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1 Introduction
Steklov conditions are considered a more “realistic” description of the interactions at the
boundary of a physical system. For example, the heat flow through the surface of a body
generally depends on the value of the temperature at the surface itself (see [2, 4, 11, 14]
and the references therein for some kinds of Steklov problems).

Recently, Afrouzi et al. [1] studied the existence of multiple solutions of the following
Steklov problem involving p(x)-Laplacian operator:

⎧
⎨

⎩

–�p(x)u = a(x)|u|p(x)–2u in �,

|∇u|p(x)–2 ∂u
∂n = λf (x, u) on ∂�,

where � ⊂R
N , N ≥ 2 is a bounded smooth domain, λ is a positive parameter, f : ∂�×R →

R is a Carathéodory function with a growth condition, and a ∈ L∞(�). Also, the existence
of at least one positive radial solution belonging to the space W 1,p(x)

0 (B) ∩ Lq(x)
a (B) ∩ Lr(x)

b (B)
for the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�p(x)u + R(x)up(x)–2u = a(x)|u|q(x)–2u – b(x)|u|r(x)–2u, x ∈ B,

u > 0, x ∈ B,

u = 0, x ∈ ∂B
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has been proved [21], where B is the unit ball centered at the origin in R
N , N ≥ 3, p, q, r ∈

C+(B), R is a positive radial function that satisfies the suitable conditions and

a(x) = θ
(|x|) and b(x) = ξ

(|x|),

in which θ , ξ ∈ L∞(0, 1) such that θ is a positive nonconstant radially nondecreasing func-
tion and ξ is a nonnegative radially nonincreasing function (see [17–20, 22–24] and the
references therein).

Motivated by their works, here we are interested in finding enough conditions for the ex-
istence and multiplicity of weak solutions to the following Steklov p(x)-Laplacian problem:

⎧
⎨

⎩

–�p(x)u + c(x)|u|p(x)–2u = f (x, u) in �,

|∇u|p(x)–2 ∂u
∂η

= g(x, u) on ∂�,
(1.1)

where � ⊂ R
N , N ≥ 2, is a bounded smooth domain, for p ∈ C(�), �p(x)u :=

div(|∇u|p(x)–2∇u) denotes the p(x)-Laplace operator, c ∈ L∞(�) with ess inf� c(x) > 0.
f : � ×R −→R is a Carathéodory function with the following conditions:

(F0)
∣
∣f (x, s)

∣
∣ ≤ a|s|γ (x)–1

for (x, s) ∈ � ×R, where a is a positive constant and γ ∈ C(�) such that

γ (x) ≤ p(x), x ∈ �,

and

(F1) f (x, s)s ≤ 0

for (x, s) ∈ � × R. And g : � × R −→ R is a Carathéodory function with the following
growth condition:

(G0)
∣
∣g(x, s)

∣
∣ ≤ b1(x) + b2|s|β(x)–1

for all (x, s) ∈ ∂� × R, where b1 ∈ L
β(x)

β(x)–1 (∂�), b2 ≥ 0 is a constant, β : � → R such that
β ∈ C(∂�) and

1 < β– := inf
x∈�

β(x) ≤ β(x) ≤ β+ := sup
x∈�

β(x) < p–.

We recall that f : � ×R −→ R is a Carathéodory function if x 
→ f (x, ξ ) is measurable for
all ξ ∈R and ξ 
→ f (x, ξ ) is continuous for a.e. x ∈ �.

The definition of the weak solution of problem (1.1) is as follows.

Definition 1.1 We say that the function u ∈ W 1,p(x)(�) is a weak solution of problem (1.1)
if

∫

�

(|∇u|p(x)–2∇u∇v + c(x)|u|p(x)–2uv
)

dx –
∫

�

f (x, u)v dx = λ

∫

∂�

g(x, u)v dσ

is true for all v ∈ W 1,p(x)(�).
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Remark 1.1 An interested reader may study the problem in the Orlicz–Sobolev spaces or
on the Heisenberg groups (see [12, 13, 25, 26] and the references therein for details of these
spaces).

One of the main results of this paper is as follows.

Theorem 1.1 Let f , g : � × R −→ R be Carathéodory functions satisfying (F0), (F1) and
(G0), respectively. Assume that there exists d > 0 such that

∫

∂�

max
|t|≤ξ

G(x, t) dσ ≤
∫

∂�

G(x, d) dσ (1.2)

with ξ := ( p+

k ( K
p– + M) dp̂)

1
p̌ . Then, for each

λ ∈ � :=
]


(d)
�(d)

,
( K

p– + M) dp̂

∫

∂�
max|t|≤ξ G(x, t) dσ

[

, (1.3)

problem (1.1) admits at least one nontrivial weak solution.

Subsequently, by Theorem 4.1 and Theorem 4.2, we present the existence of two and
three weak solutions of problem (1.1), respectively.

The rest of the paper is organized as follows: In Sect. 2, some preliminaries and basic
facts are recalled and the function space is introduced. Also some critical point theorems
are recalled, and we use them for the main results. In Sect. 3, the existence of at least one
weak solution for problem (1.1) is proved. Finally, in Sect. 4 the existence of multiple weak
solutions for problem (1.1) is proved.

2 Function spaces and critical point theorems
We suppose that p ∈ C(�) satisfies the following condition:

N < p– := inf
x∈�

p(x) ≤ p(x) ≤ p+ := sup
x∈�

p(x) < ∞. (2.1)

The variable exponent Lebesgue space Lp(x)(�) is defined as

Lp(x)(�) =
{

u : � −→R : u is measurable and
∫

�

∣
∣u(x)

∣
∣p(x) dx < ∞

}

with the Luxemburg norm

|u|p(x) := inf

{

λ > 0 :
∫

�

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

For any u ∈ Lp(x)(�) and v ∈ Lp′(x)(�), where Lp′(x)(�) is the conjugate space of Lp(x)(�),
the Hölder type inequality

∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣ ≤

(
1

p– +
1

p′–

)

|u|p(x)|v|p′(x)
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holds true. Also, for u ∈ Lp(x)(∂�), we put

|u|p(x),∂ :=
∫

∂�

|u|p(x) dσ .

Following the authors of paper [21], for any κ > 0, we put

κ ř :=

⎧
⎨

⎩

κr+
κ < 1,

κr–
κ ≥ 1;

and

κ r̂ :=

⎧
⎨

⎩

κr–
κ < 1,

κr+
κ ≥ 1;

for r ∈ C+(�). The following proposition is well known in Lebesgue spaces with variational
exponent (for instance, see [15, Proposition 2.7]).

Proposition 2.1 For each u ∈ Lp(x)(�), we have

|u|p̌p(x) ≤
∫

�

∣
∣u(x)

∣
∣p(x) dx ≤ |u|p̂p(x).

We denote the variable exponent Sobolev space W 1,p(x)(�) by

W 1,p(x)(�) :=
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

,

endowed with the norm

‖u‖p(x) := |u|p(x) + |∇u|p(x).

As pointed out in [10, 16], W 1,p(x)(�) is continuously embedded in W 1,p– (�), and since
p– > N , W 1,p– (�) is compactly embedded in C0(�). Thus, W 1,p(x)(�) is compactly embed-
ded in C0(�). So, in particular, there exists a positive constant m > 0 such that

‖u‖C0(�) ≤ m‖u‖p(x)

for each u ∈ W 1,p(x)(�). When � is convex, an explicit upper bound for the constant m
(see [8]) is as follows:

m ≤ 2
p––1

p– max

{(
1

‖c‖1

) 1
p–

,
d

N
1

p–

(
p– – 1
p– – N

|�|
) p––1

p– ‖c‖∞
‖c‖1

}
(
1 + |�|),

where d := diam(�), |�| is the Lebesgue measure of �,

‖c‖1 :=
∫

�

c(x) dx and ‖c‖∞ := sup
x∈�

c(x).
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It is well known that, in view of (2.1), both Lp(x)(�) and W 1,p(x)(�) are separable reflexive
and uniformly convex Banach spaces [10].

Remark 2.1 For u ∈ W 1,p(x)(�), there exist k, K > 0 such that

k‖u‖p̌
p(x) ≤

∫

�

(|∇u|p(x) + c(x)|u|p(x))dx ≤ K‖u‖p̂
p(x).

Proof Since ess inf� c > 0, so there exists 0 < δ < 1 such that δ < c(x). Using Proposition 2.1
and the hypothesis c ∈ L∞(�), we gain

δ|u|p̌p(x) ≤
∫

�

c(x)
∣
∣u(x)

∣
∣p(x) dx ≤ ‖c‖∞|u|p̂p(x)

and

δ|∇u|p̌p(x) ≤ |∇u|p̌p(x) ≤
∫

�

∣
∣∇u(x)

∣
∣p(x) dx ≤ |∇u|p̂p(x).

Bearing in mind the following elementary inequality: for all q > 0, there exists Cq > 0 such
that

|a + b|q ≤ Cq
(|a|q + |b|q)

for all a, b ∈R, we deduce

δ

Cp̌
‖u‖p̌

p(x) ≤
∫

�

(|∇u|p(x) + c(x)|u|p(x))dx ≤ (
1 + ‖c‖∞

)‖u‖p̂
p(x).

It is enough to put k = δ
Cp̌

, K = 1 + ‖c‖∞. �

Now, define F(x, t) :=
∫ t

0 f (x, s) ds. The growth condition (F0) gives the following esti-
mate:

∣
∣
∣
∣

∫

�

F(x, u) dx
∣
∣
∣
∣ ≤

∫

�

∣
∣F(x, u)

∣
∣dx

≤
∫

�

(∫ u

0

∣
∣f (x, s)

∣
∣ds

)

dx

≤ a
γ –

∫

�

|u|γ (x) dx

≤ a
γ – ‖u‖γ̂

C0(�)|�|

≤ M‖u‖γ̂

p(x), (2.2)

where M = a
γ – mγ̂ |�|.

The global Ambrosetti–Rabinowitz condition (AR) for g : � ×R −→ R is as follows:
There are constants μ > p+, R > 0 such that

0 < μG(x, s) ≤ sg(x, s)

for all x ∈ ∂� and |s| > R, where G(x, t) :=
∫ t

0 g(x, s) ds.
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Definition 2.1 Let 
 and � be two continuously Gâteaux differentiable functionals de-
fined on a real Banach space X and fix r ∈ R. The functional I := 
 – � is said to verify
the Palais–Smale condition cut of upper at r (in short (P.S.)[r]) if any sequence {un}n∈N ∈ X
such that

• I(un) is bounded;
• limn→+∞ ‖I ′(un)‖X∗ = 0;
• 
(un) < r for each n ∈N;

has a convergent subsequence.

The following is one of the main tools of the next section.

Theorem 2.1 ([6]) Let X be a real Banach space and 
,� : X −→ R be two continuously
Gâteaux differentiable functionals such that infx∈X 
 = 
(0) = �(0) = 0. Assume that there
exist positive constants r ∈R and x ∈ X with 0 < 
(x) < r such that

supx∈
–1(]–∞,r[) �(x)
r

<
�(x)

(x)

, (2.3)

and for each λ ∈ � :=] 
(x)
�(x) , r

supx∈
–1(]–∞,r[) �(x) [, the functional Iλ = 
–λ� satisfies the (PS)[r]-

condition, then for each λ ∈ � there is xλ ∈ 
–1(]0, r[) such that Iλ(xλ) ≤ Iλ(x) for all x ∈

–1(]0, r[) and I ′

λ(uλ) = 0.

Another tool is the following abstract result.

Theorem 2.2 ([5]) Let X be a real Banach space, 
,� : X → R be two continuously
Gâteaux differentiable functionals such that 
 is bounded from below and 
(0) = �(0) = 0.
Fix r > 0 and assume that, for each

λ ∈
]

0,
r

supx∈
–1(]–∞,r[) �(x)

[

,

the functional Iλ := 
 – λ� satisfies the Palais–Smale condition and it is unbounded from
below. Then, for each

λ ∈
]

0,
r

supx∈
–1(]–∞,r[) �(x)

[

,

the functional Iλ admits two distinct critical points.

Finally, we recall the following tool, which is in a convenient form.

Theorem 2.3 ([7]) Let X be a reflexive real Banach space, 
 : X →R be a coercive, contin-
uously Gâteaux differentiable, and sequentially weakly lower semi-continuous functional
whose Gâteaux derivative admits a continuous inverse on X∗, � : X →R be a continuously
Gâteaux differentiable whose Gâteaux derivative is compact such that

inf
X


 = 
(0) = �(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < 
(x̄), such that
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(i) sup
(x)<r �(x)
r < �(x)


(x) ;
(ii) for each λ ∈ �r :=] 
(x)

�(x) , r
sup
(x)<r �(x) [, the functional Iλ := 
 – λ� is coercive.

Then, for each λ ∈ �r , the functional 
 – λ� has at least three distinct critical points in X.

3 Existence of weak solutions
In this section we deal with the existence of one weak solution for problem (1.1). In fact,
we prove the first result of the paper, Theorem 1.1, as follows.

Proof We apply Theorem 2.1. To this end, for each u ∈ W 1,p(x)(�), let the functionals


,� : W 1,p(x)(�) −→ R

be defined by


(u) :=
∫

�

1
p(x)

(|∇u|p(x) + c(x)|u|p(x))dx –
∫

�

F(x, u) dx

and

�(u) :=
∫

∂�

G(x, u) dσ .

Now, set

Iλ(u) := 
(u) – λ�(u)

for u ∈ W 1,p(x)(�). So, weak solutions of (1.1) are exactly the critical points of Iλ. The
functionals 
 and � satisfy the regularity assumptions of Theorem 2.1. Moreover, 
 is
sequentially weakly lower semicontinuous and its inverse derivative is continuous (since
it is a continuous convex functional). From condition (F1) it is clear that F(x, u) ≤ 0, and
thanks to Remark 2.1 and inequality (2.2), one has

k
p+ ‖u‖p̌

p(x) ≤ 
(u)

=
∫

�

1
p(x)

(|∇u|p(x) + c(x)|u|p(x))dx –
∫

�

F(x, u) dx

≤ K
p– ‖u‖p̂

p(x) + M‖u‖γ̂

p(x)

<
(

K + 1
p– + M

)

‖u‖p̂
p(x).

Also, by standard arguments, we have that 
 is Gâteaux differentiable, and its Gâteaux
derivative at the point u ∈ W 1,p(x)(�) is the functional 
′(u) given by


′(u)v =
∫

�

(|∇u|p(x)–2∇u∇v + c(x)|u|p(x)–2uv
)

dx –
∫

�

f (x, u)v dx

for every v ∈ W 1,p(x)(�). On the other hand, the functional � is well defined, continuously
Gâteaux differentiable with compact derivative, whose Gâteaux derivative at the point u ∈
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W 1,p(x)(�) is

� ′(u)v =
∫

∂�

g
(
x, u(x)

)
v(x) dx

for each v ∈ W 1,p(x)(�) [3]. The functional Iλ satisfies the PS[r]-condition for all r ∈R. We
will verify the condition of Theorem 2.1. Let w be a function defined by w(x) := d for all
x ∈ � and r with

r :=
(

K + 1
p– + M

)

dp̂.

So,

0 <
k

p+ dp̌ ≤ 
(w) =
∫

�

1
p(x)

c(x) dp(x) dx –
∫

�

F(x, d) dx

<
(

K + 1
p– + M

)

dp̂ = r.

If u ∈ 
–1(] – ∞, r[), we have ‖u‖p(x) ≤ ξ = ( p+

k ( K+1
p– + M) dp̂)

1
p̌ , then

sup
u∈
–1(]–∞,r[)

�(u) ≤
∫

∂�

max
|t|≤ξ

G(x, t) dσ ,

and from boundedness 
, one has

�(w)

(w)

>
∫

∂�
G(x, d) dσ

( K+1
p– + M) ďp

.

Therefore, the assumption condition of Theorem 2.1 is verified. So, for each

λ ∈ � ⊆
]


(w)
�(w)

,
r

supu∈
–1(]–∞,r[) �(u)

[

,

the functional Iλ has at least one nonzero critical point, which is the weak solution of
problem (1.1). �

4 Multiplicity of weak solutions
In this section, we present enough conditions for having multiple solutions to problem
(1.1).

Theorem 4.1 Let f , g : � ×R −→ R be Carathéodory functions such that f satisfies (F0),
(F1) and g holds in the (AR) condition. Then, for each

λ ∈
]

0,
r

∫

∂�
max|t|≤ξ G(x, t) dσ

[

,

where ξ is as in Theorem 1.1, problem (1.1) admits at least two distinct weak solutions.
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Proof We apply Theorem 2.2. According to the (AR) condition, there exist μ > p+ and
R > 0 such that, for all x ∈ ∂� and |s| > R,

0 < μG(x, s) ≤ sg(x, s).

So, there exists α > 0 such that

G(x, u) ≥ α|u|μ

for all x ∈ � and |s| > R. Let the functionals 
,� : W 1,p(x)(�) −→ R be defined as in the
proof of Theorem 1.1. We show that Iλ is unbounded from below. Applying Remark 2.1,
one has

Iλ(tu) = (
 – λ�)(tu)

≤ K
tp+

p– ‖u‖p(x) –
∫

�

F(x, tu) dx – λ

∫

∂�

G(x, tu) dσ

≤ K
tp+

p– ‖u‖p(x) + Mtγ̂ ‖u‖γ̂

p(x) – λαtμ

∫

∂�

|u|μ dσ

for t > 1. Since μ > p+ ≥ γ̂ , for large t, this condition guarantees that Iλ is unbounded
from below. By standard computation, the functional Iλ = 
–λ� verifies the Palais–Smale
compactness condition, and so all hypotheses of Theorem 2.2 are verified. Therefore, for
each

λ ∈
]

0,
( K+1

p– + M) dp̂

∫

∂�
max|t|≤ξ G(x, t) dσ

[

,

Iλ admits at least two distinct critical points that are weak solutions of problem (1.1). �

The following gives suitable conditions for the existence of at least three weak solutions.

Theorem 4.2 Let f , g : � × R −→ R be Carathéodory functions satisfying (F0), (F1) and
(G0), respectively. Assume that there exists d > 0 such that assumption (1.2) in Theorem 1.1
holds. Then, for each λ ∈ �, where � is given by (1.3), problem (1.1) has at least three weak
solutions.

Proof Our goal is to apply Theorem 2.3. The functionals 
 and � defined in the proof of
Theorem 1.1 satisfy all regularity assumptions requested in Theorem 2.3. So, our aim is
to verify (i) and (ii). Put r = k

p+ dp̌ and define w(x) := d for all x ∈ �, and let us recall that
F(x, u) ≤ 0, so


(w) ≥ k
p+ dp̌ –

∫

�

F(x, u) dx

≥ k
p+ dp̌ = r > 0.
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Therefore, assumption (i) of Theorem 2.3 is satisfied. We prove that the functional Iλ is
coercive for all λ > 0. We know that [9, Theorem 2.1]

W 1,p(x)(�) ↪→↪→ Lβ(x)(∂�),

so, for each u ∈ W 1,p(x)(�), there exists some constant θ > 0 such that

|u|β(x),∂ ≤ θ‖u‖p(x).

Now, using Hölder’s inequality and condition (G0), for all u ∈ W 1,p(x)(�), one has

�(u) =
∫

∂�

G
(
x, u(x)

)
dσ =

∫

∂�

(∫ u(x)

0
g(x, t)

)

dσ

≤ 2|b1| β(x)
β(x)–1 ,∂ |u|β(x),∂ +

b2

β–

∫

∂�

∣
∣u(x)

∣
∣β(x) dσ

≤ 2θ |b1| β(x)
β(x)–1 ,∂‖u‖p(x) +

b2θ
β̂

β– ‖u‖β̂

p(x).

Using Remark 2.1 and condition (F1), for every λ > 0, we deduce that

Iλ(u) ≥ k
p+ ‖u‖p̌

p(x) – 2λθ |b1| β(x)
β(x)–1 ,∂‖u‖p(x) – λ

b2θ
β̂

β– ‖u‖β̂

p(x),

since p̌ > β̂ > 1, the functional Iλ is coercive. Then also condition (ii) holds. So, for each
λ > 0, the functional Iλ admits at least three distinct critical points that are weak solutions
of problem (1.1). �
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