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Abstract
In this paper, by using a change of variable and the mountain-pass theorem, we show
that the following quasilinear Schrödinger systems

{
–�u + V1(x)u + κ

2 [�|u|2]u = λf (x,u, v), x ∈R
N ,

–�v + V2(x)v + κ
2 [�|v|2]v = λh(x,u, v), x ∈R

N

have a nontrivial solution (u, v) for all λ > λ1(κ ), where N ≥ 3,V1(x),V2(x) are positive
continuous functions, κ , λ are positive parameters, and nonlinear terms
f ,h ∈ C(RN ×R

2,R). Our main contribution is that we can deal with the case when
κ > 0 is large for the above systems.

Keywords: Quasilinear Schrödinger systems; Mountain-pass theorem; Morse
iteration; Nontrivial solution

1 Introduction
In this paper, we consider the following quasilinear Schrödinger systems of the form

⎧⎨
⎩–�u + V1(x)u + κ

2 [�|u|2]u = λf (x, u, v), x ∈R
N ,

–�v + V2(x)v + κ
2 [�|v|2]v = λh(x, u, v), x ∈R

N ,
(1.1)

where N ≥ 3, V1(x), V2(x) are positive continuous functions, κ , λ are positive parameters
and the nonlinear term f , h ∈ C(RN ×R

2,R).
Quasilinear Schrödinger systems like (1.1) are in part motivated by the following quasi-

linear Schrödinger equations

izt = –�z + W (x)z – k(x, z) +
κ

2
[�(l

(|z|2)l′
(|z|2)]z, x ∈R

N , (1.2)

where z : R×R
N → C, W : RN → R is a given potential, κ is a positive parameter and l :

R →R, k : RN ×R →R are continuous functions. The quasilinear Schrödinger equations
(1.2) describe several physical phenomena with different l and k, see [3, 4, 10, 12, 14] and
the references therein. In this paper, we are interested in the existence of standing-wave

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-022-01623-z
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-022-01623-z&domain=pdf
mailto:liguofa2013@163.com
http://creativecommons.org/licenses/by/4.0/


Li Boundary Value Problems         (2022) 2022:40 Page 2 of 17

solutions for (1.2), that is, solutions of the form z(t, x) = exp(–iEt)u(x), where E ∈R and u
is a real function. Submitting z(t, x) into (1.2) and denoting k(x, z) = ζ (z2)z, we obtain

–�u + V (x)u +
κ

2
[�(

l
(|u|2))]l′

(|u|2)u = ζ
(
u2)u, x ∈R

N . (1.3)

If we take l(t) = t, ζ (u2)u = ω(u), then (1.3) can be reduced to the following equations:

–�u + V (x)u +
κ

2
[�|u|2]u = ω(u), x ∈R

N . (1.4)

Letting κ �= 0, equations (1.4) are quasilinear Schrödinger equations and [�|u|2]u is a
quasilinear term. Compared to the semilinear case, quasilinear equations become more
complicated due to the quasilinear and nonconvex term [�|u|2]u. One of the main diffi-
culties of (1.4) is that the functional

∫
RN u2|∇u|2 dx of the quasilinear term [�|u|2]u is not

smooth in usual Sobolev space H1(RN ). By using the change of variable (dual approach)
s = G–1(t) for t ∈ [0, +∞), where

G(s) =
∫ s

0

√
1 – κt2 dt, (1.5)

and G–1(t) = –G–1(–t) for t ∈ (–∞, 0), quasilinear equations (1.4) can be reduced to the
semilinear one

–�v + V (x)
G–1(v)

g(G–1(v))
=

ω(G–1(v))
g(G–1(v))

, x ∈R
N .

Then, an Orlicz-space framework can be used to prove the existence of nontrivial solutions
via minimax methods. Since 1 – κt2 may be negative with κ > 0, a change of variable (1.5)
is not adequate to study the existence of nontrivial solutions for these quasilinear equa-
tions. Letting 1 – κt2 > 0, integral (1.5) makes sense and the inverse function G–1(t) exists.
When κ > 0 is small enough, many papers have studied the existence results of nontriv-
ial solutions or multiple solutions for (1.4) via dual-approach techniques and variational
methods, see [1, 2, 6, 7, 16, 18–20].

Moreover, when κ > 0 is large, letting 1 –κt2 > 0, a change of variable (1.5) is also used to
study the existence of solutions for quasilinear equations, but now the nonlinearity ω(u)
needs to be multiplied by a large constant λ. For example, Huang and Jia [11] (κ = 2), Li
and Huang [13], and Liang, Gao and Li [15] obtained the existence of nontrivial solutions
for the following equations

–�u + V (x)u +
κ

2
[�|u|2]u = λω(u), x ∈ R

N .

For quasilinear Schrödinger systems like (1.1), when κ > 0 is small enough, Chen and
Zhang proved the existence of a positive ground-state solution [8] and a nonradially sym-
metrical nodal solution [9] for the following quasilinear Schrödinger systems, respectively,

⎧⎨
⎩–�u + u + κ

2 [�|u|2]u = 2α
α+β

|u|α–2u|v|β , x ∈R
N ,

–�v + v + κ
2 [�|v|2]v = 2β

α+β
|u|α|v|β–2v, x ∈R

N ,
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and

⎧⎨
⎩–�u + A(x)u + κ

2 [�|u|2]u = 2α
α+β

|u|α–2u|v|β , x ∈R
N ,

–�v + Bv + κ
2 [�|v|2]v = 2β

α+β
|u|α|v|β–2v, x ∈R

N ,

where α,β > 1, 2 < α + β < 2∗, potential function A(x) is radially symmetric and B > 0.
However, these papers did not consider the existence of the nontrivial solutions for sys-
tems (1.1) when κ > 0 is large. To the best of our knowledge, there are no results for this
problem in the literature. In this paper, we will be concerned with this problem.

Throughout this paper, we assume that V1(x), V2(x) ∈ C(RN ,R) and satisfy the following
conditions

(V1) 0 < V0 := min{infx∈RN V1(x), infx∈RN V2(x)};
(V2) there exists M0 > 0 such that for all M ≥ M0

μ
({

x ∈ R
N : Vi(x) ≤ M

})
< +∞, i = 1, 2,

where μ denotes the Lebesgue measure in R
N . Moreover, suppose the nonlinearities f , h

satisfy the following conditions
(h1) lim(s,t)→(0,0)

f (x,s,t)
|(s,t)| = lim(s,t)→(0,0)

h(x,s,t)
|(s,t)| = 0;

(h2) There is a constant C > 0, such that 〈∇η(x, s, t), (s, t)〉 ≤ C(|(s, t)| + |(s, t)|q), ∀t ∈ R,
2 < q < 2∗+2

2 ;
(h3) There is θ ∈ (2, 2∗) such that 0 < θη(x, s, t) ≤ (s, t)∇η(x, s, t) and uf (x, u, v) ≥ 0,

vh(x, u, v) ≥ 0, where ∇η(x, s, t) = (f (x, s, t), h(x, s, t)).
Our main results in this paper are as follows.

Theorem 1.1 Assume that (V1), (V2), and (h1)–(h3) hold. Then, for given κ > 0, there exists
λ1(κ) > 0 such that for all λ > λ1(κ), systems (1.1) have a nontrivial solution (u, v) ∈ H
satisfying maxx∈RN |(u(x), v(x)| ≤

√
1

2κ
.

Remark 1.1 In [17], Sever and Silva obtained the existence of nontrivial solutions for
(1.1) with κ = –2, λ = 1 under conditions (h1)–(h3). f (x, u, v) = 2α

α+β
|u|α–2u|v|β , h(x, u, v) =

2β

α+β
|u|α|v|β–2v satisfy (h1)–(h3), where α,β > 1.

The remainder of this paper is organized as follows. In Sect. 2, we give some prelimi-
naries. In Sect. 3, we show the existence of a nontrivial solution (zκ , wκ ) for the modified
problem via the mountain-pass theorem. In Sect. 4, we use the Morse iteration technique
to obtain L∞-estimate for (zκ , wκ ) and finally we obtain the solutions for the original sys-
tems (1.1).

Throughout this paper, we use the standard notations. We use ‖ · ‖q (1 < q ≤ ∞) that is a
standard norm in the usual Lebesgue space Lq(RN ). on(1) will always denote the quantities
tending to 0 as n → ∞. ⇀ and → denote weak and strong convergence. BR(0) denotes a
ball centered at the origin with radius R > 0. C, C0, C1, . . . denote positive constants.
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2 Preliminaries
The energy functional associated with (1.1) is

Iκ (u, v) =
1
2

∫
RN

(
1 – κu2)|∇u|2 dx +

1
2

∫
RN

V1(x)|u|2 dx

+
1
2

∫
RN

(
1 – κv2)|∇v|2 dx +

1
2

∫
RN

V2(x)|v|2 dx – λ

∫
RN

η(x, u, v) dx,

where ∇η(x, s, t) = (f (x, s, t), h(x, s, t)). Since the terms
∫
RN u2|∇u|2 dx and

∫
RN v2|∇v|2 dx

are not well defined in the usual Sobolev spaces, the functional Iκ may not be smooth.
Hence, we cannot directly apply variational methods to obtain the critical points of Iκ .

We define H = H1 ×H2 with the norm

∥∥(u, v)
∥∥2 = ‖u‖2 + ‖v‖2,

where Hi, i = 1, 2 are Banach spaces and

Hi =
{

u ∈ H1(
R

N)
:
∫
RN

Vi(x)u2 dx < +∞
}

, i = 1, 2

endowed with the norm

‖u‖ =
[∫

RN

(|∇u|2 + Vi(x)u2)dx
]1/2

, i = 1, 2,

H1(RN ) is the usual Sobolev space.
We say (u, v) : RN × R

N → R × R is a (weak) solution of (1.1) if (u, v) ∈ H and it holds
that ∫

RN

[(
1 – κu2)∇u∇ϕ +

(
1 – κv2)∇v∇ψ

]
dx – κ

∫
RN

(|∇u|2uϕ + |∇v|2vψ
)

dx

+
∫
RN

[
V1(x)uϕ + V2(x)vψ

]
dx = λ

∫
RN

[
f (x, u, v)ϕ + h(x, u, v)ψ

]
dx

for all ϕ,ψ ∈ C∞
0 (RN ).

In order to obtain nontrivial (weak) solutions of (1.1), we assume that 1 –κu2 > 0. More-
over, we define g : R→R

+ as follows

g(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(–t), t < 0,√
1 – κt2, 0 ≤ t <

√
1

2κ
,

√
2

8κt2 +
√

2
4 , t ≥

√
1

2κ
.

(2.1)

Then, g ∈ C1(R, (
√

2
4 , 1]), g is even, increasing in (–∞, 0) and decreasing in [0, +∞).

Motivated by [2], we consider the existence of nontrival solutions for the following mod-
ified quasilinear Schrödinger systems:

⎧⎨
⎩–div(g2(u)∇u) + g(u)g ′(u)|∇u|2 + V1(x)u = λf (x, u, v), x ∈ R

N ,

–div(g2(v)∇v) + g(v)g ′(v)|∇v|2 + V2(x)v = λh(x, u, v), x ∈R
N ,

(2.2)
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where g(t) is defined in (2.1). Also, we say (u, v) is a (weak) solution of (2.2) if (u, v) ∈ H
and

∫
RN

[
g2(u)∇u∇ϕ + g(u)g ′(u)|∇u|2ϕ + g2(v)∇v∇ψ + g(v)g ′(v)|∇v|2ψ]

dx

+
∫
RN

[
V1(x)uϕ + V2(x)vψ

]
dx = λ

∫
RN

[
f (x, u, v)ϕ + h(x, u, v)ψ

]
dx (2.3)

for ϕ,ψ ∈ C∞
0 (RN ).

Clearly, if we obtain a solution u of (2.2) that satisfies ‖(u, v)‖∞ < 1/
√

2κ , then (u, v) is a
solution of (1.1). By using the following change of variable

z = G(u) =
∫ u

0
g(t) dt, w = G(v) =

∫ v

0
g(t) dt,

then we see that the problem (2.2) can be reduced to the following semilinear Schrödinger
systems:

⎧⎨
⎩–�z + V1(x) G–1(z)

g(G–1(z)) = λ
f (x,G–1(z),G–1(w))

g(G–1(z)) , x ∈ R
N ,

–�w + V2(x) G–1(w)
g(G–1(w)) = λ h(x,G–1(z),G–1(w))

g(G–1(w)) , x ∈R
N ,

(2.4)

where G–1(z), G–1(w) are the inverse of G(u), G(v). The energy functional associated with
(2.4) is

Jκ (z, w) = I
(
G–1(z), G–1(w)

)
=

1
2

∫
RN

|∇z|2 dx +
1
2

∫
RN

V1(x)
∣∣G–1(z)

∣∣2 dx

+
1
2

∫
RN

|∇w|2 dx +
1
2

∫
RN

V2(x)
∣∣G–1(w)

∣∣2 dx

– λ

∫
RN

η
(
x, G–1(z), G–1(w)

)
dx. (2.5)

It is easy to prove that Jκ is well defined in H and Jκ ∈ C1(H,R) under our assumptions
and the following lemma (cf. [19, Lemma 2.1]).

Lemma 2.1 The functions g(t), G(t) enjoy the following properties:
(i) G is inverse, G(t) and the inverse G–1(t) are odd;

(ii) –1 ≤ t
g(t) g ′(t) ≤ 0 for all t ∈R;

(iii) |t| ≤ |G–1(t)| ≤ 2
√

2|t| for all t ∈R;
(iv) limt→0

G–1(t)
t = 1, limt→∞ G–1(t)

t = 2
√

2;
(v) g(G–1(t)) ≤ t

G–1(t) for all t ∈R.

The following lemma shows that any critical point (z, w) ∈ H of Jκ is a (weak) solution
of (2.2).

Lemma 2.2 Assume that (V1), (V2), and (h1)–(h3) hold. If (z, w) ∈ H is a critical point of
Jκ , then (u, v) = (G–1(z), G–1(w)) is a weak solution of (2.2).
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Proof Since (z, w) ∈H is a critical point of Jκ , we have

∫
RN

∇z∇ϕ dx +
∫
RN

V1(x)
G–1(z)

g(G–1(z))
ϕ dx

+
∫
RN

∇w∇ψ dx +
∫
RN

V2(x)
G–1(w)

g(G–1(w))
ψ dx

= λ

∫
RN

[
f (x, G–1(z), G–1(w))

g(G–1(z))
ϕ +

h(x, G–1(z), G–1(w))
g(G–1(w))

ψ

]
dx, (2.6)

for all (ϕ,ψ) ∈ H. It also implies from (V1) and Lemma 2.1(iii) that (u, v) := (G–1(z),
G–1(w)) ∈ H. For each ϕ1,ψ1 ∈ C∞

0 (RN ) and taking (ϕ,ψ) := (g(u)ϕ1, g(v)ψ1) ∈ H in (2.6),
we obtain that

∫
RN

∇z
(
g ′(u)ϕ1∇u + g(u)∇ϕ1

)
dx +

∫
RN

∇w
(
g ′(v)ψ1∇v + g(v)∇ψ1

)
dx

+
∫
RN

V1(x)
u

g(u)
g(u)ϕ1 dx +

∫
RN

V2(x)
v

g(v)
g(v)ψ1 dx

= λ

∫
RN

f (x, u, v)
g(u)

g(u)ϕ1 dx + λ

∫
RN

h(x, u, v)
g(v)

g(v)ψ1 dx.

Note that z = G(u), w = G(v) and ∇z = g(u)∇u, ∇w = g(v)∇v, then we obtain (2.3). There-
fore, (u, v) is a weak solution of (2.2). �

Denote [Lr(RN )]2 = Lr(RN ) × Lr(RN ) with the norm

∥∥(u, v)
∥∥

r =
(‖u‖2

r + ‖v‖2
r
)1/2, 1 ≤ r < +∞,

where Lr(RN ) is the Lebesgue function space with the norm

‖u‖r =
(∫

RN
|u|r dx

)1/r

, 1 ≤ r < +∞.

Now, we state the Sobolev embedding Lemma.

Lemma 2.3 Assume that (V1) and (V2) hold. Let {zn} and {wn} be bounded in H. Then,
there exist z, w ∈H∩ Lr(RN ) such that up to a subsequence, zn → z, wn → w in Lr(RN ), r ∈
[2, 2∗).

Proof It is analogous to the proof of [5]. �

3 The modified systems
In this section, we shall prove the existence of nontrivial solutions for the modified systems
(2.4) via the mountain-pass theorem.

Lemma 3.1 Assume that (h1)–(h3) hold, then
(i) there exist ρ,α > 0 such that Jκ (z, w) ≥ α for all (z, w) satisfying ‖(z, w)‖ = ρ ;

(ii) there is (z, w) ∈H \ {(0, 0)} such that Jκ (z, w) ≤ 0.
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Proof (i) By (h1) and (h2), for each ε > 0 there exists a constant C = C(ε) > 0 such that

∣∣〈∇η(x, s, t), (s, t)
〉∣∣ =

∣∣f (x, s, t)s + h(x, s, t)t
∣∣ ≤ ε

∣∣(s, t)
∣∣ + C

∣∣(s, t)
∣∣q–1, (3.1)

where 2 < q < 2∗. Then,

η(x, s, t) ≤ ε

2
∣∣(s, t)

∣∣2 +
C
q

∣∣(s, t)
∣∣q. (3.2)

Letting ε = min{V1(x)
16λ

, V2(x)
16λ

}, it follows from Lemma 2.1 (iii), (3.2), and Lemma 2.3 that there
exists a constant Cr > 0 such that

Jκ (z, w) ≥ 1
2

∫
RN

[|∇z|2 + V1(x)|v|2]dx +
1
2

∫
RN

[|∇w|2 + V2(x)|w|2]dx

– 4λε

∫
RN

[|z|2 + |w|2]dx – (2
√

2)q C
q

λ

∫
RN

[|z|q + |w|q]dx

≥ 1
4
[‖z‖2 + ‖w‖2] – (2

√
2)q C

q
λ

∫
RN

[|z|q + |w|q]dx

≥ 1
4
∥∥(z, w)

∥∥2 – (2
√

2)q C
q

Cq
qλ

∥∥(z, w)
∥∥q,

hence, we may choose ‖(z, w)‖ = ρ so small that

Jκ ,λ(z, w) ≥ α :=
1
4
ρ2 – (2

√
2)q C

q
Cq

qλρ
q > 0.

(ii) Choose (τ1, τ2) ∈ H with τ1, τ2 > 0. Then, by Lemma 2.1 (iii) we have |τi|2 ≤
|G–1(tτi)|2

t2 ≤ 8|τi|2, i = 1, 2. It follows from (h3) that lim|(ν1,ν2)|→+∞ η(x,ν1,ν2)
|(ν1,ν2)|2 = +∞. Hence,

we have

Jκ (tτ1, tτ2)
t2 ≤ 1

2

∫
RN

|∇τ1|2 dx + 4
∫
RN

V1(x)|τ1|2 dx

+
∫
RN

|∇τ2|2 dx + 4
∫
RN

V2(x)|τ2|2 dx

– λ

∫
RN

η(x, G–1(tτ1), G–1(tτ2))
t2 dx

=
1
2

∫
RN

|∇τ1|2 dx + 4
∫
RN

V1(x)|τ1|2 dx

+
∫
RN

|∇τ2|2 dx + 4
∫
RN

V2(x)|τ2|2 dx

– λ

∫
RN

η(x, G–1(tτ1), G–1(tτ2))
|(G–1(tτ1), G–1(tτ2))|2

|(G–1(tτ1), G–1(tτ2))|2
t2 dx

→ –∞ as t → +∞,

therefore, there is a sufficiently large t0 > 0; let (z, w) = (t0τ1, t0τ2) with ‖(z, w)‖ > ρ such
that Jκ (z, w) ≤ 0. �
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It follows from Lemma 3.1 that Jκ has a (PS)c sequence {(zn, wn)} ⊂H such that

Jκ (zn, wn) → c, J ′
κ (zn, wn) → 0 as n → ∞, (3.3)

where

c = inf
γ∈�

sup
t∈[0,1]

Jκ (zt , wt),

� =
{

(zt , wt) ∈ C
(
[0, 1] × [0, 1],H

)
: (z0, w0) = (0, 0), (z1, w1) �= (0, 0), Jκ (z1, w1) < 0

}
.

Lemma 3.2 Assume that (h3) holds, then any (PS)c sequence {(zn, wn)} ⊂ H obtained in
(3.3) is bounded.

Proof By (3.3), Lemma 2.1(ii), (iii), and (h3), one has

c + 1 + on(1)
∥∥(zn, wn)

∥∥
≥ Jκ (zn, wn) –

1
θ

〈
J ′
κ (zn, wn),

(
G–1(zn)g

(
G–1(zn)

)
, G–1(wn)g

(
G–1(wn)

))〉

=
(

1
2

–
1
θ

)∫
RN

|∇zn|2 dx –
1
θ

∫
RN

G–1(zn)
g(G–1(zn))

g ′(G–1(zn)
)|∇zn|2 dx

+
(

1
2

–
1
θ

)∫
RN

V1(x)
∣∣G–1(zn)

∣∣2 dx

+
(

1
2

–
1
θ

)∫
RN

|∇wn|2 dx –
1
θ

∫
RN

G–1(wn)
g(G–1(wn))

g ′(G–1(wn)
)|∇wn|2 dx

+
(

1
2

–
1
θ

)∫
RN

V2(x)
∣∣G–1(wn)

∣∣2 dx

+ λ

∫
RN

[
1
θ

〈∇η
(
x, G–1(zn), G–1(wn)

)
,
(
G–1(zn)g

(
G–1(zn)

)
, G–1(wn)g

(
G–1(wn)

))〉

– η
(
x,

(
G–1(zn)

)
, G–1(wn)

)]
dx

≥
(

1
2

–
1
θ

)∫
RN

[|∇zn|2 + V1(x)|zn|2 + |∇wn|2 + V2(x)|wn|2
]

dx

=
(

1
2

–
1
θ

)∥∥(zn, wn)
∥∥2,

(3.4)

which implies that {(zn, wn)} ⊂H is bounded. �

Since the sequence {(zn, wn)} given by Lemma 3.2 is bounded inH, there exists (z, w) ∈H
and a subsequence of {(zn, wn)}, still denoted by {(zn, wn)}, such that

(zn, wn) ⇀ (z, w) in H,

(zn, wn) → (z, w) in
[
Lq

loc
(
R

N)]2, 2 ≤ q < 2∗,(
zn(x), wn(x)

) → (
z(x), w(x)

)
a.e. in R

N .

(3.5)
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Now, we denote the functional Jκ given in (2.5) by

Jκ (zn, wn) =
1
2

∫
RN

|∇zn|2 dx +
1
2

∫
RN

V1(x)|zn|2 dx

+
1
2

∫
RN

|∇wn|2 dx +
1
2

∫
RN

V2(x)|wn|2 dx –
∫
RN

ξ (x, zn, wn),

where

ξ (x, zn, wn) =
1
2

V1(x)
[|zn|2 –

∣∣G–1(zn)
∣∣2]

+
1
2

V2(x)
[|wn|2 –

∣∣G–1(wn)
∣∣2] + λη

(
x, G–1(zn), G–1(wn)

)
,

and

〈∇ξ (x, zn, wn), (zn, wn)
〉

= V1(x)
[
|zn|2 –

G–1(zn)
g(G–1(zn))

zn

]
+ λ

f (x, G–1(zn), G–1(wn))
g(G–1(zn))

zn

+ V2(x)
[
|wn|2 –

G–1(wn)
g(G–1(wn))

wn

]
+ λ

h(x, G–1(zn), G–1(wn))
g(G–1(wn))

wn.

Lemma 3.3 Assume that (h1), (h2), (V1), and(V2) hold, {(zn, wn)} ⊂H is a (PS)c sequence
such that (zn, wn) ⇀ (z, w) in H, n → ∞, then

lim
n→∞

∫
RN

〈∇ξ (x, zn, wn), (zn, wn)
〉
dx =

∫
RN

〈∇ξ (x, z, w), (z, w)
〉
dx, (3.6)

lim
n→∞

∫
RN

〈∇ξ (x, zn, wn), (z, w)
〉
dx =

∫
RN

〈∇ξ (x, z, w), (z, w)
〉
dx. (3.7)

Proof By Lemma 2.3, since zn → z, wn → w in Lr(RN ), r ∈ [2, 2∗), for every small ε1 > 0,
there exists R1 > 0 such that

∫
BC

R1

|zn|2 dx ≤ ε1,
∫

BC
R1

|z|2 dx ≤ ε1,

∫
BC

R1

|wn|2 dx ≤ ε1,
∫

BC
R1

|w|2 dx ≤ ε1, n ≥ 1.
(3.8)

Then,

∫
BC

R1

V1(x)|zn|2 dx ≤ C1ε1,
∫

BC
R1

V1(x)|z|2 dx ≤ C1ε1,

∫
BC

R1

V2(x)|wn|2 dx ≤ C2ε1,
∫

BC
R1

V2(x)|w|2 dx ≤ C2ε1.
(3.9)
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We derive from (3.5) that

lim
n→∞

∫
BR1

V1(x)|zn|2 dx =
∫

BR1

V1(x)|z|2 dx,

lim
n→∞

∫
BR1

V2(x)|wn|2 dx =
∫

BR1

V2(x)|w|2 dx.
(3.10)

By (3.9) and (3.10), we have

lim
n→∞

∫
RN

V1(x)|zn|2 dx =
∫
RN

V1(x)|z|2 dx,

lim
n→∞

∫
RN

V2(x)|wn|2 dx =
∫
RN

V2(x)|w|2 dx.
(3.11)

By Lemma 2.1(iii), since | G–1(t)
g(G–1(t)) t| ≤ 8|t|2, it follows from (3.11) that

lim
n→∞

∫
RN

V1(x)
G–1(zn)

g(G–1(zn))
zn dx =

∫
RN

V1(x)
G–1(z)

g(G–1(z))
z dx,

lim
n→∞

∫
RN

V2(x)
G–1(wn)

g(G–1(wn))
wn dx =

∫
RN

V2(x)
G–1(w)

g(G–1(w))
w dx.

(3.12)

Together with Lemma 2.1 (iii), (3.1), and the Hölder inequality, we obtain

∣∣∣∣ f (x, G–1(zn), G–1(wn))
g(G–1(zn))

zn +
h(x, G–1(zn), G–1(wn))

g(G–1(wn))
wn

∣∣∣∣
=

∣∣〈∇η
(
x, G–1(zn), G–1(wn)

)
, (zn, wn)

〉∣∣
≤ ε

∣∣(G–1(zn), G–1(wn)
)∣∣∣∣(zn, wn)

∣∣ + C
∣∣(G–1(zn), G–1(wn)

)∣∣q–1∣∣(zn, wn)
∣∣

≤ 2
√

2ε
∣∣(zn, wn)

∣∣2 + C(2
√

2)q–1∣∣(zn, wn)
∣∣q.

By (3.8), we have

∫
BC

R1

∣∣(zn, wn)
∣∣2 dx ≤ C1ε1,

∫
BC

R1

∣∣(z, w)
∣∣2 dx ≤ C1ε1

and
∫

BC
R1

∣∣(zn, wn)
∣∣q dx ≤ C2ε1,

∫
BC

R1

∣∣(z, w)
∣∣q dx ≤ C2ε1.

Hence,

∫
BC

R1

∣∣〈∇η
(
x, G–1(zn), G–1(wn)

)
, (zn, wn)

〉∣∣dx

≤ 2
√

2ε

∫
BC

R1

∣∣(zn, wn)
∣∣2 dx + C(2

√
2)q–1

∫
BC

R1

∣∣(zn, wn)
∣∣q dx

≤ [
2
√

2ε + C(2
√

2)q–1]max{C1, C2}ε1. (3.13)
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It follows from (3.5) that

lim
n→∞

∫
BR1

〈∇η
(
x, G–1(zn), G–1(wn)

)
, (zn, wn)

〉
dx

=
∫

BR1

〈∇η
(
x, G–1(z), G–1(w)

)
, (z, w)

〉
dx. (3.14)

Combining (3.13) and (3.14), we have

lim
n→∞

∫
RN

〈∇η
(
x, G–1(zn), G–1(wn)

)
, (zn, wn)

〉
dx

= lim
n→∞

∫
RN

[
f (x, G–1(zn), G–1(wn))

g(G–1(zn))
zn +

h(x, G–1(zn), G–1(wn))
g(G–1(wn))

wn

]
dx

=
∫
RN

[
f (x, G–1(z), G–1(w))

g(G–1(z))
z +

h(x, G–1(z), G–1(w))
g(G–1(w))

w
]

dx. (3.15)

Then, we conclude (3.6) from (3.11), (3.12), and (3.15). (3.7) can be proved similarly. �

Lemma 3.4 Suppose that (V1), (V2), (h1) and (h2) hold, then any (PS)c sequence {(zn,
wn)} ⊂H obtained in (3.3) has a strong convergence subsequence.

Proof By Lemma 3.2, {(zn, wn)} is bounded in H, up to a subsequence, we may assume that
(zn, wn) ⇀ (z, w) ∈ H as n → ∞, and the fact that 〈J ′

κ (zn, wn), (zn, wn)〉 = on(1) and Lemma
3.3 imply

lim
n→∞

∥∥(zn, wn)
∥∥2 = lim

n→∞

∫
RN

〈∇ξ (x, zn, wn), (zn, wn)
〉
dx =

∫
RN

〈∇ξ (x, z, w), (z, w)
〉
dx.

On the other hand, it follows from 〈J ′
κ (zn, wn), (z, w)〉 = on(1) that

〈
(zn, wn), (z, w)

〉
=

∫
RN

〈∇ξ (x, zn, wn), (z, w)
〉
dx + on(1).

Then,

lim
n→∞

〈
(zn, wn), (z, w)

〉
= lim

n→∞

∫
RN

〈∇ξ (x, zn, wn), (z, w)
〉
dx =

∫
RN

〈∇ξ (x, z, w), (z, w)
〉
dx,

that is,

lim
n→∞

∥∥(zn, wn)
∥∥2 =

∥∥(z, w)
∥∥2.

Hence, (zn, wn) → (z, w) in H. �

By Lemmas 3.1–3.4, we have the following result.

Theorem 3.5 Suppose that (V1), (V2), and (h1)–(h3) hold, then the problem (2.4) has a
nontrivial solution.
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Proof By Lemmas 3.1 and 3.2, Jκ has a bounded (PS)c sequence {(zn, wn)} ⊂ H. It fol-
lows from Lemma 3.4 that there is a sequence of {(zn, wn)}, up to a subsequence, such
that (zn, wn) → (zκ , wκ ) in H as n → ∞ satisfying Jκ (zκ , wκ ) = c ≥ ρ > 0, which means that
(zκ , wκ ) is a nontrivial solution of (2.4). �

4 Proof of the main results
In this section, we will prove the main results. We note that the solution (uκ , vκ ) =
(G–1(zκ ), G–1(wκ )) may not be a solution of the systems (1.1). In order to find a solution of
the original systems (1.1), we establish a result of L∞-estimate for (zκ , wκ ).

Lemma 4.1 Assume that (zκ , wκ ) (denoted by (z, w)) is a nontrivial critical point of Jκ and
Jκ (z, w) = c, then there exists a positive constant C independent of λ such that

∥∥(z, w)
∥∥2 ≤ Cc.

Proof By (h3), Lemma 2.1 (ii) and (iii), and (3.4), we obtain

θc = θ Jκ (z, w) –
〈
J ′
κ (z, w),

(
G–1(z)g

(
G–1(z)

)
, G–1(w)g

(
G–1(w)

))〉
≥

(
θ

2
– 1

)∥∥(z, w)
∥∥2.

Hence,

∥∥(z, w)
∥∥2 ≤ 2θc

θ – 2
= Cc. (4.1)

This completes the proof. �

Lemma 4.2 Suppose that (z, w) is a positive solution of (2.4), then there exists a constant
C1 > 0 that is independent of λ such that

∥∥(z, w)
∥∥∞ ≤ C1λ

1
2∗–q

∥∥(z, w)
∥∥

2∗ .

Proof For each m ∈N, let β > 1 be a constant to be determined, we set

Am =
{

x ∈R
N : |z|β–1 ≤ m, |w|β–1 ≤ m

}
, Bm = R

N\Am,

(um, vm) =

⎧⎨
⎩(z|z|2(β–1), w|w|2(β–1)), x ∈ Am,

m2(z, w), x ∈ Bm

and

(zm, wm) =

⎧⎨
⎩(z|z|β–1, w|w|β–1), x ∈ Am,

m(z, w), x ∈ Bm.
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Clearly, (um, vm), (zm, wm) ∈H. Since (z, w) is a nontrivial solution of Eq. (2.4), we obtain

∫
RN

[
∇z∇um + V1(x)

G–1(z)
g(G–1(z))

um + ∇w∇vm + V2(x)
G–1(w)

g(G–1(w))
vm

]
dx

= λ

∫
RN

[
f (x, G–1(z), G–1(w))

g(G–1(z))
um +

h(x, G–1(z), G–1(w))
g(G–1(w))

vm

]
dx.

Furthermore, we have
∫
RN

(∇z∇um + ∇w∇vm) dx = (2β – 1)
∫

Am

(|z|2(β–1)|∇z|2 + |w|2(β–1)|∇w|2)dx

+ m2
∫

Bm

(|∇z|2 + |∇w|2)dx, (4.2)

∫
RN

(|∇zm|2 + |∇wm|2)dx = β2
∫

Am

(|z|2(β–1)|∇z|2 + |w|2(β–1)|∇w|2)dx

+ m2
∫

Bm

(|∇z|2 + |∇w|2)dx. (4.3)

It follows from (4.2) and (4.3) that
∫

Am

(|z|2(β–1)|∇z|2 + |w|2(β–1)|∇w|2)dx =
1

2β – 1

∫
RN

(∇z∇um + ∇w∇vm) dx

–
m2

2β – 1

∫
Bm

(|∇z|2 + |∇w|2)dx, (4.4)

∫
RN

(|∇zm|2 + |∇wm|2)dx = (β – 1)2
∫

Am

(|z|2(β–1)|∇z|2 + |w|2(β–1)|∇w|2)dx

+
∫
RN

(∇z∇um + ∇w∇vm) dx. (4.5)

By (4.4), (4.5), and the fact of β > 1, we deduce that

∫
RN

(|∇zm|2 + |∇wm|2)dx + β2
∫
RN

(
V1(x)

G–1(z)
g(G–1(z))

um + V2(x)
G–1(w)

g(G–1(w))
vm

)
dx

=
(β – 1)2

2β – 1

∫
RN

(∇z∇um + ∇w∇vm) dx –
m2(β – 1)2

2β – 1

∫
Bm

(|∇z|2 + |∇w|2)dx

+
∫
RN

(∇z∇um + ∇w∇vm) dx

+ β2
∫
RN

(
V1(x)

G–1(z)
g(G–1(z))

um + V2(x)
G–1(w)

g(G–1(w))
vm

)
dx

≤ β2

2β – 1

∫
RN

(∇z∇um + ∇w∇vm) dx

+ β2
∫
RN

(
V1(x)

G–1(z)
g(G–1(z))

um + V2(x)
G–1(w)

g(G–1(w))
vm

)
dx

≤ β2
∫
RN

(∇z∇um + ∇w∇vm) dx

+ β2
∫
RN

(
V1(x)

G–1(z)
g(G–1(z))

um + V2(x)
G–1(w)

g(G–1(w))
vm

)
dx
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= β2λ

∫
RN

(
f (x, G–1(z), G–1(w))

g(G–1(z))
um +

h(x, G–1(z), G–1(w))
g(G–1(w))

vm

)
dx

≤ β2λ

∫
RN

[
ε

(
G–1(z)

g(G–1(z))
um +

G–1(w)
g(G–1(w))

vm

)

+ C
( |G–1(z)|q–1

g(G–1(z))
um +

|G–1(w)|q–1

g(G–1(w))
vm

)]
dx

≤ β2
∫
RN

(
V1(x)

G–1(z)
g(G–1(z))

um + V2(x)
G–1(w)

g(G–1(w))
vm

)
dx

+ β2λC
∫
RN

( |G–1(z)|q–1

g(G–1(z))
um +

|G–1(w)|q–1

g(G–1(w))
vm

)
dx, (4.6)

for 0 < ε < min{V1(x)
λ

, V2(x)
λ

}. It follows from (iii) of Lemma 2.1, 1 < 1
g(t) < 2

√
2, and zum = z2

m,
wvm = w2

m that

∫
RN

(|∇zm|2 + |∇wm|2)dx ≤ β2Cλ

∫
RN

( |G–1(z)|q–1

g(G–1(z))
um +

|G–1(w)|q–1

g(G–1(w))
vm

)
dx

≤ β2λ(2
√

2)qC
∫
RN

(|z|q–2z2
m + |w|q–2w2

m
)

dx. (4.7)

If μ(a) + μ(b) ≤ ν(a) + ν(b), we have μ(a) ≤ ν(a), μ(b) ≤ ν(b). By (4.7), we can obtain

∫
RN

|∇zm|2 dx ≤ β2λ(2
√

2)qC
∫
RN

|z|q–2z2
m dx,

∫
RN

|∇wm|2 dx ≤ β2λ(2
√

2)qC
∫
RN

|w|q–2w2
m dx.

By the Sobolev inequality, there is S > 0 such that

(∫
Am

|zm|2∗
dx

) N–2
N ≤ S

∫
RN

|∇zm|2 dx,

combining (4.6) and the Hölder inequality, we know that

(∫
Am

|zm|2∗
dx

) N–2
N ≤ β2λ(2

√
2)qSC‖z‖q–2

2∗ ‖zm‖2
2q1 ,

where 1
q1

+ q–2
2∗ = 1. Note that |zm| = |z|β in Am and |zm| ≤ |z|β in R

N , hence

(∫
Am

|z|2∗β dx
) N–2

N ≤ β2λ(2
√

2)qSC‖z‖q–2
2∗ ‖z‖2β

2βq1
.

Letting m → ∞ in the above inequality, we have

‖z‖β2∗ ≤ β
1
β
(
λ(2

√
2)qSC‖z‖q–2

2∗
) 1

2β ‖z‖2βq1 . (4.8)

Denote σ = 2∗
2q1

. Now, taking β = σ in (4.8), we see that

‖z‖σ2∗ ≤ σ
1
σ
(
λ(2

√
2)qSC‖z‖q–2

2∗
) 1

2σ ‖z‖2∗ . (4.9)
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Taking β = σ 2 in (4.8), we obtain that

‖z‖σ 22∗ ≤ σ
2

σ2
(
λ(2

√
2)qSC‖z‖q–2

2∗
) 1

2σ2 ‖z‖σ2∗ . (4.10)

It follows from (4.9) and (4.10) that

‖z‖σ 22∗ ≤ σ
( 1
σ + 2

σ2 )(
λ(2

√
2)qSC‖z‖q–2

2∗
) 1

2 ( 1
σ + 1

σ2 )‖z‖2∗ .

Continuing in this way by taking β = σ i (i = 1, 2, . . .) in (4.8), we obtain

‖z‖σ j2∗ ≤ σ
∑j

i=1
i

σ i
(
λ(2

√
2)qSC‖z‖q–2

2∗
) 1

2
∑j

i=1
1
σ i ‖z‖2∗ , j = 1, 2, . . . .

It follows from the Sobolev inequality and letting j → +∞, we obtain

‖z‖∞ ≤ σ
1

(σ–1)2
(
λ(2

√
2)qSCS

q
2 C

q–2
2

0
) 1

2(σ–1) ‖z‖2∗

= C1λ
1

2(σ–1) ‖z‖2∗

= C1λ
1

2∗–q ‖z‖2∗ . (4.11)

Similarly, we may obtain

‖w‖∞ ≤ C2λ
1

2∗–q ‖w‖2∗ . (4.12)

Therefore, by (4.11) and (4.12), we obtain

‖z‖∞ + ‖w‖∞ ≤ λ
1

2∗–q
(
C1‖z‖2∗ + C2‖w‖2∗

)
, (4.13)

where C1, C2 > 0 are independent of λ. �

Proof of Theorem 1.1 Let δ > 0 be such that the set

T =
{

x ∈R
N : φ(x) ≥ δ

} ∩ {
x ∈R

N : ψ(x) ≥ δ
}

is nonempty. By (h3), for x ∈ T , there exists C1 > 0 such that

η(x, s, t) ≥ C1
∣∣(s, t)

∣∣q. (4.14)

By Theorem 3.5, let (z, w) be a critical point of Jκ and Jκ (z, w) = c, together with Lemma 3.1
(3) and (4.14), one has

c ≤ max
t>0

Jκ (tφ, tψ)

≤ max
t>0

[
t2

∫
RN

(
1
2
(|∇φ|2 + |∇ψ |2) + 4

(
V1(x)|φ|2 + V2(x)|ψ |2))dx

– C1λtq
∫

T

(|φ|q + |ψ |q)dx
]

≤ Cλ
– 2

q–2 .
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By (4.1), (4.13), and the continuous embedding H ↪→ Lr
K (RN ), r ∈ [2, 2∗], we have

‖z‖∞ + ‖w‖∞ ≤ Cλ
1

2∗–q
(‖z‖2∗ + ‖w‖2∗

) ≤ Cλ
1

2∗–q C
(‖z‖ + ‖w‖)

≤ Cλ
1

2∗–q C(C1c)
1
2 ≤ Cλ

1
2∗–q C

(
C1C2λ

– 2
q–2

) 1
2

= C3λ
– 2∗–2q+2

(2∗–q)(q–2) .

Since 2 < q < (2∗ + 2)/2, for fixing κ > 0, there is λ1(κ) = (16C2
3κ)

(2∗–q)(q–2)
2(2∗–2q+2) such that for any

λ > λ1(κ), it holds that

‖u‖∞ + ‖v‖∞ =
∥∥G–1(z)

∥∥∞ +
∥∥G–1(w)

∥∥∞

≤ 2
√

2
(‖z‖∞ + ‖w‖∞

) ≤ 2
√

2C3λ
– 2∗–2q+2

(2∗–q)(q–2) ≤
√

1
2κ

,

thus, (u, v) = (G–1(z), G–1(w)) is a nontrivial solution of systems (1.1). �

Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 11901345), Yunnan Local
Colleges Applied Basic Research Projects (Grant No. 202001BA070001-032), the Technology Innovation Team of University
in Yunnan Province (Grant No. 2020CXTD25), and Yunnan Fundamental Research Projects (Grant No. 202101AT070057).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Authors’ contributions
GL wrote the main manuscript text and reviewed the manuscript. The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 April 2022 Accepted: 28 May 2022

References
1. Aires, J., Souto, M.: Equation with positive coefficient in the quasilinear term and vanishing potential. Topol. Methods

Nonlinear Anal. 46, 813–833 (2015)
2. Alves, C., Wang, Y., Shen, Y.: Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J.

Differ. Equ. 259, 318–343 (2015)
3. Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.: Electron self-trapping in a discrete two-dimensional lattice. Physica D

159, 71–90 (2001)
4. Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.: Static solutions of a D-dimensional modified nonlinear Schrödinger

equation. Nonlinearity 16, 1481–1497 (2003)
5. Chen, C., Yang, H.: Multiple solutions for a class of quasilinear Schrödinger systems in R

N . Bull. Malays. Math. Sci. Soc.
42, 611–636 (2019)

6. Chen, J., Huang, X., Cheng, B.: Positive solutions for a class of quasilinear Schrödinger equations with superlinear
condition. Appl. Math. Lett. 87, 165–171 (2019)

7. Chen, J., Huang, X., Cheng, B., Zhu, C.: Some results on standing wave solutions for a class of quasilinear Schrödinger
equations. J. Math. Phys. 60, 091506 (2019)

8. Chen, J., Zhang, Q.: Existence of positive ground state solutions for quasilinear Schrödinger system with positive
parameter. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2033232

9. Chen, J., Zhang, Q.: Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive
quasilinear term. Commun. Pure Appl. Anal. 21, 669–686 (2022)

10. Hartmann, H., Zakrzewski, W.: Electrons on hexagonal lattices and applications to nanotubes. Phys. Rev. B 68, 184302
(2003)

https://doi.org/10.1080/00036811.2022.2033232


Li Boundary Value Problems         (2022) 2022:40 Page 17 of 17

11. Huang, C., Jia, G.: Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations. J. Math.
Anal. Appl. 472, 705–727 (2019)

12. Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)
13. Li, G., Huang, Y.: Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity.

Discrete Contin. Dyn. Syst., Ser. B https://doi.org/10.3934/dcdsb.2021214
14. Li, Q., Wu, X.: Existence, multiplicity, and concentration of solutions for generalized quasilinear Schödinger equations

with critical growth. J. Math. Phys. 58, 041501 (2017)
15. Liang, Z., Gao, J., Li, A.: Existence of positive solutions for a class of quasilinear Schrödinger equations with local

superlinear nonlinearities. J. Math. Anal. Appl. 484, 123732 (2020)
16. Severo, U., Gloss, E., Silva, E.: On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear

terms. J. Differ. Equ. 263, 3550–3580 (2017)
17. Severo, U., Silva, E.: On the existence of standing wave solutions for a class of quasilinear Schrödinger systems.

J. Math. Anal. Appl. 412, 763–775 (2014)
18. Wang, Y.: A class of quasilinear Schrödinger equations with critical or supercritical exponents. Comput. Math. Appl.

70, 562–572 (2015)
19. Wang, Y., Li, Z.: Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent.

Taiwan. J. Math. 22, 401–420 (2018)
20. Yang, M., Santos, C., Zhou, J.: Least action nodal solutions for a quasilinear defocusing Schrödinger equation with

supercritical nonlinearity. Commun. Contemp. Math. 21, 1850026 (2019)

https://doi.org/10.3934/dcdsb.2021214

	On the existence of nontrivial solutions for quasilinear Schrodinger systems
	Abstract
	Keywords

	Introduction
	Preliminaries
	The modiﬁed systems
	Proof of the main results
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


