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Abstract
In this paper, we firstly discuss blow-up phenomena for nonlinear parabolic equations

ut = ∇ · [ρ(u)∇u
]
+ f (x, t,u), in � × (0, t∗),

under mixed nonlinear boundary conditions ∂u
∂n + θ (z)u = h(z, t,u) on �1 × (0, t∗) and

u = 0 on �2 × (0, t∗), where � is a bounded domain and �1 and �2 are disjoint
subsets of a boundary ∂�. Here, f and h are real-valued C1-functions and ρ is a
positive C1-function. To obtain the blow-up solutions, we introduce the following
blow-up conditions:

(Cρ ) :

(2 + ε)
∫ u

0
ρ(w)f (x, t,w)dw ≤ uρ(u)f (x, t,u) + β1u

2 + γ1,

(2 + ε)
∫ u

0
ρ2(w)h(z, t,w)dw ≤ uρ2(u)h(z, t,u) + β2u

2 + γ2,

for x ∈ �, z ∈ ∂�, t > 0, and u ∈R for some constants ε , β1, β2, γ1, and γ2 satisfying

ε > 0, β1 +
λR + 1

λS
β2 ≤ ρ2

mλR

2
ε and 0≤ β2 ≤ ρ2

mλS

2
ε ,

where ρm := infs>0 ρ(s), λR is the first Robin eigenvalue and λS is the first Steklov
eigenvalue. Lastly, we discuss blow-up solutions for nonlinear parabolic systems.
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1 Introduction
In this paper, we firstly discuss blow-up solutions to the nonlinear parabolic equations
under mixed nonlinear boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · [ρ(u)∇u] + f (x, t, u), in � × (0, t∗),
∂u
∂n + θ (z)u = h(z, t, u), on �1 × (0, t∗),

u = 0, on �2 × (0, t∗),

u(·, 0) = u0, in �.

(1)

Next, we deal with blow-up solutions to the nonlinear parabolic systems under mixed
nonlinear boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · [ρ1(u)∇u] + f1(x, t, u, v), in � × (0, t∗),

vt = ∇ · [ρ2(v)∇v] + f2(x, t, u, v), in � × (0, t∗),
∂u
∂n + θ (z)u = h1(x, t, u, v), ∂v

∂n + θ (z)v = h2(x, t, u, v), on �1 × (0, t∗),

u = v = 0 on �2 × (0, t∗),

u(·, 0) = u0, v(·, 0) = v0, in �.

(2)

Here, � is a bounded domain in R
N (N ≥ 2) with the smooth boundary ∂� and �1, �2

are disjoint open and closed subsets of ∂�, respectively, such that �1 ∪ �2 = ∂�. Also, t∗

is the maximal existence time of the solution u (or the solution pair (u, v)).
Also, we assume that f is a real-valued C1(�×R

+ ×R)-function, f1 and f2 are real-valued
C1(� × R

+ × R
2)-functions, h is a real-valued C1(∂� × R

+ × R)-function, h1 and h2 are
real-valued C1(∂� × R

+ × R
2)-functions, ρ , ρ1, and ρ2 are positive and nonincreasing

C2(R+)-functions satisfying

inf
s>0

ρ(s) > 0, inf
s>0

ρ1(s) > 0, and inf
s>0

ρ2(s) > 0,

and θ is a nonnegative C1(∂�)-function, where R
+ := (0,∞). Moreover, the initial data

u0 and v0 are assumed to be nontrivial C1(�)-functions which are compatible with the
boundary conditions.

Equation (1) and system (2) appear in several branches of applied sciences. For example,
they represent some ecosystems or chemical reaction models such as heat processes in one
or more component mixtures. Also, we can consider the above boundary conditions as a
migration during in these processes (see [1, 2] and the references therein).

Some special cases of equation (1) and system (2) have been studied from various per-
spectives with respect to the blow-up property (see [3–14]). For example, Enache studied
the following nonlinear parabolic equations:

ut = ∇ · [ρ(u)∇u
]

+ f (u) in � × (
0, t∗) (3)

under the Dirichlet boundary conditions and the Robin boundary conditions in [15, 16],
respectively, where ρ is a positive and nonincreasing C2(R+)-function and f is a nonneg-
ative differentiable function. He obtained the blow-up solutions to equation (3) by using



Chung and Hwang Boundary Value Problems         (2022) 2022:46 Page 3 of 19

a condition

(Aρ) : (2 + ε)
∫ u

0
f (s)ρ(s) ds ≤ uf (u)ρ(u), u > 0,

for some ε > 0.
In fact, condition (Aρ) has been frequently used to study the blow-up phenomena of

nonlinear parabolic equations and systems. There are lots of research works on the equa-
tions and systems in which the functions f and h are replaced by a separable type func-
tions in equation (1) and system (2) (see [17–21]). For the example of the systems, Baghaei
and Hesaaraki [20] studied the following nonlinear parabolic systems under the nonlinear
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =
∑

i,j=1(aij(x)uxi )xj – f1(u, v), in � × (0, t∗),

vt =
∑

i,j=1(aij(x)vxi )xj – f2(u, v), in � × (0, t∗),
∑

i,j=1 aij(x)uxi nj = h1(u, v), on ∂� × (0, t∗),
∑

i,j=1 aij(x)vxi nj = h2(u, v), on ∂� × (0, t∗),

u(·, 0) = u0 ≥ 0, v(·, 0) = v0 ≥ 0, in �,

(4)

where f1, f2, h1, and h2 are nonnegative locally Lipschitz continuous functions. They ob-
tained the blow-up solutions by using the condition

(A) :
(2 + ε1)F(r, s) ≥ rf1(r, s) + sf2(r, s),

(2 + ε2)H(r, s) ≤ rh1(r, s) + sh2(r, s)

for some 0 ≤ ε1 ≤ ε2 with ε2 > 0, where the functions F and H satisfy

∂F
∂r

= f1(r, s),
∂F
∂s

= f2(r, s),
∂H
∂r

= h1(r, s), and
∂H
∂s

= h2(r, s).

On the other hand, Chung and Choi [22] studied the following nonlinear parabolic equa-
tions:

ut = �u + f (u) in � × (
0, t∗) (5)

under the Dirichlet boundary condition, where f is a nonnegative locally Lipschitz func-
tion. They improved the blow-up conditions (Aρ) for ρ ≡ 1 such that

(C) : (2 + ε)
∫ u

0
f (s) ds ≤ uf (u) + βu2 + γ

for some constants ε > 0, 0 ≤ β ≤ λD
2 ε, γ > 0. Here, λD is the first Dirichlet eigenvalue of

the Laplace operator �.
In 2021, the authors [23] studied the blow-up solutions for the nonlinear parabolic equa-

tions

(
b(u)

)
t = ∇ · [ρ(u)∇u

]
+ f (x, t, u) in � × (

0, t∗) (6)
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under mixed boundary conditions, where ρ is a positive and nonincreasing C2(R)-
function and f is a nonnegative C2(� × R

+ × R)-function. They obtained the blow-up
solutions by using the modified version of condition (C).

It is well known that the blow-up phenomena are greatly influenced by the shape of do-
mains (see [24]). However, most of all blow-up conditions do not depend on the domains
and the boundary conditions. Therefore, it is worthwhile to notice that the above con-
dition (C) depends on the domain �, since the first eigenvalue of the Laplace operator
depends on the domains.

From the above point of view, we obtained the blow-up condition for the solutions to
equation (1) as follows:

(Cρ) :
(2 + ε)F(x, t, u) ≤ uρ(u)f (x, t, u) + β1u2 + γ1,

(2 + ε)H(z, t, u) ≤ uρ2(u)h(z, t, u) + β2u2 + γ2,

for x ∈ �, z ∈ ∂�, t > 0, and u ∈R, for some constants ε, β1, β2, γ1, and γ2, satisfying

ε > 0, β1 +
λR + 1

λS
β2 ≤ ρ2

mλR

2
ε, and 0 ≤ β2 ≤ ρ2

mλS

2
ε,

where F(x, t, u) :=
∫ u

0 ρ(w)f (x, t, w) dw and H(z, t, u) :=
∫ u

0 ρ2(w)h(z, t, w) dw. Here, ρm :=
infs>0 ρ(s), λR is the first eigenvalue of the Robin eigenvalue problem, and λS is the first
eigenvalue of the Steklov eigenvalue problem.

Because we deal with the function f in the reaction terms and the function h in the
boundary terms, it is important to find the blow-up conditions which depend on the do-
mains and the boundary conditions. From this point, it is worth noticing that information
on domain and boundary was applied to the blow-up condition (Cρ) by using the first
Robin eigenvalue and Steklov eigenvalue of the Laplace operator, respectively.

In most of the research results on blow-up, functions f and h have been assumed to be
nonnegative. In addition, functions of separable types such as k(t)f (u) or f (u) have been
considered. However, the functions f and h in this paper are real-valued functions and can
be non-separable, which is one of our main purposes.

Our boundary conditions include various boundary conditions such as the Dirichlet
boundary condition, the Neumann boundary condition, the Robin boundary conditions,
and so on. One of the meanings of our result is a unified approach.

We organize this paper as follows. In Section 2, we deal with the blow-up solutions to
equations (1). In Section 3, we discuss the blow-up solutions to systems (2).

2 Blow-up phenomena: nonlinear parabolic equations
In this section, we discuss blow-up solutions to the nonlinear parabolic equations under
the mixed nonlinear boundary conditions (1). We introduce the definition of the blow-up.

Definition 2.1 We say that a solution u to equation (1) blows up in finite time t∗ > 0
whenever

∫
�

u2(x, t) dx → +∞ as t ↗ t∗.

Now, we introduce the first Robin eigenvalue and the first Steklov eigenvalue.
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Lemma 2.2 (See [25, 26]) There exist λR ≥ 0 and a nonnegative function φ0 ∈ W 1,2(�)
such that

⎧
⎪⎪⎨

⎪⎪⎩

–�φ0(x) = λRφ0(x), x ∈ �,
∂φ0
∂n (z) + θ (z)φ0(z) = 0, z ∈ �1,

φ0(x) = 0, x ∈ �2.

Moreover, λR is given by

λR := inf
w∈W 1,2(�)

w �≡0

∫
�

|∇w|2 dx +
∫
�1

θ (z)w2 dS
∫
�

w2 dx
.

Lemma 2.3 (See [25, 27]) Let �1 �= ∅. Then there exist λS > 0 and a nonnegative function
φ0 ∈ W 1,2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�φ0(x) = φ0(x), x ∈ �,
∂φ0
∂n (z) + θ (z)φ0(z) = λSφ0(z), z ∈ �1,

φ0(x) = 0, x ∈ �2.

Moreover, λS is given by

λS := inf
w∈W 1,2(�)

w �≡0

∫
�

[|∇w|2 + w2] dx +
∫
�1

θ (z)w2 dS
∫
�1

w2 dS
.

Now, we state the main theorem.

Theorem 2.4 Suppose that the functions f and h satisfy condition (Cρ). In addition, we
assume that F and H are nondecreasing in t. Moreover, we assume that the function ρ

satisfies

lim
s→0+

s2ρ(s) = 0. (7)

If the initial data u0 satisfies

–
1
2

∫

�

ρ2(u0)|∇u0|2 dx +
∫

�

[
F(x, 0, u0) –

γ1

2 + ε

]
dx

+
∫

�1

[
H(z, 0, u0) – θ (z)

∫ u0

0
sρ2(s) ds –

γ2

2 + ε

]
dS > 0, (8)

then every solution u to equation (1) blows up at finite time t∗ > 0.

Proof For a solution u(x, t), we define functions A and B on [0,∞) by

A(t) := 2
∫

�

∫ u(x,t)

0
sρ(s) ds dx + 1
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and

B(t) := –
1
2

∫

�

ρ2(u(x, t)
)∣∣∇u(x, t)

∣∣2 dx +
∫

�

[
F
(
x, t, u(x, t)

)
–

γ1

2 + ε

]
dx

+
∫

�1

[
H

(
z, t, u(z, t)

)
– θ (z)

∫ u(z,t)

0
sρ2(s) ds –

γ2

2 + ε

]
dS

for each t ≥ 0. Firstly, we assume that �1 �= ∅. It follows from integration by parts and the
assumption ρ ′ ≤ 0 that

A′(t) = 2
∫

�

uρ(u)ut dx

= 2
∫

�

uρ(u)
[∇ · [ρ(u)∇u

]
+ f (x, t, u)

]
dx

= 2
∫

∂�

uρ2(u)
∂u
∂n

dS – 2
∫

�

[
ρ2(u)|∇u|2 + ρ(u)ρ ′(u)|∇u|2]dx

+ 2
∫

�

uρ(u)f (x, t, u) dx

≥ –2
∫

�

ρ2(u)|∇u|2 dx + 2
∫

�

uρ(u)f (x, t, u) dx

+ 2
∫

�1

uρ2(u)
[
h(z, t, u) – θ (z)u

]
dS (9)

for all t ∈ (0, t∗). Applying condition (Cρ) to inequality (9), we obtain

A′(t) ≥ –2
∫

�

ρ2(u)|∇u|2 – 2
∫

�1

θ (z)u2ρ2(u) dS

+ 2
∫

�

[
(2 + ε)F(x, t, u) – β1u2 – γ1

]
dx

+ 2
∫

�1

[
(2 + ε)H(z, t, u) – β2u2 – γ2

]
dS

= 2(2 + ε)B(t) + ε

∫

�

ρ2(u)|∇u|2 dx + (4 + 2ε)
∫

�1

[
θ (z)

∫ u

0
sρ2(s) ds

]
dS

– 2
∫

�1

θ (z)u2ρ2(u) dS – 2β1

∫

�

u2 dx – 2β2

∫

�1

u2 dS

≥ 2(2 + ε)B(t) + ε

[∫

�

ρ2(u)|∇u|2 dx +
∫

�1

θ (z)u2ρ2(u) dS
]

– 2β1

∫

�

u2 dx – 2β2

∫

�1

u2 dS

for all t ∈ (0, t∗). Here, the last term can be estimated by using the following inequality:

∫ u

0
sρ2(s) ds =

1
2

u2ρ2(u) –
∫ u

0
s2ρ(s)ρ ′(s) ds ≥ 1

2
u2ρ2(u). (10)
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Therefore, we obtain from Lemma 2.2 and Lemma 2.3 that

A′(t) ≥ 2(2 + ε)B(t) +
(

ρ2
mε –

2
λS

β2

)[∫

�

|∇u|2 dx +
∫

�1

θ (z)u2 dS
]

–
(

2β1 +
2
λS

β2

)∫

�

u2 dx

≥ 2(2 + ε)B(t) +
(

ρ2
mλRε –

2λR + 2
λS

β2 – 2β1

)∫

�

u2 dx

≥ 2(2 + ε)B(t) (11)

for all t ∈ (0, t∗). On the other hand, it follows from the fact that F and H are nondecreasing
in t and integration by parts that

B′(t) = –
∫

�

[
ρ(u)ρ ′(u)|∇u|2ut + ρ2(u)∇u∇ut

]
dx

+
∫

�

[
ρ(u)f (x, t, u)ut +

∂

∂t
F(x, t, u)

]
dx

+
∫

�1

[
ρ2(u)h(z, t, u)ut +

∂

∂t
H(z, t, u) – θ (z)uρ2(u)ut

]
dS

≥
∫

�

[
ρ ′(u)|∇u|2 + ρ(u)�u

]
ρ(u)ut dx –

∫

∂�

ρ2(u)ut
∂u
∂n

dS

+
∫

�

ρ(u)f (x, t, u)ut dx +
∫

�1

[
ρ2(u)h(z, t, u)ut – θ (z)uρ2(u)ut

]
dS

=
∫

�

[∇ · (ρ(u)∇u
)

+ f (x, t, u)
]
ρ(u)ut dx

=
∫

�

ρ(u)u2
t dx ≥ 0 (12)

for all t ∈ (0, t∗). Considering (11), (12), and the initial data condition (8), it is easy to see
that A(t) > 1, A′(t) > 0, B(t) > 0, and B′(t) > 0 for all t ∈ (0, t∗). Now we use the Schwarz
inequality and (11) to get

2 + ε

2
A′(t)B(t) ≤ 2 + ε

2
A′(t)B(t)

≤ 1
4
[
A′(t)

]2

≤
(∫

�

u2ρ(u) dx
)(∫

�

ρ(u)u2
t dx

)
(13)

for all t ∈ (0, t∗). Integrating by parts, the use of ρ ′ ≤ 0 and assumption (7) give

2
∫ u

0
sρ(s) ds = s2ρ(s)|u0–

∫ u

0
s2ρ ′(s) ds ≥ u2ρ(u). (14)
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Combining (13) and (14), we have

2 + ε

2
A′(t)B(t) ≤

(∫

�

2
∫ u

0
sρ(s) ds dx

)(∫

�

ρ(u)u2
t dx

)

≤ A(t)B′(t) (15)

for all t ∈ (0, t∗). Then we obtain from (15) that

d
dt

[
A– 2+ε

2 (t)B(t)
] ≥ 0

for all t ∈ (0, t∗). It follows that

A– 2+ε
2 (t)A′(t) ≥ 2(2 + ε)A– 2+ε

2 (t)B(t) ≥ 2(2 + ε)A– 2+ε
2 (0)B(0)

for all t ∈ (0, t∗), which implies that

d
dt

[
A– ε

2 (t)
]

= –
ε

2
A– 2+ε

2 (t)A′(t)

≤ –ε(2 + ε)A– 2+ε
2 (0)B(0).

Integrating from 0 to t, we finally obtain

A(t) ≥
[

1
A– ε

2 (0) – ε(2 + ε)A– 2+ε
2 (0)B(0)t

] 2
ε

. (16)

Therefore, the solution u blows up at finite time 0 < t∗ ≤ T .
On the other hand, if �1 = ∅, then it is trivial that the function h cannot affect the solution

u. In this case, we can easily obtain the blow-up solution by following the above proof, by
using the condition

(Cρ) : (2 + ε)F(x, t, u) ≤ uρ(u)f (x, t, u) + β1u2 + γ1

for some constants ε, β1, and γ1, satisfying ε > 0 and 0 ≤ β1 ≤ ρ2
mλR
2 ε. �

Remark 2.5
(i) We can easily obtain that

A(t) ≤ ρ(0)
∫

�

u2 dx

i.e. limt→t∗ A(t) = ∞ implies limt→t∗
∫
�

u2 dx = ∞.
(ii) The upper bound T of the blow-up time t∗ can be obtained from inequality (16):

T =
A(0)

ε(2 + ε)B(0)
.

Now, we discuss nonnegative functions or nonpositive functions since, in fact, if the
functions f and h have the same signs on �×R

+ ×R and ∂�×R
+ ×R, respectively, then

we can improve the blow-up condition (Cρ).



Chung and Hwang Boundary Value Problems         (2022) 2022:46 Page 9 of 19

Theorem 2.6 Suppose that the function F is nonpositive. Also, we assume that the func-
tions f and h satisfy the conditions

(Cρ) :
(2 + ε1)F(x, t, u) ≤ uρ(u)f (x, t, u) + β1u2 + γ1,

(2 + ε2)H(z, t, u) ≤ uρ2(u)h(z, t, u) + β2u2 + γ2,

for all x ∈ �, z ∈ ∂�, t > 0, u > 0, for some constants ε1, ε2, β1, β2, γ1, γ2, satisfying

0 ≤ ε1 ≤ ε2, ε2 > 0, β1 +
λR + 1

λS
β2 ≤ ρ2

mλR

2
ε2, and 0 ≤ β2 ≤ ρ2

mλS

2
ε2.

In addition, we assume that F and H are nondecreasing in t. Moreover, we assume that the
function ρ satisfies

lim
s→0+

s2ρ(s) = 0.

If the initial data u0 satisfies

–
1
2

∫

�

ρ2(u0)|∇u0|2 dx +
∫

�

[
F(x, 0, u0) –

γ1

2 + ε2

]
dx

+
∫

�1

[
H(z, 0, u0) – θ (z)

∫ u0

0
sρ2(s) ds –

γ2

2 + ε2

]
dS > 0,

then every solution u to equation (1) blows up at finite time t∗ > 0.

Proof The proof is basically similar to the proof of Theorem 2.4. Therefore, we state the
main difference of the proof. For a solution u(x, t), we define functions A and B on [0,∞)
by

A(t) := 2
∫

�

∫ u(x,t)

0
sρ(s) ds dx + 1

and

B(t) := –
1
2

∫

�

ρ2(u(x, t)
)∣∣∇u(x, t)

∣∣2 dx +
∫

�

[
F
(
x, t, u(x, t)

)
–

γ1

2 + ε2

]
dx

+
∫

�1

[
H

(
z, t, u(z, t)

)
– θ (z)

∫ u(z,t)

0
sρ2(s) ds –

γ2

2 + ε2

]
dS

for each t ≥ 0. Now, applying condition (Cρ) to (9), we obtain

A′(t) ≥ –2
∫

�

ρ2(u)|∇u|2 – 2
∫

�1

θ (z)u2ρ2(u) dS

+ 2
∫

�

[
(2 + ε1)F(x, t, u) – β1u2 – γ1

]
dx

+ 2
∫

�1

[
(2 + ε2)H(z, t, u) – β2u2 – γ2

]
dS

≥ 2(2 + ε2)B(t) + ε

∫

�

ρ2(u)|∇u|2 dx + (4 + 2ε)
∫

�1

[
θ (z)

∫ u

0
sρ2(s) ds

]
dS
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– 2
∫

�1

θ (z)u2ρ2(u) dS – 2β1

∫

�

u2 dx – 2β2

∫

�1

u2 dS

≥ 2(2 + ε2)B(t) + ε

[∫

�

ρ2(u)|∇u|2 dx +
∫

�1

θ (z)u2ρ2(u) dS
]

– 2β1

∫

�

u2 dx – 2β2

∫

�1

u2 dS

for all t ≥ 0. Hence, we have from Lemma 2.2 and Lemma 2.3 that

A′(t) ≥ 2(2 + ε2)B(t).

Also, by the same argument as inequality (12), we can obtain

B′(t) ≥
∫

�

ρ(u)u2
t dx ≥ 0.

Therefore, we can easily obtain in a similar way as the proof of Theorem 2.4 that

A(t) ≥
[

1

A– ε2
2 (0) – ε2(2 + ε2)A– 2+ε2

2 (0)B(0)t

] 2
ε2

.

Hence, the solution u blows up at finite time 0 < t∗ ≤ T . Furthermore, the upper bound T
of the blow-up time satisfies

T =
A(0)

ε2(2 + ε2)B(0)
. �

Theorem 2.7 Suppose that the function H is nonpositive. Also, we assume that the func-
tions f and h satisfy the conditions

(Cρ) :
(2 + ε1)F(x, t, u) ≤ uρ(u)f (x, t, u) + β1u2 + γ1,

(2 + ε2)H(z, t, u) ≤ uρ2(u)h(z, t, u) + β2u2 + γ2,

for all x ∈ �, z ∈ ∂�, t > 0, u > 0, for some constants ε1, ε2, β1, β2, γ1, γ2, satisfying

ε1 ≥ ε2, ε1 > 0, β1 +
λR + 1

λS
β2 ≤ ρ2

mλR

2
ε1, and 0 ≤ β2 ≤ ρ2

mλS

2
ε1.

In addition, we assume that F and H are nondecreasing in t. Moreover, we assume that the
function ρ satisfies

lim
s→0+

s2ρ(s) = 0.

If the initial data u0 satisfies

–
1
2

∫

�

ρ2(u0)|∇u0|2 dx +
∫

�

[
F(x, 0, u0) –

γ1

2 + ε1

]
dx

+
∫

�1

[
H(z, 0, u0) – θ (z)

∫ u0

0
sρ2(s) ds –

γ2

2 + ε1

]
dS > 0,



Chung and Hwang Boundary Value Problems         (2022) 2022:46 Page 11 of 19

then every solution u to equation (1) blows up at finite time 0 < t∗ ≤ T with

T =
A(0)

ε1(2 + ε1)B(0)
.

Proof The proof is basically similar to the proof of Theorem 2.4 and Corollary 2.6. There-
fore, one can easily complete this proof by following the proofs. �

Since t is the one of variables of the reaction term f , we can expect that condition (Cρ)
may depend on t. From this point of view, we obtain the following condition (Cρ)′. In fact,
condition (Cρ)′ is the generalized version of condition (Cρ):

(Cρ)′ :

(
2 + ε(t)

)
F(x, t, u) ≤ uρ(u)f (x, t, u) + β1(t)u2 + γ1(x, t),

(
2 + ε(t)

)
H(z, t, u) ≤ uρ2(u)h(z, t, u) + β2(t)u2 + γ2(z, t),

for all x ∈ �, z ∈ ∂�, t > 0, u ∈ R, for some differentiable functions ε, β1, β2, γ1, γ2, satis-
fying

inf
s>0

ε(s) > 0, β1(t) +
λR + 1

λS
β2(t) ≤ ρ2

mλR

2
ε(t), and 0 ≤ β2(t) ≤ ρ2

mλS

2
ε(t)

for t > 0.

Theorem 2.8 Let �1 �= ∅. Suppose that the functions f and h satisfy condition (Cρ)′. In
addition, we assume that

F(x, t, u) –
γ1(x, t)
2 + ε(t)

and H(z, t, u) –
γ2(z, t)
2 + ε(t)

are nondecreasing in t. (17)

Moreover, we assume that the function ρ satisfies

lim
s→0+

s2ρ(s) = 0.

If the initial data u0 satisfies

–
1
2

∫

�

ρ2(u0)|∇u0|2 dx +
∫

�

[
F(x, 0, u0) –

γ1(x, 0)
2 + ε(0)

]
dx

+
∫

�1

[
H(z, 0, u0) – θ (z)

∫ u0

0
sρ2(s) ds –

γ2(z, 0)
2 + ε(0)

]
dS > 0, (18)

then every solution u to equation (1) blows up at finite time 0 < t∗ ≤ T with

T =
A(0)

εm(2 + εm)B(0)
,

where εm := infs>0 ε(s).

Proof For a solution u(x, t), we define functions A and B on [0,∞) by

A(t) := 2
∫

�

∫ u(x,t)

0
sρ(s) ds dx + 1
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and

B(t) := –
1
2

∫

�

ρ2(u(x, t)
)∣∣∇u(x, t)

∣
∣2 dx +

∫

�

[
F
(
x, t, u(x, t)

)
–

γ1(x, t)
2 + ε(t)

]
dx

+
∫

�1

[
H

(
z, t, u(z, t)

)
– θ (z)

∫ u(z,t)

0
sρ2(s) ds –

γ2(z, t)
2 + ε(t)

]
dS

for each t ≥ 0. Then the proof is basically similar to the proof of Theorem 2.4. Applying
condition (Cρ)′ to inequality (9), we can obtain

A′(t) ≥ –2
∫

�

ρ2(u)|∇u|2 – 2
∫

�1

θ (z)u2ρ2(u) dS

+ 2
∫

�

[(
2 + ε(t)

)
F(x, t, u) – β1(t)u2 – γ1(x, t)

]
dx

+ 2
∫

�1

[(
2 + ε(t)

)
H(z, t, u) – β2(t)u2 – γ2(z, t)

]
dS

= 2
[
2 + ε(t)

]
B(t) + ε(t)

∫

�

ρ2(u)|∇u|2 dx

+
[
4 + 2ε(t)

] ∫

�1

θ (z)
∫ u

0
sρ2(s) ds dS – 2

∫

�1

θ (z)u2ρ2(u) dS

– 2β1(t)
∫

�

u2 dx – 2β2(t)
∫

�1

u2 dS

≥ 2
[
2 + ε(t)

]
B(t) + ε(t)

[∫

�

ρ2(u)|∇u|2 dx +
∫

�1

θ (z)u2ρ2(u) dS
]

– 2β1(t)
∫

�

u2 dx – 2β2(t)
∫

�1

u2 dS

for all t ∈ (0, t∗). Here, the last term can be estimated by using inequality (10). Therefore,
we obtain from Lemma 2.2 and Lemma 2.3 that

A′(t) ≥ 2
[
2 + ε(t)

]
B(t) +

[
ρ2

mε(t) –
2
λS

β2(t)
][∫

�

|∇u|2 dx +
∫

�1

θ (z)u2 dS
]

–
[

2β1(t) +
2
λS

β2(t)
]∫

�

u2 dx

≥ 2
[
2 + ε(t)

]
B(t) +

[
ρ2

mλRε(t) –
2λR + 2

λS
β2(t) – 2β1(t)

]∫

�

u2 dx

≥ 2
[
2 + ε(t)

]
B(t) (19)

for all t ∈ (0, t∗). On the other hand, we have from condition (17) and integration by parts
that

B′(t) = –
∫

�

[
ρ(u)ρ ′(u)|∇u|2ut + ρ2(u)∇u∇ut

]
dx

+
∫

�

[
ρ(u)f (x, t, u)ut +

∂

∂t

(
F(x, t, u) –

γ1(x, t)
2 + ε(t)

)]
dx

+
∫

�1

[
ρ2(u)h(z, t, u)ut – θ (z)uρ2(u)ut +

∂

∂t

(
H(z, t, u) –

γ2(z, t)
2 + ε(t)

)]
dS
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≥
∫

�

[
ρ ′(u)|∇u|2 + ρ(u)�u

]
ρ(u)ut dx –

∫

∂�

ρ2(u)ut
∂u
∂n

dS

+
∫

�

ρ(u)f (x, t, u)ut dx +
∫

�1

[
ρ2(u)h(z, t, u)ut – θ (z)uρ2(u)ut

]
dS

=
∫

�

[∇ · (ρ(u)∇u
)

+ f (x, t, u)
]
ρ(u)ut dx

=
∫

�

ρ(u)u2
t dx ≥ 0 (20)

for all t ∈ (0, t∗). Considering (19), (20), and the initial data condition (18), it is easy to see
that A(t) > 1, A′(t) > 0, B(t) > 0, and B′(t) > 0 for all t ∈ (0, t∗). Now we use the Schwarz
inequality and (19) to get

2 + εm

2
A′(t)B(t) ≤ 2 + ε(t)

2
A′(t)B(t)

≤ 1
4
[
A′(t)

]2

≤
(∫

�

u2ρ(u) dx
)(∫

�

ρ(u)u2
t dx

)
(21)

for all t ∈ (0, t∗), where εm := infs>0 ε(s). Applying (14) to (21), we have

2 + εm

2
A′(t)B(t) ≤ 2 + ε(t)

2
A′(t)B(t)

≤
(∫

�

2
∫ u

0
sρ(s) ds dx

)(∫

�

ρ(u)u2
t dx

)

≤ A(t)B′(t) (22)

for all t ∈ (0, t∗). Then we obtain from (22) that

d
dt

[
A– 2+εm

2 (t)B(t)
] ≥ 0

for all t ∈ (0, t∗). Hence, we can obtain the following in a similar way as the proof of The-
orem 2.4:

A(t) ≥
[

1

A
–εm

2 (0) – εm(2 + εm)A– 2+εm
2 (0)B(0)t

] 2
εm

.

Therefore, the solution u blows up at finite time 0 < t∗ ≤ T . Furthermore, the upper bound
T of the blow-up time satisfies

T =
A(0)

εm(2 + εm)B(0)
. �
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Remark 2.9 Let us assume that ε′(t) ≤ 0, t > 0. Then we can obtain another upper bound
of the blow-up time. More precisely, we obtain from (22) and the fact A(t) > 1 that

d
dt

[
A– 2+ε(t)

2 (t)B(t)
]

= –
2 + ε(t)

2
A–1– 2+ε(t)

2 (t)A′(t)B(t) + A– 2+ε(t)
2 B′(t)

–
ε′(t)

2
A– 2+ε(t)

2 (t)B(t) ln A(t)

≥ –
ε′(t)

2
A– 2+ε(t)

2 (t)B(t) ln A(t) ≥ 0

for all t ∈ (0, t∗). It follows that

A– 2+ε(t)
2 (t)A′(t) ≥ 2

(
2 + ε(t)

)
A– 2+ε(t)

2 (t)B(t) ≥ 2
(
2 + ε(t)

)
A– 2+ε(0)

2 (0)B(0)

for all t ∈ (0, t∗), which implies that

d
dt

[
A– εm

2 (t)
]

= –
εm

2
A– 2+εm

2 (t)A′(t)

≤ –
εm

2
A– 2+ε(t)

2 (t)A′(t)

≤ –εmA– 2+ε(0)
2 (0)B(0)

[
2 + ε(t)

]
.

Integrating from 0 to t, we finally obtain

A(t) ≥
[

1

A– εm
2 (0) – εmA– 2+ε(0)

2 (0)B(0)
∫ t

0 [2 + ε(s)] ds

] 2
εm

.

Therefore, the solution u blows up at finite time 0 < t∗ ≤ T . Furthermore, the upper bound
T of the blow-up time satisfies

∫ T

0

[
2 + ε(s)

]
ds =

A
2+ε(0)–εm

2 (0)
εmB(0)

.

Remark 2.10 Condition (C) was discussed by Chung and Choi (see [22]). From a careful
reading of their analysis, we can obtain that

(Cρ) holds if and only if
F(x, t, u) = u2+εg1(x, t, u) +

β1

ε
u2 +

γ1

2 + ε
,

H(z, t, u) = u2+εg2(z, t, u) +
β2

ε
u2 +

γ2

2 + ε
,

for some real-valued continuous functions g1 and g2 which are nondecreasing in u.

3 Blow-up phenomena: nonlinear parabolic systems
In this section, we discuss blow-up solutions to the nonlinear parabolic systems under the
mixed nonlinear boundary conditions (2). In this section, we assume that, for the functions
f1, f2, h1, and h2, there exist functions F and H such that

∂

∂r
F(x, t, r, s) = ρ1(r)f1(x, t, r, s),

∂

∂s
F(x, t, r, s) = ρ2(s)f2(x, t, r, s)
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and

∂

∂r
H(z, t, r, s) = ρ2

1 (r)h1(x, t, r, s),
∂

∂s
H(z, t, r, s) = ρ2

2 (s)h2(x, t, r, s).

Now, we introduce a condition for functions f1, f2, h1, and h2 as follows:

(Cρ) :

(2 + ε)F(x, t, u, v) ≤ uρ1(u)f1(x, t, u, v) + vρ2(v)f2(x, t, u, v)

+ β1u2 + β2v2 + γ1,

(2 + ε)H(z, t, u, v) ≤ uρ2
1 (u)h1(z, t, u, v) + vρ2

2 (v)h2(z, t, u, v)

+ β3u2 + β4v2 + γ2

for all x ∈ �, z ∈ ∂�, t > 0, u ∈ R, and v ∈ R, for some constants ε, β1, β2, β3, β4, γ1, γ2,
satisfying

ε > 0, β1 +
λR + 1

λS
β3 ≤ ρ2

1,mλR

2
ε, β2 +

λR + 1
λS

β4 ≤ ρ2
2,mλR

2
ε,

0 ≤ β3 ≤ ρ2
1,mλS

2
ε, and 0 ≤ β4 ≤ ρ2

2,mλS

2
ε,

where ρ1,m := infs>0 ρ1(s) and ρ2,m := infs>0 ρ2(s).
Now, we discuss the blow-up solutions to system (2).

Theorem 3.1 Let �1 �= ∅. Suppose that the functions f1, f2 satisfy conditions (Cρ). In addi-
tion, we assume that F and H are nondecreasing in t. Moreover, we assume that the func-
tions ρ1 and ρ2 satisfy

lim
s→0+

s2ρ1(s) = lim
s→0+

s2ρ2(s) = 0. (23)

If the initial data u0 satisfies

–
1
2

∫

�

[
ρ2

1 (u0)|∇u0|2 + ρ2
2 (v0)|∇v0|2

]
dx +

∫

�

[
F(x, 0, u0, v0) –

γ1

2 + ε

]
dx

+
∫

�1

[
H(z, 0, u0, v0) – θ (z)

[∫ u0

0
sρ2

1 (s) +
∫ v0

0
sρ2

2 (s) ds
]

–
γ2

2 + ε

]
dS > 0, (24)

then every solution pair (u, v) to system (2) blows up at finite time t∗.

Proof First of all, we define functionals A and B by

A(t) := 2
∫

�

[∫ u(x,t)

0
sρ1(s) ds +

∫ v(x,t)

0
sρ2(s) ds

]
dx + 1



Chung and Hwang Boundary Value Problems         (2022) 2022:46 Page 16 of 19

and

B(t) := –
1
2

∫

�

[
ρ2

1
(
u(x, t)

)∣∣∇u(x, t)
∣∣2 + ρ2

2
(
v(x, t)

)∣∣∇v(x, t)
∣∣2+

]
dx

+
∫

�

[
F
(
x, t, u(x, t), v(x, t)

)
–

γ1

2 + ε

]
dx

+
∫

�1

[
H

(
z, t, u(x, t), v(x, t)

)
–

γ2

2 + ε

]
dS

–
∫

�1

θ (z)
[∫ u(z,t)

0
sρ2

1 (s) ds +
∫ v(z,t)

0
sρ2

2 (s) ds
]

dS.

In fact, the proof is basically similar to the case of Theorem 2.4. We have from integration
by parts and the assumptions ρ ′

1 ≤ 0, ρ ′
2 ≤ 0 that

A′(t) = 2
∫

�

[
uρ1(u)ut + vρ2(v)vt

]
dx

≥ –2
∫

�

[
ρ2

1 (u)|∇u|2 + ρ2
2 (v)|∇v|2]dx

+ 2
∫

�

[
uρ1(u)f1(x, t, u, v) + vρ2(v)f2(x, t, u, v)

]
dx

+ 2
∫

�1

[
uρ2

1 (u)
[
h1(z, t, u, v) – θ (z)u

]
+ vρ2

2 (v)
[
h2(z, t, u, v) – θ (z)u

]]
dS

for t ∈ (0, t∗). We use condition (Cρ) to obtain

A′(t) ≥ 2(2 + ε)B(t) + ε

∫

�

[
ρ2

1 (u)|∇u|2 + ρ2
2 (v)|∇v|2]dx

+ ε

∫

�1

θ (z)
[
u2ρ2

1 (u) + v2ρ2
2 (v)

]
dS

– 2β1

∫

�

u2 dx – 2β2

∫

�

v2 dx – 2β3

∫

�1

u2 dS – 2β4

∫

�1

v2 dS

for all t ∈ (0, t∗). Here, this term can be obtained by similar way to inequality (10) in the
proof of Theorem 2.4. Therefore, we obtain from Lemma 2.2 and Lemma 2.3 that

A′(t) ≥ 2(2 + ε)B(t) +
[
ρ2

1,mλRε –
2λR + 2

λS
β3 – 2β1

]∫

�

u2 dx

+
[
ρ2

2,mλRε –
2λR + 2

λS
β4 – 2β2

]∫

�

u2 dx

≥ 2(2 + ε)B(t) (25)

for all t ∈ (0, t∗). On the other hand, it follows from similar way to (12) that

B′(t) = –
∫

�

[
ρ1(u)ρ ′

1(u)|∇u|2ut + ρ2
1 (u)∇u∇ut

]
dx

–
∫

�

[
ρ2(v)ρ ′

2(v)|∇v|2vt + ρ2
2 (v)∇v∇vt

]
dx
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+
∫

�

[
ρ1(u)f1(x, t, u, v)ut + ρ2(v)f2(x, t, u, v)vt +

∂

∂t
F(x, t, u, v)

]
dx

+
∫

�1

[
ρ2

1 (u)h1(z, t, u, v)ut + ρ2
2 (v)h2(z, t, u, v)vt +

∂

∂t
H(z, t, u, v)

]
dS

–
∫

�1

θ (z)
[
uρ2

1 (u)ut + vρ2
2 (v)vt

]
dS

≥
∫

�

[
ρ1(u)u2

t + ρ2(v)v2
t
]

dx ≥ 0 (26)

for all t ∈ (0, t∗). Considering (25), (26), and the initial data condition (24), it is easy to see
that A(t) > 1, A′(t) > 0, B(t) > 0, and B′(t) > 0 for all t ∈ (0, t∗). Now we use the Schwarz
inequality and (25) to get

2 + ε

2
A′(t)B(t)

≤ 1
4
[
A′(t)

]2 =
[∫

�

[
uρ1(u)ut + vρ2(v)vt

]
dx

]2

≤ [∥∥uρ
1
2

1 (u)
∥
∥

L2(�)

∥
∥ρ

1
2

1 (u)ut
∥
∥

L2(�) +
∥
∥vρ

1
2

2 (v)
∥
∥

L2(�)

∥
∥ρ

1
2

2 (v)vt
∥
∥

L2(�)

]2

≤
(∫

�

u2ρ1(u) dx +
∫

�

ρ1(u)ut dx
)(∫

�

v2ρ2(v) dx +
∫

�

ρ2(v)vt dx
)

for all t ∈ (0, t∗). Using ρ ′
1 ≤ 0, ρ ′

2 ≤ 0, and assumption (23), we obtain from similar way to
(14) that

2 + ε

2
A′(t)B(t) < A(t)B′(t)

for all t ∈ (0, t∗). Therefore, we can obtain

A(t) ≥
[

1
A– ε

2 (0) – ε(2 + ε)A– 2+ε
2 (0)B(0)t

] 2
ε

.

Hence, the solution pair (u, v) blows up at finite time 0 < t∗ ≤ T . Furthermore, the upper
bound T of the blow-up time satisfies

T =
A(0)

ε(2 + ε)B(0)
. �

From the proofs of Theorems 2.4 and 3.1, we obtain the blow-up solution to the fol-
lowing nonlinear parabolic systems under the mixed nonlinear boundary conditions for
k ∈N:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂t ui = ∇ · (ρi(ui)∇ui) + fi(x, t, u1, . . . , uk), in � × (0, t∗),
∂ui
∂n + θ (z)ui = hi(x, t, u1, . . . , uk), on �1 × (0, t∗),

ui = 0, on �2 × (0, t∗),

ui(·, 0) = ψi ≥ 0, in �,

(27)
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for i = 1, . . . , k. Here, the functions fi are nonnegative C1(� × R
+ × R

k)-functions and hi

are nonnegative C1(∂� ×R
+ ×R

k)-functions such that

∂

∂ri
F(x, t, r1, . . . , ri, . . . , rk) = fi(x, t, r1, . . . , ri, . . . , rk)ρi(ri),

∂

∂ri
H(z, t, r1, . . . , ri, . . . , rk) = hi(x, t, r1, . . . , ri, . . . , rk)ρ2

i (ri),

for i = 1, . . . , k, and ρi are positive C1(R)-functions satisfying

ρ ′
i(s) ≤ 0, s > 0, and inf

s>0
ρ(s) > 0,

for i = 1, . . . , k. Also, ψi are nonnegative and nontrivial C1(�) functions satisfying the
boundary conditions for i = 1, . . . , k.

Corollary 3.2 Let �1 �= ∅ and k ∈ N. Suppose that the functions fi and hi satisfy the condi-
tions

(Cρ) :

(2 + ε)F(x, t, u1, . . . , uk) ≤
k∑

j=1

ujρj(uj)fj(x, t, u1, . . . , uk) +
k∑

j=1

β1,ju2
j + γ1,

(2 + ε)H(z, t, u1, . . . , uk) ≤
k∑

j=1

ujρ
2
j (uj)hj(z, t, u1, . . . , uk) +

k∑

j=1

β2,ju2
j + γ2

for some constants ε, β1,j, β2,j, γ1, and γ2 satisfying

ε > 0, β1,j +
λR + 1

λS
β2,j ≤

ρ2
j,mλRε

2
, and 0 ≤ β2,j ≤

ρ2
j,mλSε

2

for j = 1, . . . , k, where ρj,m := infs>0 ρj(s), j = 1, . . . , k. In addition, we assume that F and H are
nondecreasing in t. Moreover, we assume that the functions ρi satisfy

lim
s→0+

s2ρj(s) = 0

for j = 1, . . . , k. If the initial data u0 satisfies

–
1
2

∫

�

[ k∑

j=1

ρ2
j (ψi)|∇ψi|2

]

dx +
∫

�

[
F(x, 0,ψ1, . . . ,ψk) –

γ1

2 + ε

]
dx

+
∫

�1

[

H(z, 0,ψ1, . . . ,ψk) – θ (z)

[ k∑

j=1

∫ ψi

0
sρ2

i (s)

]

–
γ2

2 + ε

]

dS > 0,

then every solution pair (u1, . . . , uk) to system (27) blows up at finite time t∗.
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