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1 Introduction

One of the first mathematical models of chemotaxis was investigated by Keller and Segel
[14] to describe the aggregation of certain types of bacteria. In mathematics, it is described
as a fully parabolic system

ny=An-V-(nync)Ve), xe,t>0, (L1)
cc=Ac—c+mn, x€Q,t>0. '

Here, the unknowns # = n(¢,x) and ¢ = ¢(¢,x) denote the cell density and concentration
of chemical, respectively. The physical domain © C R? is a bounded domain with smooth
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boundary 2. The chemotaxis function y (-) denotes the chemotactic sensitivity. In partic-
ular, model (1.1) in which chemotactic sensitivity function choices x (n,¢) = £ with x >0
is an important class of chemotaxis models, its form is suggested by the Weber—Fechner
laws and supported by experimental [13] and theoretical evidence [52]. When the chemi-
cal reaction is much faster than cell diffusion, system (1.1) could be simplified to parabolic-
elliptic equations

ny=An-V-(nx(nc)Vc), xeQ,t>0,
0=Ac-c+mn, xeQ,t>0,

this limit process was proved by Wang, Winkler, and Xiang in [36].

In order to study the dynamic behavior of cells under the action of fluid, Tuval et al. [31]
took into account the experiment of the collective behavior of Bacillus subtilis in suspen-
sion. They observed the formation of plume-like structures and large-scale convection
patterns. As an extension of the classical Keller—Segel model, it was used in the case of
chemical diffusion and cell migration in a nontrivial interactive fluid environment and
was coupled with chemotaxis-fluid equations of the form

n+u-Vu=An-V - (nx(n,c)Vc), x€,t>0,

¢ +u-Ve=Ac+gn,c), x€Q,t>0, 12)
u +kU-Viu=Au+VP+nVp, xeQt>0, '
V.-u=0, x€Q,t>0.

Here, u = u(¢,x) and P = P(t, x) denote the velocity field and the pressure of fluid, respec-
tively, and €2 is a spatial domain where the cells and the fluid interact with each other and
move. The given functions x (n, c) and g(#, c) are the chemotactic sensitivity and the signal
function of consumption or production. The potential function ¢ is a scalar-valued func-
tion. It can be produced by the different physical mechanism such as gravity, centrifugal.
The parameter « € {0, 1} denotes the case of Stokes and Navier—Stokes flows, respectively.

Mathematically, analyzing the above fluid model is very challenging. Tao and Winkler in
[28] gave the globally bounded large initial value solution of the problem with Neumann
boundary value in a two-dimensional condition for three conditions, whereas for large
data up to now only global weak solutions could be established and become eventually
smooth and classical. At the same time, there is a globally bounded solution with small
initial data. In recent years, there have been many related research works in this regard.
For more reference about the chemotaxis-Navier—Stokes system, the corresponding global
solvability of classical solutions has been investigated by [6-8, 15, 17, 24, 25, 34, 39, 43,
44, 46, 47, 49, 53] in two- or three-dimensional situation. We also mention complicated
variants, e.g., involving rotational flux [4, 5, 18, 19, 22] and logistic source terms [3, 16, 30,
37, 48] as well as nonlinear diffusion [6, 12, 19, 38, 40, 54]. For chemotaxis-Stokes system,
the interested reader can refer to earlier works of the global solvability of classical solutions
in [1, 20, 27] and nonlinear diffusion in [9, 19, 23, 29, 33, 45] as well as rotational flux in
(32, 41, 42].

As for the Navier—Stokes subsystem of (1.2), despite decades of efforts, the global well-
posedness still stays in the Dirichlet problem of bounded domain in a two-dimensional
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case, but the research on the three-dimensional smooth global solution still lacks the
viewpoint of mathematical theory. However, the corresponding Stokes case is much more
complete [26]. Therefore, some works focus on the chemotaxis-Stokes variant model
under a coupled system of the form (1.2). A natural problem is when the chemotactic
Navier—Stokes system can approach the chemotactic-Stokes system. The corresponding
experimental observations, such as Re ~ 107°, are in the case of Reynolds number very
small. However, rigorous mathematical results are very few. Wang, Winkler, and Xiang
[35] and Wu and Xiang [49] gave the mathematical theoretical proof when the solu-
tions of chemotaxis-Navier—Stokes systems will approximate the solution of correspond-
ing chemotaxis-Stokes system in the case of signal consumption and signal generation,
respectively.

Under the interaction of chemical signals, a very important coupled system is the
chemotaxis model with a logarithmic sensitivity function and a logistic source. Black
et al. [2] investigated the model of signal production with logarithmic sensitivity and
proved the global existence and uniqueness of classical solutions. Zhao and Zheng in [55]
gave the global existence and boundedness of solutions to a chemotaxis system with sin-
gular sensitivity and logistic-type source without fluid. Further, Wu and Natal [51] re-
searched the model in [55] coupled with fluid equations and gave the decay rate of the
solutions.

Motivated by the above work, we study the small-convection limit of the follow-
ing chemotaxis-Navier—Stokes system with logarithmic sensitivity and logistic-type

source:

nf +u*-Vn = An - xV .- (n“Vlogc) +f(n*), xeQ,t>0,

i +U" -V = A —c* + 1, xeQ,t>0, (13)
uf + (U - Vu“ = Au“ + VP + 1V, x€Q,t>0, '
V.-u=0, xeQ,t>0.

Here, 2 C R? is a bounded convex domain with smooth boundary, v denotes an outer
normal vector of 3%, f(s) = s — pas*, A > 1 is a logistic source, the parameters

11 and po are positive constants, the chemotactic sensitivity parameter x > 0 satis-

fies
0 < x <minf{2,/pu1,1}, ] ifl<A <2, 14)
0< x < min{ Y2l g 21, ifA>2,
and the initial data satisfy
n“(x,0) = np(x), “(x,0) = co(x), u“(x,0) = ug(x), (1.5)

and the boundary conditions satisfy

avnK :avck :O, u“ =0, xe 89,t>0. (16)
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For simplicity, we shall assume that g, ¢, Uo, ¢ satisfy

0<m(x) e CUQ) and nmo(x)£0, x€$,
co(x) € WH(Q), infyeqco(x) >0, ©>8,
uo € D(A%), wae(3,1),

¢ € W>(Q),

(1.7)

where A := —P A denotes the realization of the Stokes operator in L2(Q;R?), D(A) :=
W22(;R?) N W, *(R?) N L2(2) denotes the domain and L2(2) := {¢ € L*(%R?) |
V -u =0}. The map & : L?(;R?) — L2(Q) is a Helmholtz projection operator.

Theorem 1.1 For all k € (0,1), p € (1,9), a € (%,1), suppose that the initial data
(10, co, Uo) satisfy (1.7) and that (n*,c*,u”) is the unique global solution of system (1.3)—
(1.6). Then, for all p € (1,00) and any time T > 0, there exists a constant C(p, T) > 0 such
that

” nK('r t) - no(" t) ||Loo(Q) + ||CK(" t) - CO(" t) ” WI'P(Q) + ||AauK(" t) _AOtUO(', t) ||L2(Q)

<Cp,T)k.
In particular, there is a constant C(p, T) > 0 such that

|| nK('r t) - nO(_’ t) ||Loo(Q) + ||CK(" t) - CO('v t) ||Loo(Q) + ||uK('? t) - uO(') t) ||L°°(Q)

<C(p, T)k.

2 Preliminaries
Itis necessary for us to give Lemma 2.1, which ensures the global existence and uniqueness

of the solutions of our problems.

Lemma 2.1 (Theorem 1.1 in [51]) Let x satisfy (1.4) and Q C R? be a bounded domain
with smooth boundary. If (no, co, Uy, ¢) fulfils (1.7), then for each k € R, system (1.3)—(1.6)

admits a unique solution (n*,c*,u”) such that

1 e CO(Q x [0,00)) N C>(2 x (0,00)),

¢ € CO2 x [0,00)) N CEL(2 x (0,00)) N L>®([0, 00); WP (2)),
u* € C%2 x [0,00)) N C*H(Q x (0, 00)),

P e CY(Q x [0,00))

(2.1)

and that n* and c* are positive in Q x (0,00).

Moreover, this solution is uniformly bounded in the sense that
[ .0) HLOQ(Q) o el wio () T ”Aauk("t)HLZ(Q) =M

with some positive constant M.

Page 4 of 17
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Next, we will use the L!-mass conservation technique to deal with the logarithmic sen-
sitive function to obtain the uniform lower bound estimation of ¢, which aims to eliminate
the singularity of the logarithmic function.

Lemma 2.2 (Lemma 2.2 and Lemma 2.4 in [51]) For each k € R, A > 1, it holds that

|7 C0)] 1 gy = = rnax{ [100)] 1100121 (%) o } forallt>0 (2.2)
and

() =00 forallt>0, (2.3)
as well as

[0 1) < max{|co()] 1 gy e} Sforalle>o, (2.4)

where 0y is a positive constant.
In order to use semigroup estimates, we need the following auxiliary lemma.

Lemma 2.3 (Lemma 3.3in [10]) Letp € (1, 00] and let A, > O denote the first nonzero eigen-
value of —A in Q@ C RN. Then there exists C > 0 such that, for all ¢ € C*(Q,RN) fulfilling
¢ -v=00n 0%, we have

|64V - 9] gy < CL+ £ %)e M gl forall t>0.

3 Convergenceask — 0
In order to obtain the convergence of (n*,c,u*) — (n° c° u®), we need the following

transformation.
Let
7= —n°, = =, a:=u‘-u®, and P:=pP<-P°

for each « € (0, 1), where P° denotes the pressure of k = 0. System (1.3) is transformed into

In+u -Vin+b-vn

=All—xV- [C%Vc’( - C’(‘,Oci V€ + "ZOW] + i+ o[ = (%), xeQ,t>0,
JC+U -Ve+U-VP=AC—C+1, xeQ,t>0,
3l + k(U - V)UC = Al + VP + 1V, xeQ,t>0,
V-u=0, x€Q,t>0

(3.1)
under the initial conditions

7i(x,0) = ¢(x,0) = 0, u(x,0)=0, xe%, (3.2)
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and the boundary conditions
di=0,6=0, 0=0, xedt>0. (3.3)

Our key step toward Theorem 1.1 is to derive the corresponding estimate for (7, ¢, i) with
respect to the norm in (L2(R2))*. So, we give the following three lemmas.

Lemma 3.1 There is a positive constant C independent of time such that, for any k € (0, 1),
we have

721l 20 + €l ) + @l 2(q) < ke forallt>O0.

Proof This proof is based on the standard energy methods. We divide it into five steps.
Step 1. Multiplying equation (3.1); by 7 and integrating by parts, one has

A2 A2
EEH”I”LZ(Q) + ”Vn”LZ(Q)
a 0 0
0~ wn n_ .. _. ne _ . . n_, _.
=/nu~Vn+X/—Vc -Vn—x/O—Vc ~Vn+x/—0Vc~Vn
Q o Qcct Q¢ (3.4)
A A A A
il +ia [ A{(r) - ()]
Q
Z=]1+[2+13+I4,+15+16.

For I, we can use Holder’s inequality and Young’s inequality to deduce that

0 - A L ooa2 0|2 A2
Il = ||Vl ||Loo(9)||u||L2(Q)”VVIHLZ(Q) = g”vn”LZ(Q) + 2“” ||L:>O(Q)||u||L2(Q)
< Lival, g + Col?
) L2(Q) 0 L2(

Q)

where Cy > 0 is constant.
For I, thanks to [,7 = 0 and using Hélder’s inequality, Young’s inequality, the

Gagliardo—Nirenberg inequality, and Poincaré’s inequality, we can infer
X n A
L < 2|7t gy | V£ ”L4(Q)”Vn”L2(Q)
Ao
" " . ‘ N
< C1(I71] fo(gy V711 foggy + 121l 1200) [ Ve | 11y V1 220
= Cl(”n”LZ(Q) ”VC ||L4(Q)||Vn||L2(Q) + ”n”LZ(Q) ”VC ||L4(Q)”n”LZ(Q)”vn”Lz(Q))
1 3

< Colltl oy | VE* | 30y 1 V211 2
1 Cs
v 3002

= 8”Vn||L2(Q) + 2 ”n”LZ(Q)»

where C1, Cy, and Cs := max{2(u; + Ao M*71),512C5 || Vc* ||§4(Q)} are positive constants.
For I3, thanks to Lemma 2.2 and using Holder’s inequality, Young’s inequality, and the
Gagliardo—Nirenberg inequality, we find that

0
n ~ ~
1357)(“ ||2LOO(Q)/C|VCK||WI
05 Q

Page 6 of 17
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x 110 1o (@) R R
AU |96, el T

201 e ) IV gy
9(1); ||C||L4(Q)

IA
<

=
=

2@t

2> Con 11 oy IV 124

1 1
~ AnD AN ~ 2

~112 A2
= ”vn”LZ(Q) + ”VC”LZ(Q)

2% ol g | V¥ 124 g <2XZCGN||n°||§OC(Q)||VcK||§4(Q)
+

A2
061 96} + 2) ”c”LZ(Q)
=< 1IIWIIZz +1VellZ2q) + Callel 2
=38 L2(Q) 12(Q) L2(Q)

with some C; > 0 and Cgy > 0.
For I,, using Holder’s inequality and Young’s inequality, we see that

0
< X177 || zoo ()

1
4 %

) . 1o )
Vel I Vtlag = gVl g + Csll Vel
with some Cs > 0.

For I5 and Is, using Lagrange’s mean value theorem and Hélder’s inequality, we deduce
that

I+ 1o = |1l 22 g + 12 /Q A[(n)" - (n°)"]

< (12 + Ao max{ | n ”2:(9)’

1Ly D722 -

Substituting 1, I, Is, 14, I5, I into (3.4) and using Lemma 2.1, we have

A2 ~112
—|ln + v}’l
R 1702 + IVl 2 (3.5)

=< 2C3||ﬁ||]%2(9) + 2C4||2||§2(Q) + 2(1 + CS)Hva”iZ(Q) + ZCOH‘}”?}(Q)

Step 2. We multiply equation (3.1), with ¢, integrate the resulting equation in €2, and use
the integration by parts to obtain

1d .o A2 A2 0f . n P
EEHCHH(Q) + ||c||L2(Q) + ||Vc||L2(Q) = 5 cu-vVe+ A nc:=1,. (3.6)
For I, we use Holder’s inequality and Young’s inequality to get

L < ||CO”Loo(Q)||a||L2(Q)||V2||L2(Q) + ||h||L2(Q)||e||L2(9)

3.7
. (3.7)

2

IA

| A2 Lo Lo
3 IVelzzg) + lull72q) + illnlle(Q) + §||C||L2(9)~

Let C7 := [|c°|| oo (g Thus substituting (3.7) into (3.6), we have

%”E”%}(Q) + ”6”32(9) + ||V2||1%2(Q) = C7||a||22(g) + ”;1”22(9) (38)
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Step 3. Testing the second equation of (3.1) with —A¢ and using the integration by parts,

we see that

d A2 A2 ~n2
E%HVCHLZ(Q) + ”vc”LZ(Q) + ”AC”L2(Q)

=/AEu"~V2+/A&&-Vc°+fVﬁ-V6:=18.
Q Q Q

Using Holder’s inequality and Young’s inequality, we obtain

(3.9

Iy < ||UK ”Loo(Q)”Ae”Lz(Q)”V?:”LZ(Q) + ||AE||L2(Q)||0||L4(Q) H VCOHU;(Q)

+ IVl 2 Vel 2

1. .09 2 1 o (3.10)
= E “AC”LZ(Q) + (Huk ”Loo(g) + E) ”VC”LZ(Q)

A2 02 Looan
18130y [V oy + S 1V g

Using the Gagliardo—Nirenberg inequality, we have

1 1
. . . 1 . 2
||u||i4(9) < CGN(||U||L22(Q)||V"||L22(Q) + 18l 2))
< 2Cen|ltll 2 IVl 2(0) + 2CGN||LA'||%2(Q) (3.11)

A 2 A
< oo IVl g + 2Cen (Con | Ve[ 14 + 18117 -
2”vc ||L4(Q)

Substituting (3.11) into (3.10), one has

1 s Lo 2 1 .
Iy < 1Vl + 5 18202 g + (||.,K Pt 5) N2
(3.12)

1. 2 2 .
3 ”V"”%Rm +2Cen|| VC0||L4(Q)(CGN“VCO HL4(Q) + 1)”””%%9)'
Thus, we can substitute (3.12) into (3.9) to deduce that

d _. N .
%”VCHEZ(Q) + 2||VC||%2(Q) + ”ACHEZ(Q)
A2 2 An2
= ”vn”LZ(Q) + (2||uK ||Loo(9) + 1)||VC||L2(Q) (3.13)

+ 4CGN|| VCO”?‘L(Q)(CGN“VCO ”iug) + 1)||ﬁ||i2(9) * ||Vfl||i2(m

< IVitll2agy + Co(IVE2a(gy + 18122g) + Va2,

where Cg := max{2[|u* || 7o (q) + 1,4Can | V° |74 (Con I Ve I74 ) + D)}

Page 8 of 17
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Step 4. Taking the inner product (1.3); by @, integrating by parts, and using Holder’s
inequality, Poincaré’s inequality, and Young’s inequality, one has

1d .., ) N N
——||a +||Va =K u“Qu“):vVu - Vi -u
Zdt” ||Lz(Q) I ||Lz(Q) /Q( ® ) /Qfﬁ

< il u @ U || o o IVl 20y + 101l 1] 200 1721 2
2 A - A
< el U a1 VAIl2() + 1l oo | Vil 20y 172l 20

A2 2 2 An2 2 4
< SIVal7 g + D17l gy + 11U o

N =

That is,

A A A 4
— @720 + V8N 720) < 26111 7o 17172 + 216 [ 4,
dr (o) @ @ @ (3.14)

= C9(||ﬁ”i2(g) + |K|2)7

where Cy := max{2c§||¢||§w<m, lu® ||‘L*4(m}.

Step 5. Summarily, from Step 1-Step 4, we can close the evolution estimates for 71, V¢,
and u.

Combining inequalities (3.5), (3.8), (3.13), and (3.14), we obtain

. . . . N .
%(”n”]zﬂ(ﬂ) + ”C”iZ(Q) + ”VC”]%Z(Q) + ”u”i2(g)) + ”AC”iZ(Q)

< (2C3 + Co + Vi1l o) + 2Callel o + (Cs = D Vel o g (3.15)

+(2Co + C7 + Cy)0ll72q, + Colxc|®
< Cro (171l 72 + €1 72qy + IVEIIT2 gy + 181 72(g)) + Crol I,

where Cyp := max{2Cs + Co + 1,2,2Cy + C; + Cg}. Then, applying Gronwall’s inequality to
(3.15) and 719 = &g = V&o = 0, Uy = 0, we conclude that Lemma 3.1 holds. O

Lemma 3.2 There exists C > 0 dependent of time such that, for any k € (0, 1), we find that
|aa(, 8)] ;2 < Clel - forallt>0 (3.16)
and
||fl(-, t) ||LOO(Q) <Clk| forallt>0. (3.17)
Proof Using that o < 1 and relying on known regularization properties of the Stokes

semigroup in 2, we obtain Cj; > 0 and Cj, > 0 such that (3.18), where f; := P[AVe] -
kP[u* - V]u“, o < 1. Lemma 2.1 and Lemma 3.1 provide

t
|a“at, 0 o) < / [ A% 15 | 2 s
0

t
< Cu [ =99 ey 5
0
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t
<Cp f (t =9 (IVO @17l 20 + i [0 || oo ) | VU 12qy) B
0

< Cppx forallt>0.

Meanwhile, o > % warrants that D(A%) < L®°(;R?) [11] holds.

Lemma 3.3 There is C > 0 such that, for any k € (0, 1), we see that
”ﬁ(-,t)HU,(Q) + e, o) whe() = Ck forallp>3,t>0.

Proof Multiplying equation (3.1); by 7##~! and integrating by parts, we see that

1d L M-
3 gy Vit

rpdn on Pt .
:(p—l)/ nonp_2u~Vn+X(p—1)/ C—KVcKoVn
Q Q

02~p-24 0~p-2
n°nf==c R n'n A
—X(p—l)/ 5 Vc"~Vn+X(p—1)/ V¢ Vi
q O 0

Q 4

e g+ [ () = ()

AP

2(p-1 2 -1 2
_ 2 )/no,c,’%—la.vﬁ%+M/ e b

p Q ¢

AD AP

2 1 n2- 2 1 n2-

x(p )/ G ik x(p )/ s ik
cVck

+mwﬂ; ﬂnﬁwﬂww=w%1

That is,
d,.r.2 A4p-1) .22
dt ”2HL2(Q)+ » ”V”Z”H(Q)
=2(p—1)/n°fq’7’— Vi +2x(p - 1)/ —Vc Vit
Q

Ny
nn2
0

-13
—2)(([7—1)/;2 o V Vit +2x(p- 1)/

g gy + oy [ 3700 = )]

=h+h+ 3+ Ja+)s+ 6.

(S

VCV

>

(3.18)

O

(3.19)

For J;, aided by Lemma 2.1 in [50], Holder’s inequality, Young’s inequality, the Gagliardo—

Nirenberg inequality, and Lemma 3.1, we have

Ji=2(p-1)|n

1||L4 s | VA2 ] 2 )

=2p - D[] erﬂH =3 )Ilf'IIL4<a>||Vﬁ§||Lz(m
Q

Page 10 of 17
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p-1,_.r2 2 P i
=" [ Vit2 |2 + 42 = D] 1° | o o) | 722 HL@(Q)”"”@(Q)
-1 N A
< 174—19 [ V35 |20 + 40 = DCon |7 o oy 101

1

P Al i+ 18]

‘c

2(p-2)

) Z

14
2

7

x(

4
L LP (Q)

= —IIWZIILz #2757 plp - Con |1 [ o Nl

+ 17211

x (17020 | 2 Q))

2 ~05 - o2 A P2
= 2p ”V ||L2(§Z) + Cl||n”L2(Q)||u”L4(Q) +C ”u”L4(Q)”n”L2(Q)

p-1
Iv

<
= 2]9

3 ||L2 + kP forall p > 3. (3.20)

For J,, J5, and Jy, using Holder’s inequality, Young’s inequality, the Gagliardo—Nirenberg

inequality, and Lemma 3.1 provides some ¢; > 0, (i = .,10) such that
2x(-1),.p .2
J2 = % ””127 “L‘*(Q) ”VCK ||L4(Q) ang ||L2(Q)
pP-1,_.» Ax’plp-1), . 2
= ? ” n? HLZ(Q T ””2 ||L4(gz) ” st ||L4(Q)
-1, _.p2
= ? H Vn? HLZ(Q)
4C’GNX p(p 1 ||VC ||L4(Q P P% N I%] P 2 (3.21)
. e s (g )
< ’”2—puw2 |72y *+ el
p-1,_.r 2
= o |vin2 HLZ(Q) + Gk
and
2 —D)||#°| o0 D R N
R L NS L BN LT
0
-1 ) 4)(219(19—1)””0”200( ) I ~2—12 2 A
= W”Vﬂznﬂ(ﬂﬁ o8 == ””2 1HL‘*(Q) ”VCK ”Lg(Q)”C”%S(Q)
p-1,_.r
= Iy ||Vn127 ||22(s2)
(3.22)
N = P w2 a2
+c5( |72 Hu% o Ivaz|; @t |72 %(Q)) ? (”C” ”VC“LZ(Q + 118172q)
-1,_.» L3 . p
< ’72—1) Vit ||§2( oy * <6 1A g (121 )V gy + 12122 )
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p-1,_.»
< ? ||Vng ||i2(9) + cyi?

as well as
2x(p = DI llzo@) yn R 0
Ja < xp oo L2@) ||n127 a %( ||Vc||LP(Q)||Vn€ HLz(Q)
p-1, ., a2 - DIy g 22y
= ?” g“LZ(Q + 92 e “ [27” 2?9) ”WC'I;”;(Q)
1 Pl ion .
= —”V + 1” Ve ||L2(Q) +Cs H”}% ||i2(sz)
p-1 4 Piiont
= W” g“LZ(Q E” \cE “22(9)
2 r=2
raCa(liflly 193 + 1], ) 323
p-1 r A
= ?” 127HL2(Q Z” vl ||22(9>
T N 2;2) D)
caaCan([i1Yy 19381 ¢ 5y )
p
< 2p P vt o + g N1V 2y + ol
p-1 2 Dl on?
SW” 127|L2(Q E|||VC|€||E2(Q)+610KP for all p > 3.

For J5 and J, using Lagrange’s mean value theorem, Holder’s inequality, Young’s inequality,
and the Gagliardo—Nirenberg inequality, we see that

@[

Js +Js < (1 + Ao max{ | n* “2;01

4
<en|[Vat] fy, |7t 73 o *en 17505 o,
-1 p
< 1”7 [VA8 2 + cro?, (3.24)

where ¢;; and ¢p5 are constants.
Substituting (3.20)—(3.24) into (3.19), we see that there exists a positive constant ¢;3 such
that

AP AP p P
pr ||r12 ||L2(Q) + 2 @ = 2 || \Z} ||i2(9) + 1367, (3.25)

We apply V to equation (3.1), and then multiply the resulting equation by |V¢[P~2V¢ to
deduce that

1d, . e R L
——IIIVc|§||§2(Q)=/ |Vc|p‘2Vc~VAc—/ |Vc|P+/ \Ve|P-2Ve- Vi
dt Q Q Q

—/ |va|P-2ve-v(uK-ve)-/ |Vep2ve-v(a-ve°)
Q Q
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:/ |ve|p-2va.me_/ |v2|1’+/ VEPVE . Vi
Q Q Q
—/ |V6|p‘2V2~VuK~V6+/ a-vev - (IvepP?ve)
Q Q

=K - / [VelP + Ky + K3 + K. (3.26)
Q

Using the pointwise identity A|V¢|? = 2Ve - VAC + 2|D?¢[?, we infer

R N N 1 T R R
|VEP-2(Ve- VAL = §A|Vc|2|Vc|p_2 — |D%*vep-2.

Since d,¢ = 0 on 92 along with the convexity of Q ensures that a\av_UcF <0 on a2 ([21],
Lemma 1.1, p.350), we have

~ ~ ~ 1 ~ S P C
K1=/ |Vc|p_2(VC°VAC)=—/ A|Vc|2|Vc|1”‘2—/|DZC|2|VC|’9_2
Q 2 Q Q
1 [ 0|VeP 1
:_/ llve|p—2__/ V|VE|2~VIV3|’9"2—/|D22|2|Ve|p_2
2 Jog OV 2Jo Q
1
5__/ V|VE|2~V|V2|1"2—/|D28|2|V3|p_2
2 Q Q

4(p-2 P . e
—_ (Pp2 )||V|Vc|§||i2(9)_/9|D26|2|vC|p 2

(3.27)

For K3, K3, and Ky, using Holder’s inequality, Young’s inequality, the Gagliardo—Nirenberg
inequality, and Lemma 3.1 provides some ¢; > 0, (i = 14,...,19) such that

KZ:/ |VelP2ve- Vi
Q
:—(p—2)/ h|V2|P‘4(V2~D22)~V8—/ A|VeP2 AL
Q Q
5@_z+ﬁ)/ 71 VEl2|D%|
Q
1 A2 L 2o
5—/|ch2|Vc|p’2+(p—2+«/§)2/ |72 VeP2
4 Q Q
, 2 . (3.28)
<1 [Ipefrwer e ] [ wer v [ e
4 Q 4 Q Q

1 . P | W’
<1 [IprePiver s 21i9et [,

2p-2)
fg) + H n

S

cas([ |7y [VAE |, + A

~

AP
@ Iviet| Lg(m)

1 a2ionipy L ) p-1,_.r2
< [ et vt g+ L g ene?

and

Kz < |vep ”LZ(Q) |Vue ||L2(Q)
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< (19215 sy | Ve 2

i (3.29)
< eIVl o 195 175, +eolveils
_30-2
D 919215 2 + cro”
P’
as well as
1<4=/ u-veov - (Vep2ve)
Q
=(p—2)/ a-vC°|va|P*4ve-Dze-va+f 0- v\ Ve ae
Q
<@p- 2+f)/ 4] |V°| | ver-2| D%l
(3.30)

/yD2 [IVer=2+(p - 2+f)2/ a2 Ve vepp-2

/|D2 |IVel= +

/|D22||Vc|p 2+—|||Vc| ||L2 + crok?.

@IV g o 1Ver2] e,

L2 () Q)

Substituting (3.27)—(3.30) into (3.26), we see that there exists a positive constant cyy such
that

1d a2 1, . » p-2 a2
521178 Ly * 5 11VElE oy + 5= 19 IVeI g

) 1 (3.31)
‘s /Q D9 < B Vi [ + oo
Combining with (3.25) and (3.31), there exists ¢3; > 0 such that
AP al p-1,_.» Do ?
E(””g HEZ(Q) + ” Vel ”iZ(Q)) + 2— ”V”IS ”ii’(sz) + 2 ” Vel HEZ(Q)
) (3.32)
e ML P 5] D% |vep? < ean.

We may employ the Gagliardo—Nirenberg inequality and Young’s inequality once again to

deduce that
L, 4 2p-2) »
|78 = Cos(12]7y 198 oty + 12D 5.,)
<[ VA [ + CasllAE] 5 (3.33)
< VA3 2y + Cusllo g
< Vit “12,2(9) + Cy7k?,

where Ci5, Ci6, and Cj7 are positive constants.
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Since pz;; Ii, we can combine with (3.32) and (3.33) to see that

”’A“% ||i2(sz) +| vl ||22(Q))

2 - rp-1
i “]2](9) +| \CE “iZ(Q)) + 2—(

1
dt (3.34)
< (ca + Ci7)k?.
Applying Gronwall’s inequality to (3.34), we can complete the proof of Lemma 3.3. O
Lemma 3.4 For any « € (0,1), there exists a constant C > 0 such that
||ﬁ(~,t)||Loo(Q) <Ck forallt>0.
Proof We can rewrite equation (3.1); as

dn—An=V - forpiin+ Mz[(n’()'\ - (no)'\],

where we again abbreviate
A~ 0/\ 0 A~
A n nc n°Vc
fz;:—(u"n+un0+x<—KVc"——0 -V + —; ))
c ¢ c

Since the initial data 71(x, 0) = 0, using the variation-of-constants formula, we get

n(,t) = fte(ts)A[V fa(,8) + pym + uz[(n")k - (no)'\] ds forallt>0. (3.35)
0

We can use Lemma 2.3 and Lagrange’s mean value theorem to obtain

1

7, 8) | oy < €22 /0 [(1+ = 2)e (A9 | ey

+ pallitll o) + paAM il o) | ds - forall £ > 0.

In view of Lemma 2.1 and Lemmas 3.2-3.3, from (3.35) we therefore obtain that with some
¢y3 > 0 we have

A N X /ya
|Lf2("5) “LP(Q) = ”"K ”Lw(sz)”””LP(Q) + [[Ull o) H”O “LP(Q) + 9_0(||n”L2P(Q) ”VCK ”LZp(Q)
~ X ~
+ ”no ||L2P(Q)”VC“L217(Q)) + 9_3 ||n0||L°C(Q)”C”L2P(Q) ” Ve ||L2P(Q)
<cyp3x forallt>0,

as desired. O

Proof of Theorem 1.1 We only need to use Lemmas 3.2-3.4 and combine the embedding
WLP(Q) < L®(Q) for p > 2 and D(A%) — L®(2;R?) to complete the proof. a
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