r(t)[z′′′(t)]γ

[z′′(t)]γ
, (4.1)

then

ϑ ′(t) ≤ ρ ′(t)
ρ(t)

ϑ(t) – ρ(t)
[
λ

2
τ 2(t)

]γ m∑

i=1

qi(t)θγ
(
τi(t)

)
–

γϑγ +1(t)

r
1
γ (t)ρ

1
γ (t)

, λ ∈ (0, 1). (4.2)

Proof Since x is an eventually positive solution of Eq. (1.1) and (S2) holds, then using
Lemma 5, we obtain (2.1). Now from Eq. (4.1), we see that ϑ(t) < 0 for t ≥ t1, and

ϑ ′(t) =
ρ ′(t)
ρ(t)

ϑ(t) + ρ(t)
[r(t)[z′′′(t)]γ ]′

[z′′(t)]γ
–

γρ(t)r(t)[z′′′(t)]γ +1

[z′′(t)]γ +1 .

This with (2.1) and (4.1) leads to

ϑ ′(t) ≤ ρ ′(t)
ρ(t)

ϑ(t) – ρ(t)
∑m

i=1 qi(t)θγ (τi(t))zγ (τ (t))
[z′′(t)]γ

–
γ [ϑ(t)]γ +1

r
1
γ (t)ρ

1
γ (t)

,

i.e.

ϑ ′(t) ≤ ρ ′(t)
ρ(t)

ϑ(t) – ρ(t)
∑m

i=1 qi(t)θγ (τi(t))zγ (τ (t))[z′′(τ (t))]γ

[z′′(τ (t))]γ [z′′(t)]γ
–

γ [ϑ(t)]γ +1

r
1
γ (t)ρ

1
γ (t)

.
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Now since z′′(t) is decreasing, then it follows that – z′′(τ (t))
z′′(t) ≤ –1. Consequently, by

Lemma 3, we have z(τ (t)) ≥ λ
2 τ 2(t)z′′(τ (t)). Then

ϑ ′(t) ≤ ρ ′(t)
ρ(t)

ϑ(t) – ρ(t)
[
λ

2
τ 2(t)

]γ m∑

i=1

qi(t)θγ
(
τi(t)

)
–

γ [ϑ(t)]γ +1

r
1
γ (t)ρ

1
γ (t)

.

The proof is completed. �

Theorem 14 Suppose that (3.9) holds, and

lim sup
t→∞

∫ t

t0

[

K2(t, s)ρ(s)
[
λ

2
τ 2(s)

]γ m∑

i=1

qi(s)θγ
(
τi(s)

)

–
r(s)

(γ + 1)γ +1ργ (s)
[
L2(t, s)

]γ +1
]

ds > 0. (4.3)

If

∫ ∞

t0

R(s) ds = ∞, (4.4)

or
∫ ∞

t0

∫ ∞

u
R(s) ds du = ∞, (4.5)

then Eq. (1.1) is oscillatory.

Proof Suppose for the contrary that there exists a nonoscillatory solution x(t) > 0 of (1.1).
Then, we have one of the three possible cases of Lemma 7. We first assume that (S1) holds.
Then by Theorem 11, if (3.9) holds, Eq. (1.1) is oscillatory. Secondly, if (S2) holds, then by
Lemma 13, we get (4.2). Multiplying (4.2) by K2(t, s) and integrating from t1 to t, we obtain

∫ t

t1

K2(t, s)ρ(s)
[
λ

2
τ 2(s)

]γ m∑

i=1

qi(s)θγ
(
τi(s)

)
ds

≤ K2(t, t1)ω(t1) +
∫ t

t1

[
∂K2(t, s)

∂s
+

ρ ′(s)
ρ(s)

K2(t, s)
]
ω(s) ds – γ

∫ t

t1

K2(t, s)
ω

γ +1
γ (s)

r
1
γ (s)ρ

1
γ (s)

ds

= K2(t, t1)ω(t1) +
∫ t

t1

L2(t, s)
ρ(s)

[
K2(t, s)

] γ
γ +1 ω(s) ds – γ

∫ t

t1

K2(t, s)
ω

γ +1
γ (s)

r
1
γ (s)ρ

1
γ (s)

ds.

Setting

V =
γ K2(t, s)

r
1
γ (s)ρ

1
γ (s)

, U =
L2(t, s)
ρ(s)

[
K2(t, s)

] γ
γ +1 and Y = ω(s).

Then, by Lemma 4, we have

L2(t, s)
ρ(s)

[
K2(t, s)

] γ
γ +1 ω(s) –

γ K2(t, s)ω
γ +1
γ (s)

r
1
γ (s)ρ

1
γ (s)
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≤ 1
(γ + 1)γ +1

[
L2(t, s)

](γ +1) r(s)
ργ (s)

.

Hence,

∫ t

t1

[

K2(t, s)ρ(s)
[
λ

2
τ 2(s)

]γ m∑

i=1

qi(s)θγ
(
τi(s)

)
–

r(s)
(γ + 1)γ +1ργ (s)

[
L2(t, s)

]γ +1
]

ds

≤ K2(t, t1)ω(t1) < 0.

This contradicts (4.3). Finally, assume the case (S3). Hence, since r(t)(z′′′(t))γ is nonin-
creasing, then for s ≥ t ≥ t1, we have

r
1
γ (s)

(
z′′′(s)

) ≤ r
1
γ (t)

(
z′′′(t)

)
.

Going through as in the proof of Theorem 2.3 case 1 in [20], we get a contradiction with
(4.4) and (4.5), and so the proof is completed. �

Remark 15 Theorem 14 remains true if we used (3.1), or (3.7), or (3.10) instead of (3.9).

5 Example
Example 16 Consider the fourth-order differential equation

(
t
[

x(t) +
1
t3 x

1
3 (t – 2) +

1
t4 x

1
5 (t – 3)

]′′′)′
+

3
t

x(t) +
1
t3 x(2t) = 0, t ≥ 2. (5.1)

Here γ = 1, r(t) = t, a1 = 1
t3 , a2 = 1

t4 , α1 = 1
3 , α2 = 1

5 , q1 = 3
t , q2 = 1

t3 , τ1(t) = t, τ2(t) = 2t.
Let τ (t) = t

2 → τ (t) ≤ τi(t), limt→∞ τ (t) = ∞, τ ′(t) = 1
2 > 0. Therefore, the conditions

(A1) – (A5) and (1.2) are satisfied. Choosing δ(t) = 1
t . Then δ(t) → 0 for t → ∞. More-

over, θ (τ1(t)) = θ (t) = [1 – 2
3t2 – 17

15t3 – 1
5t4 ] > 0 for t ≥ 2, and θ (τ2(t)) = θ (2t) = [1 – 1

6t2 –
17

120t3 – 1
80t4 ] > 0 for t ≥ 2. Choosing η(t) = 1, b(t) = 1

t2 , we have

Q(t) = η(t)
m∑

i=1

qi(t)θγ
(
τi(t)

)
– η(t)

[
r(t)b(t)

]′ + ζ ετ ′(t)τ 2(t)r(t)η(t)b1+ 1
γ (t)

=
1
t

[(
3 +

ζ ε

8

)
+

1
t

–
1
t2 –

17
5t3 –

23
30t4 –

17
120t5 –

1
80t6

]
,

lim sup
t→∞

∫ t

t0

[
Q(s) –

r(s)η(s)
(γ + 1)γ +1

[ η′(s)
η(s) + (γ + 1)ζ ετ ′(s)τ 2(s)b

1
γ (s)]γ +1

[ζ ετ ′(s)τ 2(s)]γ

]
ds

= lim sup
t→∞

∫ t

2

1
s

[
3 +

1
s

–
1
s2 –

17
5s3 –

23
30s4 –

17
120s5 –

1
80s6

]
ds = ∞.

Therefore, by Theorem 8, every solution of (5.1) is oscillatory.

6 Conclusions
In this paper, we consider a general class of super-linear fourth-order differential equations
with several sub-linear neutral terms of the type (1.1). Using the Riccati and generalized
Riccati transformations, we establish new oscillation criteria in both cases of canonical
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case
∫ ∞

t0
1

r
1
α (t)

dt = ∞ and non-canonical case
∫ ∞

t0
1

r
1
α (t)

dt < ∞. With the help of the meth-

ods given in this paper, we derive some the Kamenev–Philos-type oscillation criteria for
(1.1). An illustrative example is given. For interested researchers, there is a good deal of
finding new results for (1.1) when z(t) = x(t) –

∑n
j=1 aj(t)xαj (σj(t)).
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