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Abstract
As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation,
and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to
the study of singular Sturm–Liouville spectrum theory. With the development of
applications, the importance of singular Sturm–Liouville problems with a weighted
function becomes more and more significant. This paper focuses on the study of
singular Sturm–Liouville problems with a weighted function. Finally, an example of
singular Sturm–Liouville problems with a weighted function is given.
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1 Introduction
The Sturm–Liouville problems originated in the early 19th century by solving the heat-
conduction equation in partial differential equations, obtained by the method of separa-
tion of variables, and later found a wide range of applications in mathematics and physics.
For example, the first eigenvalue of the regular Sturm–Liouville problems represents the
first energy level in quantum mechanics and quantum chemistry (cf. [2, 10, 11, 14]), and
has been applied to the calculation of electron-cloud density, which is a powerful tool for
understanding and explaining quantum phenomena. Since the mathematical models of
many important issues in practical problems are defined on infinite intervals or on finite
intervals with singularities at the endpoints of the coefficient functions, the singularity
problem has been of interest to scholars of mathematics and physics. As the spectrum of
the singular problem becomes more complicated, not only the pure point spectrum ap-
pears in the regular case, but also the absolutely continuous spectrum and the singular
continuous spectrum. This leads to the fact that the spectral decomposition theorem for
the regular case is no longer applicable (cf. [3, 20, 25]), and therefore more research on the
spectral aspects of the singular problem is needed.

As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation by
using the circle-set method, which divides it into the limiting point type and the limiting
circle type at the infinity point. This led to the study of the singular Sturm–Liouville spec-
tral theory. In 1937, Saks [15] proved De la Vallée Poussin’s theorem using the Lesbgue de-
composition of measures. In 1943, Loomis [9] proved Fatou’s Lemma using the Poisson–
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Stieltjes integral. On the basis of these measure theories the Lebesgue decomposition of
the spectral measures was performed to complete the classification of the spectrum of dif-
ferential operators. In 1975, Levitan and Sargsjan [8] used the Lesbgue decomposition of
the spectral measure to classify the spectrum into: the absolute continuous spectrum, the
singular continuous spectrum, and the pure point spectrum. Regarding the absolute con-
tinuous spectrum, in 1957 Aronsajn [1] used the m(λ) function to prove that the absolute
continuous spectrum of the Sturm–Liouville spectral problem is invariant under a rank-
one perturbation. In 1986, Simon and Wolff [18] gave equivalence conditions for the Borel
transform of the measure and the spectral decomposition. In 1989, Simon and Spencer
[17] proved that the potential function is a High Barrier function, i.e., the potential func-
tion tends to infinity, when the corresponding Sturm–Liouville differential operator has
no absolutely continuous spectrum. The singular continuous spectrum is more compli-
cated, in 1995, Simon [16] proved the existence of a purely singular continuous spectrum
for the general operator, that is, there is an interval in which there is no point spectrum
and no absolute continuous spectrum, but only a singular continuous spectrum.

With the deeper and deeper study of practical problems, the importance of singular
Sturm–Liouville problems (cf. [4–7, 19]) with a weighted function becomes more and
more significant as the solution space expands from the L2 space to the L2

w space with
a weighted function (cf. [12, 13, 22–24]) and has more practical applications. This paper
focuses on refining the definition of spectral measures for singular Sturm–Liouville prob-
lems with a weighted function. This paper finds several differences for the case of singular
Sturm–Liouville problems with a weighted function based on the analysis of the spectral
problem of general singular Sturm–Liouville problems. Finally, an example of singular
Sturm–Liouville problems with a weighted function is given, and its expansion theorem
and the expression of the support set of spectral measure are proved using the method of
this paper.

Following this section, for extending the regular Sturm–Liouville boundary value prob-
lem to the singular problem, some preliminaries will be given in Sect. 2. In Sect. 3, Wely–
Titchmarsh functions are introduced and the classification of the Limit Circle Case and
the Limit Point Case is derived. In Sect. 4, some criteria of the Limit Point Case will be
obtained. In Sect. 5, an example of the singular Sturm–Liouville problems with a weighted
function is studied.

2 Preliminary
In this paper, we will extend the regular Sturm–Liouville boundary value problem to the
singular problem. Consider the regular Sturm–Liouville problem with separable boundary
conditions

τy :=
1
w

(
–
(
py′)′ + qy

)
= λy, y = y(x), x ∈ (0, b), b < ∞, (1)

cosαy(0,λ) – sinαpy′(0,λ) = 0, (2)

cosβy(b,λ) – sinβpy′(b,λ) = 0, (3)

where α,β ∈ [0,π ), 1/p, q, w ∈ L1
loc[0,∞), p, w > 0 a. e. and

∫ ∞

0
1/p + |q| + w = ∞.
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Take y(x,λ) as satisfying the Cauchy problem,

1
w

(
–
(
py′)′ + qy

)
= λy, y = y(x),

y(0,λ) = sinα, py′(0,λ) = cosα,

which is the solution of equation (1). Denote λn,b as the nth eigenvalue of the regular prob-
lem (1), (2), and (3). Then, the corresponding eigenfunction is yn,b(x) := y(x,λn,b), which
satisfies the right boundary condition (3), cosβyn,b(b) – sinβpy′

n,b(b) = 0. Denote

a2
n,b :=

∫ b

0
y2(x,λn,b)w(x) dx.

By the Parseval Identity, for any f ∈ L2
w(0, b), we have

∫ b

0
f 2(x)w(x) dx =

∞∑

n=1

1
a2

n,b

(∫ b

0
f (x)yn,b(x)w(x) dx

)2

,

where

L2
w(0, b) :=

{
f :

∫ b

0
f 2(x)w(x) dx < ∞

}
.

Now, we introduce the monotone nondecreasing function or measure ρb(λ),

ρb(λ) :=

⎧
⎪⎨

⎪⎩

–
∑

λ<λn,b≤0
1

a2
n,b

, as λ ≤ 0,
∑

0<λn,b≤λ
1

a2
n,b

, as λ > 0.

By definition, ρb(0) = 0. Then, the Parseval Identity can be rewritten as,

∫ b

0
f 2(x)w(x) dx =

∫ ∞

–∞
F2(λ) dρb(λ), (4)

where

F(λ) =
∫ b

0
f (x)y(x,λ)w(x) dx.

The above equation is called the generalized Fourier transform of f (x). In the following,
let b → ∞, and we will prove that the Parseval Identity still holds.

Lemma 2.1 For any positive integer N , there exists a positive constant A(N , w), such that

ρb(N) – ρ(–N) =
∑

–N<λn,b≤N

1
a2

n,b
< A(N , w), (5)

where A(N , w) only depends on N and w, and is independent of b.
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Proof Let

ch :=
∫ h

0
w(x) dx, h > 0.

Since w(x) ∈ L1
loc[0,∞) and w(x) > 0, a.e., it follows that ch > 0, for any h > 0.

In the case sinα �= 0, there exists sufficiently small positive numbers h, such that |y(t,λ)| >
| sinα|/√2, for any t ∈ [0, h] and λ ∈ [–N , N]. This fact leads to

(
1
h

∫ h

0
y(x,λ)w(x) dx

)2

>
c2

h
2h2 sin2 α. (6)

Define function fh(x)

fh(x) :=

⎧
⎨

⎩
1/h 0 ≤ x < h,

0 x > h.

Using (6) and the Parseval Identity (4), we can obtain that

ch

h2 =
∫ h

0
f 2
h (x)w(x) dx

=
∫ ∞

–∞

(
1
h

∫ h

0
y(x,λ)w(x) dx

)2

dρb(λ)

≥
∫ N

–N

(
1
h

∫ h

0
y(x,λ)w(x) dx

)2

dρb(λ)

>
c2

h
2h2 sin2 α

∫ N

–N
dρb(λ)

=
c2

h
2h2 sin2 α

[
ρb(N) – ρb(–N)

]
. (7)

Hence,

[
ρb(N) – ρb(–N)

]
<

2
ch sin2 α

=: A(N , w).

Note that ch only depends on N and w, and is independent of b. Thus, (5) has been proved.
In the case sinα = 0, |y′(0,λ)| = | cosα| = 1. Hence, there exists a sufficiently small num-

ber h > 0, such that y(t,λ) > t/
√

2, for any t ∈ [h/2, h] and λ ∈ [–N , N]. We now have

(
1
h2

∫ h

0
y(x,λ)w(x) dx

)2

>
(

1
h2

∫ h

h/2

h
2
√

2
w(x) dx

)2

=
1

8h2 (ch – ch/2)2. (8)

In this case, define function fh(x) as

fh(x) =

⎧
⎨

⎩

1
h2 0 ≤ x < h,

0 x > h.
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Similar to the case where sinα �= 0, we can obtain that

ch

h2 =
∫ h

0
f 2
h (x)w(x) dx

=
∫ ∞

–∞

(
1
h2

∫ h

0
y(x,λ)w(x) dx

)2

dρb(λ)

≥
∫ N

–N

(
1
h2

∫ h

0
y(x,λ)w(x) dx

)2

dρb(λ)

>
1

8h2 (ch – ch/2)2
∫ N

–N
dρb(λ)

=
1

8h2 (ch – ch/2)2[ρb(N) – ρb(–N)
]
.

Hence,

[
ρb(N) – ρb(–N)

]
<

8ch

(ch – ch/2)2 =: A(N , w).

Similarly, we know that ch only depends on N and w, and is independent of b. The propo-
sition has been proved. �

In the following proof, Helly’s selection theorem is needed.

Lemma 2.2 (Helly’s Selection Theorem) Consider a nondecreasing function sequence
{ρn(λ),λ ∈ (–∞,∞) : n = 1, 2, . . .}. If in any bounded interval [M, N], {ρn(λ),λ ∈ [M, N] :
n = 1, 2, . . .} are uniformly bounded, then there exists a subsequence {ρnk (λ),λ ∈ (–∞,∞),
k = 1, 2, . . .} and a nondecreasing function ρ(λ), such that

lim
k→∞

ρnk (λ) = ρ(λ), for any – ∞ < λ < ∞.

By Helly’s selection theorem, we can use the regular Sturm–Liouville problem (1) to
approximate the singular problem and study the properties of the spectrum.

Theorem 2.3 There exists a nondecreasing function ρ(λ), λ ∈ (–∞,∞), such that for any
f (x) ∈ L2

w(0,∞),

∫ ∞

0
f 2(x)w(x) dx =

∫ ∞

–∞
F2(λ) dρ(λ),

where F(λ) satisfies

lim
m→∞

∫ ∞

–∞

{
F(λ) – Fm(λ)

}2 dρ(λ) = 0,

and Fm(λ) :=
∫ m

0 f (x)y(x,λ)w(x) dx.

Proof Set

D :=
{

f ∈ L2
w(0,∞) : f , pf ′ ∈ AC[0,∞), and τ f ∈ L2

w(0,∞)
}

,
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where τ is a formal differential operator in (1), and AC[0,∞) denote the absolute contin-
uous function on (0,∞).

Suppose fm ∈ D satisfying the left boundary condition (2) and is a compactly supported
function, i.e.,

fm(x) = 0, x ∈ (0, m)c.

Then, the Parseval Identity tells us,

∫ m

0
f 2
m(x)w(x) dx =

∫ ∞

–∞
F2

m(λ) dρb(λ), (9)

where Fm is the Fourier transform of fm, i.e.,

Fm(λ) =
∫ m

0
fm(x)y(x,λ)w(x) dx =

∫ ∞

0
fm(x)y(x,λ)w(x) dx.

Using the Green formula, we can obtain

∫ b

0
fm(x)

{(
py′)′(x,λ) – q(x)y(x,λ)

}
dx

=
∫ b

0

{(
pf ′

m
)′(x) – q(x)fm(x)

}
y(x,λ) dx. (10)

Substituting (10) into Fm(λ), we have

Fm(λ) = –
1
λ

∫ b

0
fm(x)

1
w(x)

{(
py′)′(x,λ) – q(x)y(x,λ)

}
w(x) dx

= –
1
λ

∫ b

0

{(
pf ′

m
)′(x) – q(x)fm(x)

}
y(x,λ) dx. (11)

Using the Green formula again, we obtain

∫

|λ|>N
F2

m(λ) dρb(λ)

≤ 1
N2

∫

|λ|>N

{∫ b

0
fm(x)

[(
py′)′(x,λ) – q(x)y(x,λ)

]
dx

}2

dρb(λ)

<
1

N2

∫ ∞

–∞

{∫ b

0
fm(x)

[(
py′)′(x,λ) – q(x)y(x,λ)

]
dx

}2

dρb(λ)

=
1

N2

∫ ∞

–∞

{∫ b

0

1
w(x)

{(
pf ′

m
)′(x) – q(x)fm(x)

}
y(x,λ)w(x) dx

}2

dρb(λ)

=
1

N2

∫ m

0

{
(pf ′

m)′(x) – q(x)fm(x)
w(x)

}2

w(x) dx.
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By (9), we have

∣∣
∣∣

∫ m

0
f 2
m(x)w(x) dx –

∫ N

–N
F2

m(λ) dρb(λ)
∣∣
∣∣

<
1

N2

∫ m

0

{
(pf ′

m)′(x) – q(x)fm(x)
w(x)

}2

w(x) dx. (12)

By Lemma 2.1, we know that the monotone function family {ρb(λ),λ ∈ (–N , N)} is
bounded by A(N , w), which only depends on N and w, and is independent of b. Then, by
Helly’s Selection Theorem Lemma 2.2, there exists a subsequence bk , such that ρbk weakly
convergent to measure ρ . Hence, for any F ∈ L2(–N , N), we have

lim
k→∞

∫ N

–N
F2(λ) d

{
ρbk (λ) – ρ(λ)

}
= 0. (13)

By (13) and (12), taking the limit, we can obtain

∣∣
∣∣

∫ m

0
f 2
m(x)w(x) dx –

∫ N

–N
F2

m(λ) dρ(λ)
∣∣
∣∣

<
1

N2

∫ m

0

{
(pf ′

m)′(x) – q(x)fm(x)
w(x)

}2

w(x) dx.

Moreover, let N → ∞, we can obtain

∫ m

0
f 2
m(x)w(x) dx =

∫ ∞

–∞
F2

m(λ) dρ(λ).

So far, we have proved the Parseval Identity when f is a function that is compactly sup-
ported. In the following, we will prove the general case.

For any f ∈ L2
w(0,∞), there exist a sequence of compactly supported functions {fm(x)},

such that

lim
m→∞

∫ ∞

0

{
f (x) – fm(x)

}2w(x) dx = 0.

Hence,

∫ ∞

0

{
fm1 (x) – fm2 (x)

}2w(x) dx → 0, as m1, m2 → ∞.

Using the Parseval Identity of compact support functions, the Fourier transform of se-
quence fm is a Cauchy sequence in L2

dρ(–∞,∞), i.e.,

∫ ∞

–∞

{
Fm1 (λ) – Fm2 (λ)

}2 dρ(λ) =
∫ ∞

0

{
fm1 (x) – fm2 (x)

}2w(x) dx → 0.

By the Completeness of L2
dρ(–∞,∞), there exists a function F(λ) ∈ L2

dρ(–∞,∞) that sat-
isfies

∫ ∞

–∞

{
Fm(λ) – F(λ)

}2 dρ(λ) → 0,
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and the Parseval Identity

∫ ∞

0
f 2(x)w(x) dx = lim

m→∞

∫ ∞

0
fm(x)2w(x) dx

= lim
m→∞

∫ ∞

–∞
F2

m(λ) dρ(λ) =
∫ ∞

–∞
F2(λ) dρ(λ).

The proposition has been proved �

In Theorem 2.3, F =
∫ ∞

0 f (x)y(x,λ)w(x) dx is called the generalized Fourier transform
of f . For another g ∈ L2

w(0,∞), and its generalized Fourier transform G, we have

∫ ∞

0

{
f (x) + g(x)

}2w(x) dx =
∫ ∞

–∞

{
F(λ) + G(λ)

}2 dρ(λ),

and
∫ ∞

0

{
f (x) – g(x)

}2w(x) dx =
∫ ∞

–∞

{
F(λ) – G(λ)

}2 dρ(λ).

Subtracting the two formulas, we can obtain

∫ ∞

0
f (x)g(x)w(x) dx =

∫ ∞

–∞
F(λ)G(λ) dρ(λ), (14)

and this identity is called the generalized Parseval Identity.

3 Wely–Titchmarsh functions
Suppose ϕ(·,λ) is the solution of equation (1), i.e., satisfies

–
(
pϕ(t,λ)′

)′ + qϕ(t,λ) = λw(t)ϕ(t,λ), (15)

with the Cauchy condition

ϕ(0,λ) = cosα, p(0)ϕ′(0,λ) = – sinα,

where α ∈ [0,π ). Similarly, let ψ(·,λ) be another solution of (1) with the Cauchy condition

ψ(0,λ) = sinα, p(0)ψ ′(0,λ) = cosα,

therefore ψ(·,λ) satisfies the left boundary condition (2),

cosαψ(0,λ) – sinαp(0)ψ ′(0,λ) = 0.

By the differentiable dependence of solutions on parameters, we know that ψ and ϕ are
both analytic functions of λ and their Wronskian satisfies

W
(
ϕ(λ),ψ(λ)

)
(0) =

∣
∣∣
∣∣

ϕ(λ)(0) ψ(λ)(0)
pϕ′(λ)(0) pψ ′(λ)(0)

∣
∣∣
∣∣

= 1.
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All solutions of equation (1) except ψ can be expressed as

χ (·,λ) = ϕ(·,λ) + mψ(·,λ), m ∈ C.

For any b ∈ (0,∞) and β ∈ [0,π ), let m = m(b,λ,β), such that χ satisfies the right boundary
condition (3),

χ (b) cosβ + pχ ′(b) sinβ = 0.

We can obtain the expression of m(λ, b),

m(λ, b,β) = –
pϕ′(b,λ) + ϕ(b,λ) cotβ

pψ ′(b,λ) + ψ(b,λ) cotβ
, (16)

which is a fractional linear mapping. Hence, as β goes through (0,π ), the graph of m forms
a circle C(λ, b). After calculation, we can obtain that the center of circle C(λ, b) is

m0(λ, b) =
ψ(b,λ)pϕ′(b,λ) – ϕ(b,λ)pψ ′(b,λ)
ψ(b,λ)pψ ′(b,λ) – ψ(b,λ)pψ ′(b,λ)

= –
W (ϕ(λ),ψ(λ))(b)
W (ψ(λ),ψ(λ))(b)

,

the radius of circle C(λ, b) is

r(λ, b) =
1

|W (ψ(λ),ψ(λ))(b)| ,

and the inside of circle C(λ, b) is

m :
W (χ ,χ )

W (ψ(λ),ψ(λ))
< 0.

Now, consider two solutions of equation (1), f (x) and g(x), and they are satisfied if τ f = λf
and τg = λ̃g . Then, we can obtain

(λ – λ̃)
∫ b

0
f (x)g(x)w(x) dx

=
∫ b

0

{
f (x)(q(x)g(x) – (pg ′)′(x))

w(x)
–

g(x)(q(x)f (x) – (pf ′)′(x))
w(x)

}
w(x) dx

= –
∫ b

0

{
f (x)

(
pg ′)′(x) – g(x)

(
pf ′)′(x)

}
dx

= W (f , g)(0) – W (f , g)(b),

where

W (f , g)(x) =

∣∣
∣∣∣

f (x) g(x)
pf ′(x) pg ′(x)

∣∣
∣∣∣
.

In particular, let f = ψ , g = ψ̄ and λ̃ = λ̄, then we have

2
mλ

∫ b

0

∣
∣ψ(t,λ)

∣
∣2w(t) dt = iW

(
ψ(λ),ψ(λ)

)
(0) – iW

(
ψ(λ),ψ(λ)

)
(b), (17)
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and hence we can deduce that

W
(
ψ(λ),ψ(λ)

)
(b) = 2i
mλ

∫ b

0

∣∣ψ(t,λ)
∣∣2w(t) dt,

W (χ ,χ )(0) = m(λ, b) – ¯m(λ, b),

and

W (χ ,χ )(b) = –2i
mm(λ, b) + 2i
mλ

∫ b

0

∣
∣χ (t)

∣
∣2w(t) dt.

If 
mλ �= 0, we have m ∈ C(λ, b) is equivalent to

∫ b

0

∣∣χ (t)
∣∣2w(t) dt =


mm

mλ

.

The inside of circle C(λ, b) is

∫ b

0

∣∣χ (t)
∣∣2w(t) dt <


mm

mλ

, (18)

and the radius is

r(λ, b) =
1

2
mλ
∫ b

0 |ψ(t,λ)|2w(t) dt
. (19)

Using these facts, we can obtain the following summaries. The circles satisfy that for any
0 < b1 < b2 < ∞, C(λ, b2) ⊂ C(λ, b1). Hence, for any 
mλ �= 0, C(λ, b) → a circle C(λ) or a
point m(λ), as b → ∞. Furthermore, if we set χ = ϕ(λ) + mψ(λ), then we have that

∫ b

0

∣
∣χ (t)

∣
∣2w(t) dt <


mm

mλ

and letting λ → ∞ we obtain

∫ ∞

0

∣∣χ (t)
∣∣2w(t) dt <


mm

mλ

. (20)

By (1), we know that there exists at least one L2
w solution at +∞. As C(λ, b) → a circle C(λ),

(19) tells us that all solutions of (15) belong to L2
w at +∞, and at this time, (15) is called the

Limit Circle Case at +∞. As C(λ, b) → a point m(λ), there is only one linear independence
solution of (15) belonging to L2

w at +∞, and at this time, (15) is called the Limit Point Case
at +∞. In the next section, we will study some judgments about the two classifications at
infinity.

4 A criterion of the limit point case
Now, we consider the formal differential operator

ly := –
(
py′)′ + qy = λwy, y = y(x), x ∈ (0,∞), (21)
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with the nature domain

D :=
{

y, py′ ∈ L2
w[0,∞) : y, py′ ∈ AC[0,∞) and

1
w

ly ∈ L2
w[0,∞)

}
,

where y ∈ AC[0,∞) means y is an absolute continuous function on [0,∞).
The formal differential l and τ in (1) satisfy the relationship l = wτ . In this section, we

will use the coefficient functions p, q, and w in equation (21) to describe whether the
differential equation is the Limit Point Case or the Limit Circle Case (see [21]). In the
following, some preliminaries will be given.

Lemma 4.1 If there exists λ0 ∈ C, such that all solutions of ly = λ0wy belong to L2
w[0,∞),

then for any complex number λ ∈C, all solutions of ly = λwy also belong to L2
w[0,∞).

Proof Suppose ϕ0,ψ0 ∈ L2
w[0,∞) are two linearly independent solutions of ly = λ0wy, and

satisfy,

pW (ϕ0,ψ0) = 1.

For any complex number λ ∈C, let χ (t,λ) be any solution of ly = λwy. Then, χ (t,λ) is the
solution of the differential equation

ly – λ0wy = (λ – λ0)wy.

By the variation of constant formula, the above equation can be transformed into an inte-
gral equation,

χ (t,λ) = Aϕ0(t) + Bψ0(t) + (λ – λ0)
∫ t

c
w(τ )

[
ϕ0(t)ψ0(τ ) – ϕ0(τ )ψ0(t)

]
χ (τ ,λ) dτ , (22)

where A and B are constants. Set

‖χ‖t
c :=

(∫ t

c
|χ |2w dt

) 1
2

,

and

γc = max
{‖ϕ0‖∞

c ,‖ψ0‖∞
c

}
.

By ϕ0,ψ0 ∈ L2
w[0,∞), we know that γc → 0, as c → ∞. Hence, there exists N > 0 large

enough, such that for any c > N , we have

|λ – λ0|γ 2
c ≤ 1

4
.

Using the Schwarz inequality, for any t ≥ c > N ≥ 0, we have

∣∣
∣∣

∫ t

c
w(τ )

[
ϕ0(t)ψ0(τ ) – ϕ0(τ )ψ0(t)

]
χ (τ ,λ) dτ

∣∣
∣∣ ≤ γc

[∣∣ϕ0(t)
∣
∣ +

∣
∣ψ0(t)

∣
∣]‖χ‖t

c.
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Using the above two inequalities and (22) we can obtain the next estimate

‖χ‖t
c ≤ (|A| + |B|)γc + 2

∣
∣λ – λ0

∣
∣γ 2

c
∣
∣|χ |∣∣t

c ≤ (|A| + |B|)γc +
1
2
‖χ‖t

c,

and hence

‖χ‖t
c ≤ 2

(|A| + |B|)γc.

The right-hand side of the inequality is independent of t, therefore let t → ∞, which can
give χ ∈ L2

w[0,∞). �

Corollary 4.2 If there exists λ0 ∈ C such that ly = λ0wy has a nontrivial solution ϕ, i.e.,
ϕ �≡ 0, satisfying ϕ /∈ L2

w[0,∞), then, for any λ ∈ C,
mλ �= 0, the differential equation ly =
λwy has only one L2

w[0,∞)-solution, which is in the linearly independent sense.

Now, we can obtain a criterion of discriminating the Limit Point Case.

Theorem 4.3 If q(t) ≥ 0, and w /∈ L1[C,∞), for any C > 0, then, (21) is the Limit Point
Case at infinity.

Proof Let ϕ(t) be the solution of the equation ly = 0, satisfying the Cauchy condition,

ϕ(0) = 0, pϕ′(0) = 1.

Set

c = inf
{

t ∈ [0,∞)|pϕ′(t) = 0
}

.

Then, c > 0, and ϕ(t) > 0 on (0, c). For the identity equation:

(
p(t)ϕ′(t)

)′ = q(t)ϕ(t)

integrate over [0, c] on both sides, i.e.,

p(c)ϕ′(c) = 1 +
∫ c

0
q(t)ϕ(t) dt > 0,

which obtains a contradiction. This shows that ϕ(t), pϕ′(t) is constant positive on [0,∞),
Also, by w /∈ L1[0,∞), it follows that ϕ(t) /∈ L2

w[0,∞). According to the above inference,
we can see that (21) belongs to the limiting point type at the infinity point. �

In particular, when the weighted function w ≡ 1, w /∈ L1[0,∞), Therefore, it follows from
the above theorem that in this case (21) is a limiting point type at the infinity point. How-
ever, if w ∈ L1[0,∞), this theorem does not necessarily hold, see the following example.

Example 4.4 Considering the formal differential operator (21), with p ≡ 1, q ≡ 0, w(x) =
1/(x + 1)3,

–y′′ = λ
1

(x + 1)3 y, on [0,∞).
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Note ϕ(x) ≡ 1 and ψ(x) = x are two linear independent solutions of the equations at λ = 0,
both belonging to L2

w, so this form of differential operator is of limiting circular type at
infinity.

This example shows that there is a fundamental difference between the Singular prob-
lem, for the weighted function case and the without-weighted function case, at the singu-
larity point.

5 An example
In the following, we consider a differential operator,

L :=

⎧
⎨

⎩
l(y) = 1

x2α (–(x2αy′)′ + (x2α–2(α – 1
4 ))y) = λy, on [1,∞),

y(1) = 0.
(23)

Set

u = 4√pwy, r = q/w –
p′(pw)′

16pw2 –
5w′(pw)′

16w3 +
(pw)′′

4w2 , t =
∫ x

0

√
w
p

dx.

We can obtain that

l(u) := u′′ – ru + λu = 0,

where r = α2– 1
4

t2 .
Hence, we have transformed (23) into the next differential operator,

L :=

⎧
⎨

⎩
l(y) = –y′′ + α2– 1

4
t2 y, on [1,∞),

y(1) = 0.
(24)

Now, we obtain the Fourier–Bessel equation,

–y′′ +
α2 – 1

4
t2 y = s2y

(
s2 = λ

)
. (25)

Equation (25) has two linear independence solutions
√

tJα(st) and
√

tYα(st), where, Jα(x),
Yα(x) are first-kind and second-kind Bessel functions, respectively,

Jα(x) =
∞∑

n=0

(–1)n

�(n + 1)�(n + α + 1)

(
x
2

)2n+α

,

Yα(x) =

⎧
⎨

⎩

Jα (x) cosαπ–J–α (x)
sinαπ

, α �= integer,
2
π

Jα(x) ln x
2 + x–α

∑∞
n=0 anxn, a0 �= 0,α = nonnegative integer.

Furthermore, we can obtain the asymptotic expression of Jα(x) and Yα(x). As x → ∞,
we have that,

Jα(x) →
√

2
πx

cos

(
x –

απ

2
–

π

2

)
,
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and

Yα(x) →
√

2
πx

sin

(
x –

απ

2
–

π

2

)
.

Now, we can consider (24). Suppose ψ(t,λ), ϕ(t,λ) are two solutions of (24) with the
Cauchy condition,

ψ(1,λ) = 0, ψ ′(1,λ) = –1;

and

ϕ(1,λ) = 1, ϕ′(1,λ) = 0.

We can obtain the two solutions

ψ(t,λ) =
π

2
√

t
(
Jα(ts)Yα(s) – Yα(ts)Jα(s)

)
,

and

ϕ(t,λ) =
π

2
√

ts
(
Jα(ts)Y ′

α(s) – Yα(ts)J ′
α(s)

)
+

1
2
ψ(t,λ).

We will reduce the solution of the (24) to the solution of (23). Set ψ1 = (pw)– 1
4 ψ , ϕ1 =

(pw)– 1
4 ϕ, and t =

∫ x
0

√
w
p dx. Then, we can verify that

ψ1(1,λ) =
ψ

xα
(1,λ) = 0, ψ ′

1(1,λ) =
ψ ′xα – ψαxα–1

x2α
(1,λ) = –1;

and

ϕ1(1,λ) =
ϕ

xα
(1,λ) = 1, ϕ′

1(1,λ) =
ϕ′xα – ϕαxα–1

x2α
(1,λ) = α.

Hence, ψ1(1,λ) and ϕ1(1,λ) are two linear independent solutions. By the asymptotic ex-
pression of Jα(x), as x → ∞, we can obtain,

ψ1 = (pw)– 1
4
√

tJα(t
√

λ) /∈ L2
w[1,∞).

Hence, l(y) is the Limit Point Case at ∞, and L is a self-adjoint operator.
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