
Alharthi et al. Boundary Value Problems         (2022) 2022:38 
https://doi.org/10.1186/s13661-022-01621-1

R E S E A R C H Open Access

Mountain pass solution for the weighted
Dirichlet (p(z), q(z))-problem
Nadiyah Hussain Alharthi1, Kholoud Saad Albalawi1* and Francesca Vetro2

*Correspondence:
Ksalbalawi@imamu.edu.sa
1Department of Mathematics and
Statistics, College of Science, Imam
Mohammad Ibn Saud Islamic
University, P.O. BOX 90950, 11623
Riyadh, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
We consider the Dirichlet boundary value problem for equations involving the
(p(z),q(z))-Laplacian operator in the principal part on an open bounded domain
� ⊂ R

n. Here, the p(z)-Laplacian is weighted by a function a ∈ L∞(�)+, and the
nonlinearity in the reaction term is allowed to depend on the solution without
imposing the Ambrosetti–Rabinowitz condition. The proof of the existence of
solution to our problem is based on a mountain pass critical point approach with the
Cerami condition at level c.
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1 Introduction
Let � ⊂ R

n be an open bounded domain with a smooth boundary. Here, we focus on the
following Dirichlet problem:

(Pg)

⎧
⎨

⎩

– div(a(z)|∇u|p(z)–2∇u) + b(z)|u(z)|p(z) = div(|∇u|q(z)–2∇u) + g(z, u(z)) in �,

u = 0 on ∂�,

where g : � × R → R is the nonlinearity (namely reaction term), a, b : � → [0, +∞[ are
weight functions, both belonging to L∞(�) and with a(z) ≥ a0 > 0 for all z ∈ �. The vari-
able exponents p, q ∈ C(�) are related by the strict inequality q(z) < p(z) for all z ∈ �, and
separately they satisfy the conditions:

1 < q– := inf
z∈�

q(z) ≤ q(z) ≤ q+ := sup
z∈�

q(z) < +∞,

1 < p– := inf
z∈�

p(z) ≤ p(z) ≤ p+ := sup
z∈�

p(z) < +∞.

We assume the following regularities on the nonlinearity g :
(g0) g : � × R → R is a Carathéodory function such that g(z, ξ ) = 0 for all z ∈ � and all

ξ ≤ 0;
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(g1) there exist a1, a2 ∈ [0, +∞[ and α ∈ C(�) with p(z) < α(z) < p∗(z) for all z ∈ � satis-
fying

∣
∣g(z, ξ )

∣
∣ ≤ a1 + a2|ξ |α(z)–1 for all (z, ξ ) ∈ � ×R,

with p∗(z) = np(z)
n–p(z) if p(z) < n and p∗(z) = +∞ if p(z) ≥ n;

(g2) if G(z, t) =
∫ t

0 g(z, ξ ) dξ , then we have

lim
t→+∞

G(z, t)
tp+ = +∞ uniformly for a.a. z ∈ �;

(g3) limt→0+
g(z,t)

tp(z)–1 = 0 uniformly for a.a. z ∈ �;
(g4) there exists r0 > 0 such that G(z, t) = g(z, t)t – p+G(z, t) ≥ 0 for all z ∈ � and t ≥ r0;
(g5) there exist c0 > 0 and β ∈ C(�) with 1 < β(z) such that p–β ′(z) < p∗(z) for all z ∈ �

such that

∣
∣
∣
∣
G(z, t)

tp–

∣
∣
∣
∣

β(z)

≤ c0G(z, t) for all z ∈ � and t ≥ r0,

where r0 is given in (g4).
The above set of hypotheses is derived from the consolidated literature on the use of

energy functional methods to solve partial differential equations (for (g5), see Zhou and
Wang [28]). Mainly we impose polynomial growth conditions on both the nonlinearity g
and its integral G. On the other side, we require (p(z) – 1)-sublinearity of g at zero, and
p+-superlinearity of G at infinity.

A large and interesting class of nonlinear partial differential equations presents as lead-
ing operator the (p(z), q(z))-Laplacian operator (namely often (p(z), q(z))-elliptic equa-
tions). So, here we also consider the sum of a p(z)-Laplacian and of a q(z)-Laplacian, but the
first one is weighted using the function a ∈ L∞(�). This study applies in the general frame-
work of Lebesgue and Sobolev spaces, with the structure of variable exponents (namely,
Lp(z)(�) and W 1,p(z)(�), respectively; see [9, 20]). The practical applications of these spaces
originate from the analysis of different physical phenomena. In particular, they model the
behavior of non-Newtonian fluids that change viscosity (recall the variable exponent p(z))
in the presence of an electromagnetic field; see Rădulescu and co-workers [22, 25] and
Ružička [21] (electrorheological fluids). See also the recent works of Gasiński and Papa-
georgiou [14] (resonant reaction), Barile and Figueiredo [4] (constant exponents case), Pa-
pageorgiou and Vetro [18], and Vetro and Vetro [24] (variable exponents case), and Vetro
[23] (variable exponents depending on the unknown solution).

If W 1,p(z)
0 (�) is the closure of C∞

0 (�) in W 1,p(z)(�), for a weak solution of the problem,
(Pg) we mean a function u ∈ W 1,p(z)

0 (�) such that

∫

�

a(z)|∇u|p(z)–2∇u∇v dz +
∫

�

|∇u|q(z)–2∇u∇v dz +
∫

�

b(z)|u|p(z)–2uv dz

=
∫

�

g(z, u)v dz for each v ∈ W 1,p(z)
0 (�).

We recall here some facts on the development of this kind of (double phase) (p(z), q(z))-
problems, focusing on the Italian school. So, we fix attention to the results of Marcellini
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[15–17], Mingione and co-workers [1, 5–7], but we do not forget the pioneering papers of
Zhikov [26, 27], where the interested reader can find a deep investigation over variational
integrals related to the total energy associated with special forms of integrand functions.
Also, we mention the very recent work of Alves and Molica Bisci [3] about compact em-
beddings results in variable exponent Sobolev spaces with applications. We refer to the
above literature and references therein for precise information and details, but here we
mention the fact that a crucial aspect of this research focuses on nonstandard growth
conditions of (p, q)-type, according to the pioneering work of Marcellini. These are func-
tionals where the energy density satisfies a condition of the form

|ξ |p ≤ g(x, ξ ) ≤ |ξ |q + 1, 1 ≤ p ≤ q, ξ ∈R.

Interesting models with (p, q)-growth for geometrically constrained problems were the
focus of a recent paper by De Filippis [8]. Our approach here uses geometrical condi-
tions to depict a mountain pass geometry and obtain critical points of the energy func-
tional associated with (Pg). We know that the Ambrosetti–Rabinowitz condition ensures
the boundedness of a convergent sequence (namely the Palais–Smale sequence) of such
a kind of functional. This is a crucial aspect in dealing with the critical point theory. The
Ambrosetti–Rabinowitz condition says that there exist η > p and M > 0 such that

0 < ηG(z, t) ≤ g(z, t)t for a.a. z ∈ �, all |t| ≥ M,

0 < essinf
�

G(·,±M).

Integrating the first inequality and using the second one, we obtain the following weaker
condition

c1|t|η ≤ G(z, t) for a.a. z ∈ �, all |t| ≥ M, some c1 > 0,

⇒ c1|t|η ≤ g(z, t)t for a.a. z ∈ �, all |t| ≥ M.

We remark that we do not impose the Ambrosetti–Rabinowitz condition, but we employ
alternative conditions involving the integral function G and the function G (see (g4), (g5)),
which incorporates in our setting also nonlinearities with slower growth.

2 Mathematical background
We collect some classical notions and notation from the variational calculus. By (X, X∗),
we mean the couple of a Banach space X and its topological dual X∗. Since we work in a
variable exponent framework space, we recall the basic definition of a variable exponent
Lebesgue space:

Lp(z)(�) =
{

u : � → R : u is measurable and ρp(u) :=
∫

�

∣
∣u(z)

∣
∣p(z) dz < +∞

}

,

endowed with the norm

‖u‖Lp(z)(�) := inf

{

λ > 0 :
∫

�

∣
∣
∣
∣
u(z)
λ

∣
∣
∣
∣

p(z)

dz ≤ 1
}

.
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Then we provide the notion of variable exponent Sobolev space as follows:

W 1,p(z)(�) :=
{

u ∈ Lp(z)(�) : |∇u| ∈ Lp(z)(�)
}

.

In W 1,p(z)(�), we use the norm

‖u‖1,p = ‖u‖W 1,p(z)(�) = ‖u‖Lp(z)(�) +
∥
∥|∇u|∥∥Lp(z)(�).

In Lp(z)(�), the norm of u ∈ W 1,p(z)
0 (�) and the norm of |∇u| satisfy the inequality:

‖u‖Lp(z)(�) ≤ m
∥
∥|∇u|∥∥Lp(z)(�) for all u ∈ W 1,p(z)

0 (�), some m > 0

(see Theorem 8.2.18, p. 263, Diening et al. [9]). It means that the norms ‖u‖W 1,p(z)(�) and
‖|∇u|‖Lp(z)(�) are equivalent norms on W 1,p(z)

0 (�). This remark gives us the key to use the
last one to replace ‖u‖W 1,p(z)(�). So, we put

‖u‖ =
∥
∥|∇u|∥∥Lp(z)(�) in W 1,p(z)

0 (�).

A crucial aspect of the methods of the variational calculus leads to the embedding re-
sults. Adopting the Fan and Zhang arguments in [10], we know that the above norms make
both the variable Lebesgue and Sobolev spaces separable, reflexive and uniformly convex
Banach spaces. Also, in Fan and Zhao [11], we find the following version of the classical
Sobolev embedding:

Proposition 1 ([11], Theorem 2.3) Let p ∈ C(�) with p(z) > 1 for all z ∈ �. If α ∈ C(�)
and 1 < α(z) < p∗(z) for all z ∈ �, then there exists a continuous and compact embedding
W 1,p(z)(�) ↪→ Lα(z)(�).

Moreover, [11, Theorem 1.11] gives us the continuity of the embedding Lp(z)(�) ↪→
Lq(z)(�), provided that p, q ∈ C(�) with 1 < q(z) ≤ p(z) for all z ∈ �. Finally, the follow-
ing linking theorem is given in [11] (see Theorem 1.3).

Theorem 1 Let u ∈ Lp(z)(�), then we have:
(i) ‖u‖Lp(z)(�) < 1 (= 1, > 1) ⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ‖u‖Lp(z)(�) > 1, then ‖u‖p–

Lp(z)(�) ≤ ρp(u) ≤ ‖u‖p+

Lp(z)(�);

(iii) if ‖u‖Lp(z)(�) < 1, then ‖u‖p+

Lp(z)(�) ≤ ρp(u) ≤ ‖u‖p–

Lp(z)(�).

The last ingredient we mention here is the following lemma by Fu [12] (see Lemma 2.14).

Lemma 1 Let � ⊂ R
n be a bounded Lipschitz domain. If p(z) ∈ L∞(�) and u ∈ W 1,p

0 (�),
then

∫

�

|u|p(z) dz ≤ C
∫

�

|∇u|p(z) dz

for some �-dependent constant C.
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We work to construct the energy functional associated to (Pg) in some steps. Indeed,
starting from the integral function G : � ×R→R given as

G(z, t) =
∫ t

0
g(z, ξ ) dξ for all t ∈R, all z ∈ �,

we obtain the functional B : W 1,p(z)
0 (�) →R defined by

B(u) =
∫

�

G
(
z, u(z)

)
dz, for all u ∈ W 1,p(z)

0 (�).

The assumption (g1) implies that B ∈ C1(W 1,p(z)
0 (�),R). Also, Proposition 1 leads to the

following compact derivative of B:

〈
B′(u), v

〉
=

∫

�

g
(
z, u(z)

)
v(z) dz, for all u, v ∈ W 1,p(z)

0 (�).

Next, using the weight functions a, b ∈ L∞(�), we introduce the functionals A1, A2, A3 :
W 1,p(z)

0 (�) →R defined by

A1(u) =
∫

�

a(z)
p(z)

∣
∣∇u(z)

∣
∣p(z) dz and A2(u) =

∫

�

1
q(z)

∣
∣∇u(z)

∣
∣q(z) dz

and

A3 =
∫

�

b(z)
p(z)

∣
∣u(z)

∣
∣p(z) dz, for all u ∈ W 1,p(z)

0 (�).

We stress that A1, A2, A3 ∈ C1(W 1,p(z)
0 (�),R), and the following derivatives hold:

〈
A′

1(u), v
〉
=

∫

�

a(z)|∇u|p(z)–2∇u∇v dz,
〈
A′

2(u), v
〉

=
∫

�

|∇u|q(z)–2∇u∇v dz

and

〈
A′

3(u), v
〉
=

∫

�

b(z)|u|p(z)–2uv dz, for all u, v ∈ W 1,p(z)
0 (�).

Remark 1 A′
1 : W 1,p(z)

0 (�) → W 1,p(z)
0 (�)∗ is a mapping of type (S+), that is, if un

w−→ u in
W 1,p(z)

0 (�) and lim supn→+∞〈A′
1(un), un – u〉 ≤ 0, then un → u in W 1,p(z)

0 (�) (see Gasiński
and Papageorgiou [13], p. 279). The same holds for A′

2. Consequently, A′
1 + A′

2 is a mapping
of type (S+) too.

We combine the above functionals to obtain the functional I : W 1,p(z)
0 (�) → R defined

by

I(u) = A1(u) + A2(u) + A3(u) – B(u) for all u ∈ W 1,p(z)
0 (�).

Trivially, we have that I(0) = 0.
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3 Main results
In this section, we apply the mountain pass approach to the functional I under the Cerami
condition at level c (for short (Cc)-condition).

Here, we recall the general definition of (Cc)-condition in a Banach space X.

Definition 1 Let X be a real Banach space and I ∈ C1(X,R). We say that I satisfies the
(Cc)-condition if any sequence {un} ⊂ X such that I(un) → c ∈R and (1 + ‖un‖)I ′(un) → 0
in X∗ as n → +∞ has a convergent subsequence.

We will consider the following version of the mountain pass theorem as can be found in
Afrouzi et al. [2] (see Lemma 3.3).

Theorem 2 Let X be a real Banach space, I ∈ C1(X,R) satisfies the (Cc)-condition for any
c ∈ R, I(0) = 0 and

(i) there exist ρ > 0 and δ > 0 such that I|∂Bρ ≥ δ, where Bρ is a ball of radius ρ ;
(ii) there exists v ∈ X \ Bρ such that I(v) ≤ 0.

Then,

c0 = inf
γ∈

max
0≤t≤1

I
(
γ (t)

) ≥ δ

is a critical value of I where

 =
{
γ ∈ C0([0, 1], X

)
: γ (0) = 0,γ (1) = v

}
.

The first step to cover is “creating” the convergent subsequence in W 1,p(z)
0 (�).

Lemma 2 Let {un} ⊂ W 1,p(z)
0 (�) be a bounded sequence such that (1 + ‖un‖)I ′(un) → 0 in

W 1,p(z)
0 (�)∗ as n → +∞. If the assumption (g1) is satisfied, then the sequence {un} has a

subsequence convergent in W 1,p(z)
0 (�).

Proof Let {un} ⊂ W 1,p(z)
0 (�) be a bounded sequence such that (1 + ‖un‖)I ′(un) → 0 in

W 1,p(z)
0 (�)∗ as n → +∞. Note that W 1,p(z)

0 (�) is a reflexive Banach space and so, passing
to a subsequence if necessary, there exists u ∈ W 1,p(z)

0 (�) such that un
w−→ u in W 1,p(z)

0 (�).
Then Proposition 1 (embedding result) leads to un → u in Lα(z)(�). An Hölder inequality
can be applied, so that we have

∣
∣
∣
∣

∫

�

[
g
(
z, un(z)

)
– g

(
z, u(z)

)](
un(z) – u(z)

)
dz

∣
∣
∣
∣

≤
∫

�

(∣
∣g

(
z, un(z)

)∣
∣ +

∣
∣g

(
z, u(z)

)∣
∣
)∣
∣un(z) – u(z)

∣
∣dz

≤
∫

�

(
2a1 + a2

∣
∣un(z)

∣
∣α(z)–1 + a2

∣
∣u(z)

∣
∣α(z)–1)∣∣un(z) – u(z)

∣
∣dz

≤ 2
∥
∥2a1 + a2|un|α(z)–1 + a2|u|α(z)–1∥∥

Lα′(z)(�)‖un – u‖Lα(z)(�).

Passing to the limit as n → +∞, we deduce that

lim
n→+∞

∫

�

[
g
(
z, un(z)

)
– g

(
z, u(z)

)](
un(z) – u(z)

)
dz = 0.
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Since (1 + ‖un‖)I ′(un) → 0 in W 1,p(z)
0 (�)∗, we obtain

lim
n→+∞

〈
I ′(un) – I ′(u), un – u

〉
= 0.

Recalling the definition of the functional I in Sect. 2, we have

〈
A′

1(un) – A′
1(u), un – u

〉
+

〈
A′

2(un) – A′
2(u), un – u

〉
+

〈
A′

3(un) – A′
3(u), un – u

〉

=
∫

�

(
g(z, un(z)) – g

(
z, u(z)

))
(un – u) dz +

〈
I ′(un) – I ′(u), un – u

〉

→ 0 as n → +∞.

Since

〈
A′

2(un) – A′
2(u), un – u

〉
+

〈
A′

3(un) – A′
3(u), un – u

〉 ≥ 0

for all n ∈N, we deduce that

lim sup
n→+∞

〈
A′

1(un), un – u
〉

= lim sup
n→+∞

〈
A′

1(un) – A′
1(u), un – u

〉 ≤ 0.

As A′
1 is a mapping of type (S+) (see Remark 1), we conclude that the sequence {un}

converges to u in W 1,p(z)
0 (�). �

We point out some facts about our set of assumptions. In particular, (g1) ensures that
for each s > 0, there exists a constant Cs > 0 such that

∣
∣G(z, t)

∣
∣,

∣
∣G(z, t)

∣
∣ ≤ Cs for all (z, t) ∈ � × [0, s], (1)

and (g0) says that

G(z, t) = G(z, t) = 0 for all (z, t) ∈ �× ]–∞, 0]. (2)

Again assumption (g2) ensures that there exists s0 > 0 such that

G(z, t) ≥ 0 for a.a. z ∈ � and t ∈ [s0, +∞[. (3)

Remark 2 Let {un} ⊂ W 1,p(z)
0 (�) be a sequence such that (1+‖un‖)I ′(un) → 0 in W 1,p(z)

0 (�)∗

as n → +∞. If (g0) holds, then the sequence {u–
n} converges to zero in W 1,p(z)

0 (�). Indeed,
from

a0

∫

�

∣
∣∇u–

n
∣
∣p(z) dz ≤ ∣

∣
〈
I ′(un), u–

n
〉∣
∣

≤ (
1 + ‖un‖

)∥
∥I ′(un)

∥
∥ → 0 as n → +∞,

we deduce that ‖∇u–
n‖Lp(z)(�) → 0, and hence ‖u–

n‖ → 0 in W 1,p(z)
0 (�).
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Remark 3 Let {un} ⊂ W 1,p(z)
0 (�) be a (Cc)-sequence, then the sequence {u+

n} satisfies the
following:

I
(
u+

n
) → c and

〈
I ′(u+

n
)
, u+

n
〉 → 0 as n → +∞.

Indeed, from ∇u = ∇(u+ – u–) = ∇u+ – ∇u– and ∇u+ = ∇u a.e. in {u ≥ 0}, ∇u– = –∇u a.e.
in {u < 0}, we get

I(un) =
∫

�

[
a(z)
p(z)

|∇un|p(z) +
1

q(z)
|∇un|q(z) +

b(z)
p(z)

|un|p(z)
]

dz –
∫

�

G
(
z, un(z)

)
dz

=
∫

{u<0}

[
a(z)
p(z)

∣
∣∇u–

n
∣
∣p(z) +

1
q(z)

∣
∣∇u–

n
∣
∣q(z) +

b(z)
p(z)

∣
∣u–

n
∣
∣p(z)

]

dz

+
∫

{u≥0}

[
a(z)
p(z)

∣
∣∇u+

n
∣
∣p(z) +

1
q(z)

∣
∣∇u+

n
∣
∣q(z) +

b(z)
p(z)

∣
∣u+

n
∣
∣p(z)

]

dz

–
∫

�

G
(
z, u+

n(z)
)

dz

= I
(
u–

n
)

+ I
(
u+

n
)

⇒ I
(
u+

n
)

= I(un) – I
(
u–

n
) → c as n → +∞ (by Remark 2).

We also have

〈
I ′(–u–

n
)
, u–

n
〉

=
∫

{u<0}

[
a(z)

∣
∣∇u–

n
∣
∣p(z) +

∣
∣∇u–

n
∣
∣q(z) + b(z)

∣
∣u–

n
∣
∣p(z)]dz

and

〈
I ′(u+

n
)
, u+

n
〉

=
∫

{u≥0}

[
a(z)

∣
∣∇u+

n
∣
∣p(z) +

∣
∣∇u+

n
∣
∣q(z) + b(z)

∣
∣u+

n
∣
∣p(z) – g

(
z, u+

n
)
u+

n
]

dz.

From

〈
I ′(un), un

〉
=

〈
I ′(un), u+

n
〉
+

〈
I ′(un), –u–

n
〉

=
〈
I ′(u+

n
)
, u+

n
〉
–

〈
I ′(–u–

n
)
, u–

n
〉
,

we deduce that

〈
I ′(u+

n
)
, u+

n
〉

=
〈
I ′(un), un

〉
+

〈
I ′(–u–

n
)
, u–

n
〉 → 0 as n → +∞.

The second step of our finding gives us a boundedness result for (Cc)-sequences in
W 1,p(z)

0 (�).

Lemma 3 If the assumptions (g0)–(g2), (g4), (g5) hold, then any (Cc)-sequence {un} ⊂
W 1,p(z)

0 (�) is bounded in W 1,p(z)
0 (�).

Proof By Remark 3, the hypothesis that {un} is a (Cc)-sequence gives us that I(u+
n) → c and

〈I ′(u+
n), u+

n〉 → 0 as n → +∞. Consequently, we can find a constant M > 0 such that

M ≥ I
(
u+

n
)

–
1

p+

〈
I ′(u+

n
)
, u+

n
〉

= A1
(
u+

n
)

+ A2
(
u+

n
)

+ A3
(
u+

n
)

– B
(
u+

n
)



Alharthi et al. Boundary Value Problems         (2022) 2022:38 Page 9 of 15

–
1

p+

[
〈
A′

1
(
u+

n
)
, u+

n
〉
+

〈
A′

2
(
u+

n
)
, u+

n
〉
+

〈
A′

3
(
u+

n
)
, u+

n
〉
–

∫

�

g
(
z, u+

n
)
u+

n dz
]

=
∫

�

[
1

p(z)
–

1
p+

]
∣
∣∇u+

n
∣
∣p(z) dz +

∫

�

[
1

q(z)
–

1
p+

]
∣
∣∇u+

n
∣
∣q(z) dz

+
∫

�

[
1

p(z)
–

1
p+

]

b(z)
∣
∣u+

n
∣
∣p(z) dz +

1
p+

∫

�

[
g
(
z, u+

n
)
u+

n – p+G
(
z, u+

n(z)
)]

dz

≥ 1
p+

∫

�

G
(
z, u+

n(z)
)

dz for all n ∈ N. (4)

Inequality (4) and the information in (1) and (2) give us

∫

{un≥s}
G

(
z, u+

n(z)
)

dz ≤ p+M –
∫

{un<s}
G

(
z, u+

n(z)
)

dz

≤ p+M + Cs|�| for all s > 0, (5)

where |�| means the Lebesgue measure of �.
Now, if the sequence {un} is unbounded, by Remark 2, we assume that ‖u+

n‖ → +∞ as
n → +∞ (going to a subsequence if necessary). So, we also suppose that ‖u+

n‖ > 1 for all
n ∈N. From

I(u+
n)

‖u+
n‖p– =

1
‖u+

n‖p–

[
A1

(
u+

n
)

+ A2
(
u+

n
)

+ A3
(
u+

n
)

– B
(
u+

n
)]

≥ 1
p+

∫

�

a(z)
|∇u+

n|p(z)

‖u+
n‖p– dz –

∫

�

G(z, u+
n(z))

‖u+
n‖p– dz

≥ a0

p+ –
∫

�

|G(z, u+
n(z))|

‖u+
n‖p– dz

(
by Theorem 1 and

∥
∥u+

n
∥
∥ > 1

)
,

and since

I(u+
n)

‖u+
n‖p– → 0 as n → +∞,

we get

lim sup
n→+∞

∫

�

|G(z, u+
n(z))|

‖un‖p– dz ≥ a0

p+ . (6)

Using (1) and (2), we obtain that for each s > 0

∫

{u+
n <s}

|G(z, u+
n(z))|

‖u+
n‖p– dz =

∫

{0<u+
n<s}

|G(z, u+
n(z))|

‖u+
n‖p– dz

≤ Cs|�|
‖u+

n‖p– → 0 as n → +∞.

We also put

vn =
u+

n
‖u+

n‖ for all n ∈N.
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Clearly, ‖vn‖ = 1 for all n ∈ N. Thus, considering a subsequence if necessary, we suppose
that there exists v ∈ W 1,p(z)

0 (�) such that

vn
w−→ v in W 1,p(z)

0 (�),

vn → v in Ls(z)(�), 1 < s(z) < p∗(z) (compactly),

vn(z) → v(z) a.e. in �.

Denote �0 := {z ∈ � : v(z) > 0}. We claim that |�0| = 0 (|�0| means the Lebesgue mea-
sure of �0). We argue by contradiction again. So, suppose that |�0| > 0. We note that
u+

n(z) → +∞ for a.a. z ∈ �0. Now, let s0 as in (3), and we consider

I(u+
n)

‖u+
n‖p+ =

1
‖u+

n‖p+

[
A1

(
u+

n
)

+ A2
(
u+

n
)

+ A3
(
u+

n
)

– B
(
u+

n
)]

≤ C –
∫

�

G(z, u+
n(z)) + Cs0

‖u+
n‖p+ dz +

∫

�

Cs0

‖u+
n‖p+ dz.

This implies

0 = lim
n→+∞

I(u+
n)

‖u+
n‖p+

≤ lim sup
n→+∞

[

C –
∫

�

G(z, u+
n(z)) + Cs0

‖u+
n‖p+ dz

]

+ lim sup
n→+∞

∫

�

Cs0

‖u+
n‖p+ dz

= C – lim inf
n→+∞

∫

�

G(z, u+
n(z)) + Cs0

‖u+
n‖p+ dz

≤ C – lim inf
n→+∞

∫

�0

G(z, u+
n(z)) + Cs0

‖u+
n‖p+ dz

≤ C –
∫

�0

lim inf
n→+∞

G(z, u+
n(z)) + Cs0

|u+
n(z)|p+ vn(z)p+

dz = –∞,

a contradiction and hence |�0| = 0. Then we have v(z) = 0 for a.a. z ∈ �.
Now, we get

∫

{u+
n≥s}

|G(z, u+
n(z))|

‖u+
n‖p– dz

=
∫

{u+
n≥s}

|G(z, u+
n(z))|

|u+
n|p– |vn|p–

dz ≤ 2
∥
∥
∥
∥
|G(z, u+

n(z))|
|u+

n|p–

∥
∥
∥
∥

Lβ(z)({u+
n≥s})

∥
∥|vn|p–∥

∥
Lβ′(z)({u+

n≥s})

≤ C max

{(∫

{u+
n≥s}

|vn|p–β ′(z) dz
)1/(β ′)–

,
(∫

{u+
n≥s}

|vn|p–β ′(z) dz
)1/(β ′)+}

→ 0 as n → +∞ for all s ≥ r0,

where

C = 2 max
{(

c0p+M + c0Cs|�|) 1
β– ,

(
p+M + Cs|�|) 1

β+ }
(by (5))

≥ 2 max

{(∫

{u+
n≥s}

c0G
(
z, u+

n(z)
)

dz
) 1

β–

,
(∫

{u+
n≥s}

c0G
(
z, u+

n(z)
)

dz
) 1

β+ }
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≥ 2 max

{(∫

{u+
n≥s}

|G(z, u+
n(z))|β(z)

|u+
n|p–β(z) dz

) 1
β–

,
(∫

{u+
n≥s}

|G(z, u+
n(z))|β(z)

|u+
n|p–β(z) dz

) 1
β+ }

≥ 2
∥
∥
∥
∥
|G(z, u+

n(z))|
|u+

n|p–

∥
∥
∥
∥

Lβ(z)({u+
n≥s})

.

It follows that

∫

�

|G(z, un(z))|
‖un‖p– dz =

∫

{un<s}
|G(z, un(z))|

‖un‖p– dz +
∫

{un≥s}
|G(z, un(z))|

‖un‖p– dz

→ 0 as n → +∞,

which leads to contradiction with (6), and in this case, the sequence {u+
n} is bounded. �

From Lemma 2 and Lemma 3, it follows the lemma.

Lemma 4 If the assumptions (g0)–(g2), (g4), (g5) hold, then the functional I satisfies the
(Cc) condition.

The third and last step of our finding gives us the mountain pass geometry and hence
the existence of a non-trivial critical point of the energy functional I .

Lemma 5 If the assumptions (g0), (g1), and (g3) hold, then we conclude that:
(i) there exist ρ > 0 and δ > 0 such that I(u) ≥ δ for each u ∈ W 1,p(z)

0 (�) with
‖u‖W 1,p(z)(�) = ρ ;

(ii) there exists v ∈ W 1,p(z)
0 (�) such that I(v) < 0 and ‖v‖W 1,p(z)(�) > ρ .

Proof (i) By the limit in (g3), we deduce that for any ε > 0, there exists t0 > 0 such that
G(z, t) ≤ εtp(z), whenever z ∈ � and 0 ≤ t < t0. The growth condition in (g1) gives us a
constant C0 = C(t0) > 0 such that G(z, t) ≤ C0tα(z), whenever z ∈ � and t ≥ t0. When com-
bining these two inequalities, we find the following limitation from above:

G(z, t) ≤ εtp(z) + C0tα(z) for all z ∈ � and t ≥ 0.

Consequently, we obtain the following limitation from below of the total energy func-
tional:

I(u) = A1(u) + A2(u) + A3(u) – B(u)

≥
∫

�

a0

p+ |∇u|p(z) dz –
∫

�

G(z, t) dz

≥ a0

p+

∫

�

|∇u|p(z) dz – ε

∫

�

|u|p(z) dz – C0

∫

�

|u|α(z) dz.

Taking ε ≤ a0
3Cp+ , the general Poincaré inequality in Lemma 1 gives us

ε

∫

�

|u|p(z) dz ≤ εC
∫

�

|∇u|p(z) dz ≤ a0

3p+

∫

�

|∇u|p(z) dz,
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which refines the above limitation for the total energy functional as follows:

I(u) ≥ K
∫

�

|∇u|p(z) dz + K
∫

�

|u|p(z) dz – C0

∫

�

|u|α(z) dz, (7)

where K = min{ a0
3p+ , a0

3Cp+ }.
We enter in the setting of Proposition 1, so we denote by Cα > 0 the constant of

the continuous and compact embedding W 1,p(z)
0 (�) ↪→ Lα(z)(�) there. Moreover, let u ∈

W 1,p(z)
0 (�) satisfy ‖u‖W 1,p(z)(�) < min{1, C–1

α }, and so ‖u‖Lα(z)(�) < 1.
Clearly, for any z = (z1, . . . , zn) ∈ �, as p,α ∈ C(�), we can get

Qr(z) =
{

y = (y1, . . . , yn) ∈R
n : |yi – zi| < r, i = 1, 2, . . . , n

}

such that |p(y) – p(z)| < ε and |α(y) – α(z)| < ε, whenever y ∈ Qr(z) ∩ �. Putting ε :=
4–1(α(z) – p(z)), we have

p+
z = sup

y∈Qr(z)∩�

p(y) < α–
z = inf

y∈Qr(z)∩�

α(y) for all z ∈ �. (8)

Since {Qr(z)}z∈� is an open covering of �, the Lebesgue number lemma (see, for exam-
ple, Proposition 1.5.34, p. 51, Papageorgiou and Winkert [19]) provides us with a number
λ > 0 such that every subset of �, having diameter less than λ, is contained in some mem-
ber of the cover. If we define u = 0 on R

n \ �, then u ∈ W 1,p(z)
0 (U) for any open hypercube

U such that � ⊂ U . Using the number of Lebesgue, we find a finite pairwise family of
open hypercubes {Qj}J

j=1 having a diameter smaller than λ such that Qj ⊂ U is contained
in some member of the cover {Qr(z)}z∈�, Qj ∩ � �= ∅ for j = 1, . . . , J and � ⊆ ⋃J

j=1 Qj. Put

α–
j = inf

z∈Qj∩�
α(z) and p+

j = sup
z∈Qj∩�

p(z) for j = 1, . . . , J .

From (8), we get that p+
j < α–

j for j = 1, . . . , J . Also, we have u ∈ W 1,p(z)(Qj) (j = 1, . . . , J). By
Theorem 1 and Proposition 1, we deduce

∫

Qj∩�

|u|α(z) dz ≤ ‖u‖α–
j

Lα(z)(Qj∩�) ≤ (
Cα,j‖u‖W 1,p(z)(Qj∩�)

)α–
j , (9)

where Cα,j > 0 is the constant of the continuous and compact embedding W 1,p(z)(Qj ∩
�) ↪→ Lα(z)(Qj ∩ �). As ‖∇u‖Lp(Qj∩�) < 1 and ‖u‖Lp(Qj∩�) < 1, by Theorem 1, we have

∫

Qj∩�

|∇u|p(z) dz ≥ ‖∇u‖p+
j

Lp(z)(Qj∩�) and
∫

Qj∩�

|u|p(z) dz ≥ ‖u‖p+
j

Lp(z)(Qj∩�). (10)

As |� \ ⋃J
j=1(Qj ∩ �)| = 0, from (7), we deduce

I(u) ≥ K
(∫

⋃J
j=1(Qj∩�)

|∇u|p(z) dz +
∫

⋃J
j=1(Qj∩�)

|u|p(z) dz
)

– C0

∫

⋃J
j=1(Qj∩�)

|u|α(z) dz

=
J∑

j=1

(

K
∫

Qj∩�

|∇u|p(z) dz + K
∫

Qj∩�

|u|p(z) dz – C0

∫

Qj∩�

|u|α(z) dz
)

.
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Again from (9)–(10), we have

K
∫

Qj∩�

|∇u|p(z) dz + K
∫

Qj∩�

|u|p(z) dz – C0

∫

Qj∩�

|u|α(z) dz

≥ Kj
(‖u‖W 1,p(z)(Qj∩�)

)p+
j – Cj

(‖u‖W 1,p(z)(Qj∩�)
)α–

j

for some Kj, Cj > 0, with j = 1, . . . , J . As α–
j > p+

j , there exists ρj > 0 such that

Kj – Cj
(‖u‖W 1,p(z)(Qj∩�)

)α–
j –p+

j ≥ δj > 0

if ‖u‖W 1,p(z)(Qj∩�) ≤ ρj.

Let u ∈ W 1,p(z)
0 (�) be such that ‖u‖W 1,p(z)(�) = ρ = min{ρj : 1 ≤ j ≤ J}. From

ρ = ‖u‖W 1,p(z)(�)

=

∥
∥
∥
∥
∥

u
J∑

j=1

χQj∩�

∥
∥
∥
∥
∥

W 1,p(z)(�)

≤
J∑

j=1

‖uχQj∩�‖W 1,p(z)(�)

=
J∑

j=1

‖u‖W 1,p(z)(Qj∩�),

we obtain that there exists at least one ‖u‖W 1,p(z)(Qj∩�) satisfying

ρ

J
≤ ‖u‖W 1,p(z)(Qj∩�) ≤ ρ.

Then we have

I(u) ≥
J∑

j=1

(
Kj

(‖u‖W 1,p(z)(Qj∩�)
)p+

j – Cj
(‖u‖W 1,p(z)(Qj∩�)

)α–
j
)

≥
(

ρ

J

)p+
(
Kj – Cj(ρ)α

–
j –p+

j
)

≥
(

ρ

J

)p+

δj = δ > 0 if ‖u‖W 1,p(z)(�) = ρ > 0.

(ii) Using (g1) and (g2), we deduce that for all M > 0, there exists CM > 0 such that

G(z, t) ≥ M|t|p+
– CM for a.a. z ∈ �, all t ∈R. (11)

Let ζ ∈ C∞
0 (�) \ {0} be such that ζ (z) ≥ 0 for all z ∈ �. From (11), for all t > 1, we get

I(tζ ) =
∫

�

a(z)
tp(z)

p(z)
|∇ζ |p(z) dz +

∫

�

tq(z)

q(z)
|∇ζ |q(z) dz +

∫

�

b(z)
tp(z)

p(z)
|ζ |p(z) dz

–
∫

�

G(z, tζ ) dz
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≤ tp+
[∫

�

a(z)
p(z)

|∇ζ |p(z) dz +
∫

�

1
q(z)

|∇ζ |q(z) dz +
∫

�

b(z)
p(z)

|ζ |p(z) dz – M
∫

�

ζ p+
dz

]

+ CM|�|.

If we choose M > 0 such that
∫

�

a(z)
p(z)

|∇ζ |p(z) dz +
∫

�

1
q(z)

|∇ζ |q(z) dz +
∫

�

b(z)
p(z)

|ζ |p(z) dz – M
∫

�

ζ p+
dz < 0,

we obtain that limn→+∞ I(tζ ) = –∞. It follows that there exists v = t0ζ ∈ W 1,p(z)
0 (�) such

that I(v) < 0 and ‖v‖W 1,p(z)(�) > ρ . �

Summarizing, Lemma 5 and Theorem 2 say that the functional I admits a non-zero
critical point, which is exactly a nontrivial solution to (Pg), under suitable assumptions.
Precisely, we establish the following main result.

Theorem 3 If the assumptions (g0)–(g5) hold, then problem (Pg) admits at least a nontriv-
ial solution u ∈ W 1,p(z)

0 (�).
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20. Rădulescu, V., Repovš, D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative

Analysis. CRC Press, Boca Raton (2015)
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