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Abstract
This work deals with the large deviation principle which studies the decay of
probabilities of certain kind of extremely rare events. We consider stochastic neutral
fractional functional differential equation with multiplicative noise and show large
deviation principle for its solution processes in a suitable Polish space. The existence
and uniqueness results are presented using the Picard iterative method, which is
indeed essential for further analysis. The establishment of Freidlin–Wentzell type large
deviation principle is solely based on the variational representation developed by
Budhiraja and Dupuis in which the weak convergence technique is used to show the
sufficient condition. Examples are provided to emphasize the theory.
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1 Introduction
The theory of differential equations with memory has recently been studied intensively.
Many researchers have given special interest to the study of dynamical systems that rely on
the past and present state as well as on the derivatives of the past state of the system. The
neutral differential equations are often used to describe such systems which have appli-
cations in various physical scenarios like heat conduction material with memory, lossless
transmission connection, vibrating masses attached to an elastic bar, and collision theory.
These equations are encountered when memory argument arises in the derivative of state
variable as well as independent variable. Several works on stochastic neutral type model
were discussed by Mao [25–27, 43]. The solutions of perturbed neutral stochastic differ-
ential equation and its appropriate unperturbed system were compared in [14]. To know
more on neutral type stochastic differential equations, one can refer [13, 15, 22, 35].

Fractional calculus has gained a noticeable popularity in recent years. It allows one to de-
fine the derivatives and integrals to an arbitrary order. Employing fractional order operator
would give a better outcome while framing the dynamical systems. Modeling a real world
problem would be even more realistic when a fractional order system is incorporated with
some randomness and will be an extension of a deterministic system. The advancement
of fractional calculus inspired many research works to explore the solutions of differen-
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tial equations driven by fractional operators. The existence and uniqueness of solution
of differential equation is critical in order to validate the model, which then allows for
further exploration of numerous additional problems. Umamaheshwari et al. [39, 40] ex-
amined the existence and uniqueness of solutions of some fractional stochastic differential
equations using the Picard–Lindelöf successive approximation scheme. Several studies on
existence, uniqueness, qualitative and quantitative analysis of stochastic fractional differ-
ential equations have been handled by many authors [9, 24]. In this work, we focus on the
analysis of the large deviation principle for solution processes of stochastic neutral frac-
tional functional differential equation with multiplicative noise. The monographs [1, 2]
justify this choice of fractional system.

The large deviation principle (LDP) deals with the asymptotic behavior of rare events.
Those highly improbable events may have a huge impact during their occurrence, and so
the study of this theory is indeed essential. Though there were works on large deviation
theory by mathematicians and economists, Varadhan [41] was the one who formulated
the large deviation theory in his work initially. A fundamental work on large deviation
principle was done by Freidlin and Wentzell [12]. Moreover, the results to stochastic evo-
lution equations have been established intensively in recent decades, and we refer to [30]
for the extensions to an infinite dimensional system under the global Lipschitz condition,
that is, the measure obtained for LDP by Freidlin and Wentzell has been extended to the
measures obtained by the stochastic evolution equations with non-additive perturbations.
The Freidlin–Wentzell large deviation principle was established for the stochastic evolu-
tion equations with small multiplicative noise in [20]. Ren and Zhang [33] proved the LDP
of Freidlin–Wentzell type for multivalued stochastic differential equations with monotone
drifts. The study of large deviations for stochastic system with memory has also gained
much attention, see, for example, [17, 21, 28, 29, 34]. Subsequently, many authors have at-
tempted to establish the results of large deviation theory under less restrictive conditions.
An extensive collection of LDP for various kinds of stochastic differential equations can
be found in [11, 18, 19, 38, 42] and the references therein.

In this work, we use the weak convergence approach to study the large deviations for
stochastic neutral fractional functional differential equation. Specifically, we use the vari-
ational representation formula for functionals of infinite dimensional Brownian motion
established by Budhiraja and Dupuis [5]. The use of this weak convergence approach al-
lows one to frame the assumptions needed for the large deviation principle to hold. Using
this approach, Ren and Zhang [32] studied the large deviations for homeomorphism flows
of non-Lipschitz SDEs. By using this weak convergence approach, the LDP for stochastic
fractional integrodifferential equations was studied in [38]. For more information on this
approach, one may refer [4, 6, 8, 36].

The organization of this work is as follows: In Sect. 2, the system for which the large
deviation principle is to be proved is described. We present some basic definitions from
the theory of large deviations and fractional calculus. Also, the solution representation
of the fractional system using the Mittag-Leffler function is derived. Section 3 provides
the existence and uniqueness of the considered system using the Picard iterative scheme.
Section 4 discusses the sufficient conditions to be satisfied in order to estimate the LDP for
the stochastic neutral fractional functional differential equation with multiplicative noise
using the weak convergence technique. Section 5 includes an example to illustrate large
deviations for the considered system.
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2 Problem formulation
Let (�,F ,P) be a complete filtered probability space with a family {Ft , t ∈ [0, T]} of
increasing sub-σ -algebras called filtration. The filtration is stated as right continuous if
Ft =

⋂
s>t Fs for all t ∈ [0, T]. Let X and H be separable Hilbert spaces. Let L(X) be the

space of all bounded linear operators and W (t) be an H-valued Wiener process with a
finite trace nuclear covariance operator Q ≥ 0. Furthermore, consider the Hilbert space
H0 = Q1/2

H with the inner product (X, Y )0 = (Q–1/2X, Q–1/2Y ) for all X, Y ∈ H0, and the
corresponding norm is denoted by ‖ · ‖0. Let LQ be the space of all Hilbert–Schmidt oper-
ators from H0 to X. Also, we denote the expectation with respect to probability P by E.
Consider the stochastic neutral fractional functional differential equation of the form

⎧
⎨

⎩

CDα(x(t) – g(t, xt)) = Ax(t) + f (t, xt) + σ (t, xt) dW (t)
dt , t ∈ [0, T],

x(t) = φ(t), t ∈ [–τ , 0],
(2.1)

where 1/2 < α ≤ 1. The solution x(t,ω), t ∈ [–τ , T], ω ∈ �, represented as x(t) : � → X,
takes values in a real separable Hilbert space X. We represent xt : � → Cτ , t ∈ [0, T] by
defining xt = {x(t + θ ) : θ ∈ [–τ , 0]}, the past history of the state regarded as a Cτ -valued
stochastic process where Cτ = C([–τ , 0];X) is the space of all continuous functions ϕ from
[–τ , T] to X with the supremum norm ‖ϕ‖2

Cτ
= sup{‖ϕ(θ )‖2

X
: –τ ≤ θ ≤ 0}, 0 < τ < ∞.

Further, the initial condition x0 = φ = {φ(θ ) : –τ ≤ θ ≤ 0} is considered to be a continuous
function. Also g : [0, T] × Cτ →X is continuous and A is a bounded linear operator from
X to X. The coefficients f : [0, T] × Cτ → X and σ : [0, T] × Cτ → LQ(H0;X) denote the
Borel measurable functions which are continuous and satisfy the Lipschitz condition: for
all x1, x2 ∈ Cτ and t ∈ [0, T], there exist L1, L2 > 0 such that

∥
∥f (t, x1) – f (t, x2)

∥
∥
X

≤ L1
(‖x1 – x2‖Cτ

)
, (2.2)

∥
∥σ (t, x1) – σ (t, x2)

∥
∥

LQ
≤ L2

(‖x1 – x2‖Cτ

)
. (2.3)

Also, f and σ satisfy the linear growth condition: for all x ∈ Cτ and t ∈ [0, T], there exist
positive constants L3, L4 > 0 such that

∥
∥f (t, x)

∥
∥2
X

≤ L3
(
1 + ‖x‖2

Cτ

)
, (2.4)

∥
∥σ (t, x)

∥
∥2

LQ
≤ L4

(
1 + ‖x‖2

Cτ

)
. (2.5)

We impose some hypothesis on the continuous function g as follows: Assume there is a
constant γ > 0 such that, for all x ∈ Cτ and t ∈ [0, T],

∥
∥g(t, x)

∥
∥2
X

≤ γ 2(1 + ‖x‖2
Cτ

)
. (2.6)

Also, let the function g be a contraction, that is, there exists a constant η ∈ (0, 1) such that,
for all x1, x2 ∈ Cτ and t ∈ [0, T],

∥
∥g(t, x1) – g(t, x2)

∥
∥
X

≤ η‖x1 – x2‖Cτ . (2.7)
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We now present some well-known standard definitions in fractional calculus that are used
frequently in establishing our results. For α > 0, with n – 1 < α < n and n ∈N, we state the
following well-known definitions.

Definition 2.1 (Caputo fractional derivative [16]) The Riemann–Liouville fractional in-
tegral of a function f is defined as

Iαf (t) =
1

�(α)

∫ t

0
(t – s)α–1f (s) ds, (2.8)

and the Caputo derivative of f is CDαf (t) = In–αf (n)(t), that is,

CDαf (t) =
1

�(n – α)

∫ t

0
(t – s)n–α–1f (n)(s) ds, (2.9)

where the function f (t) has absolutely continuous derivatives up to order n – 1.

Definition 2.2 (Mittag-Leffler function (see [3])) A two-parameter family of Mittag-
Leffler operator functions for the bounded linear operator A is defined as

Eα,β (A) =
∞∑

k=0

Ak

�(kα + β)
, α,β > 0. (2.10)

In particular, for β = 1, the one-parameter Mittag-Leffler function is

Eα,1(A) = Eα(A) =
∞∑

k=0

Ak

�(kα + 1)
. (2.11)

For simplicity, the bounds of Mittag-Leffler functions with one and two parameters
when acting on the bounded linear operator A of (2.1) are represented as follows:

S1 = sup
t∈[0,T]

∥
∥Eα

(
Atα

)∥
∥

L(X), S2 = sup
t∈[0,T]

∥
∥Eα,α

(
Atα

)∥
∥

L(X). (2.12)

Our next intention is to find a solution representation of (2.1) based on the approach fol-
lowed in [23]. In order to find the solution representation, we need the following hypoth-
esis.

(H1) The operator A ∈ L(X) commutes with the fractional integral operator Iα on X

and ‖A‖2
L(X) < (2α–1)(�(α))2

T2α .

Lemma 2.1 ([37]) Suppose that A is a linear bounded operator defined on X, and assume
that ‖A‖L(X) < 1. Then (I – A)–1 is linear bounded and

(I – A)–1 =
∞∑

k=0

Ak .

The convergence of the above series is in the operator norm and ‖(I – A)–1‖L(X) ≤ (1 –
‖A‖L(X))–1.
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We now validate the inequality ‖IαA‖L(X) < 1. Then, by the above lemma, we could reach
the conclusion: (I – IαA)–1 is bounded and linear. Let x ∈X; we have

E
[∥
∥
(
IαA

)
x
∥
∥2

C([–τ ,T];L2(�,X))

] ≤ T
(�(α))2 E

[

sup
t∈[0,T]

∫ t

0
(t – s)2α–2∥∥Ax(s)

∥
∥2
X

ds
]

≤ T2α

(2α – 1)(�(α))2 E
[

sup
t∈[0,T]

∥
∥Ax(t)

∥
∥2
X

]

< E‖x‖2
C([–τ ,T];L2(�,X))

by (H1), and hence we get the required inequality. Operating by Iα on both sides of (2.1),
we have

x(t) = x(0) + g(t, xt) – g(0, x0) + IαAx(t) + Iαf (t, xt) + Iασ (t, xt)
dW (t)

dt
,

and so

x(t) =
(
I – IαA

)–1
{

φ(0) + g(t, xt) – g(0,φ) + Iαf (t, xt) + Iασ (t, xt)
dW (t)

dt

}

.

By means of Lemma 2.1, we obtain

x(t) =
∞∑

k=0

(
IαA

)k
{

φ(0) + g(t, xt) – g(0,φ) + Iαf (t, xt) + Iασ (t, xt)
dW (t)

dt

}

=
∞∑

k=0

IkαAk[φ(0) – g(0,φ)
]

+ g(t, xt) +
∞∑

k=1

IkαAkg(t, xt)

+
∞∑

k=0

Ikα+αAk
{

f (t, xt) + σ (t, xt)
dW (t)

dt

}

=
∞∑

k=0

1
�(kα)

∫ t

0
(t – s)kα–1Ak[φ(0) – g(0,φ)

]
ds + g(t, xt)

+
∞∑

k=1

1
�(kα)

∫ t

0
(t – s)kα–1Akg(s, xs) ds

+
∞∑

k=0

1
�(kα + α)

∫ t

0
(t – s)kα+α–1Akf (s, xs) ds

+
∞∑

k=0

1
�(kα + α)

∫ t

0
(t – s)kα+α–1Akσ (s, xs) dW (s),

x(t) =
∞∑

k=0

Aktkα

�(kα + 1)
[
φ(0) – g(0,φ)

]
+ g(t, xt)

+
∫ t

0
A(t – s)α–1

∞∑

k=0

Ak(t – s)kα

�(kα + α)
g(s, xs) ds

+
∫ t

0
(t – s)α–1

∞∑

k=0

Ak(t – s)kα

�(kα + α)
f (s, xs) ds
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+
∫ t

0
(t – s)α–1

∞∑

k=0

Ak(t – s)kα

�(kα + α)
σ (s, xs) dW (s).

The solution representation is

x(t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+ g(t, xt) +

∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g(s, xs) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f (s, xs) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ (s, xs) dW (s).

Since

E

∫ t

0

∥
∥(t – s)α–1Eα,α

(
A(t – s)α

)
σ (s, xs)

∥
∥2

LQ
ds < ∞, (2.13)

we can say that the stochastic integral is well defined by (H1) and the Hilbert–Schmidt
operator (see, Prato and Zabczyk [31]).

Next, we present some standard definitions and implications from the theory of large
deviations. Let {xε} be a family of random variables defined on a Polish space X . The large
deviation theory is concerned with events A for which probability P(xε ∈ A) converges
to zero exponentially fast as ε → 0. The rate of exponential decay of such probability is
expressed in terms of rate function.

Definition 2.3 (Rate function [7]) A function I from X to [0, +∞] is called
• a rate function if I is lower semi-continuous, which means that the level sets

{h ∈X : I(h) ≤ k} are closed for any k ≥ 0.
• a good rate function if, for each k < ∞, the level set is compact.

Definition 2.4 (Large deviation principle) Let I be a rate function. For each Borel sub-
set K of X , the family {xε(t), ε > 0} is said to satisfy the LDP with rate function I if the
following conditions hold:

(i) Large deviation upper bound:

lim sup
ε→0

ε logP
(
xε ∈ K

)≤ –I(K) for each K closed.

(ii) Large deviation lower bound:

lim inf
ε→0

ε logP
(
xε ∈ K

)≥ –I(K) for each K open.

Definition 2.5 (Laplace principle) The family {xε(t), ε > 0} is said to satisfy the Laplace
principle with rate function I if for each bounded continuous real-valued function h de-
fined on X

lim
ε→0

ε log E
{

exp

[

–
1
ε

h
(
xε
)
]}

= – inf
f ∈X

{
h(f ) + I(f )

}
.
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The main result of the theory of large deviations in a Polish space is the equivalence
between the Laplace principle and the large deviation principle. For a proof, refer to [[8],
Sect. 1.2].

Theorem 2.1 The family {xε} satisfies the Laplace principle with a good rate function I(·)
on X if and only if {xε} satisfies the large deviation principle with the same rate function
I(·).

Definition 2.6 (Convergence in distribution) A sequence of random variables x1, x2, . . .
converges in distribution to a random variable x, shown by xn

d−→ x, if

lim
n→∞ Fxn (x) = Fx(x) (2.14)

for all x at which Fx(x) is continuous.

Note that the convergence in distribution is the weakest convergence amongst all the
other convergence types, and thus convergence in probability implies convergence in dis-
tribution. Next, we collect the following famous inequalities which will be applied in prov-
ing the main results.

Theorem 2.2 (Gronwall’s inequality [26]) Let T > 0 and c ≥ 0. Let u(·) be a Borel mea-
surable bounded nonnegative function on [0, T], and let v(·) be a nonnegative integrable
function on [0, T]. If

u(t) ≤ c +
∫ t

0
v(s)u(s) ds for all 0 ≤ t ≤ T ,

then

u(t) ≤ c exp

(∫ t

0
v(s) ds

)

for all 0 ≤ t ≤ T .

Theorem 2.3 (Holder’s inequality) Assume ϒ to be a domain in R
n. Also let 1 < p < ∞

and p′ denote the conjugate exponent defined by

p′ =
p

p – 1
, that is,

1
p

+
1
p′ = 1,

which also satisfies 1 < p′ < ∞. If u ∈ Lp(ϒ) and v ∈ Lp′ (ϒ), then uv ∈ L1(ϒ) and

∫

ϒ

∣
∣u(x)v(x)

∣
∣dx ≤

(∫

ϒ

∣
∣u(x)

∣
∣p dx

)1/p(∫

ϒ

∣
∣v(x)

∣
∣p

′
dx
)1/p′

.

The equality holds if and only if |u(x)|p and |v(x)|p′ are proportional a.e. in ϒ .

Lemma 2.2 ([26]) For any a, b ≥ 0 and 0 < γ < 1, we have

(a + b)2 ≤ a2

γ
+

b2

1 – γ
. (2.15)
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The following inequality is the generalization of Doob’s martingale inequality, which will
be useful in our proofs to bound the stochastic integrals.

Theorem 2.4 ([26]) Let p ≥ 2. Let v ∈ Lp(� × [0, T];R) such that

E

∫ T

0

∣
∣v(s)

∣
∣p ds < ∞.

Then

E

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
v(s) dW (s)

∣
∣
∣
∣

p)

≤
(

p3

2(p – 1)

)p/2

T
p–2

2 E

∫ T

0

∣
∣v(s)

∣
∣p ds. (2.16)

Theorem 2.5 (Arzela–Ascoli compactness criterion [10]) Suppose that {fk}∞k=1 is a se-
quence of real-valued functions defined on R

n such that

∣
∣fk(x)

∣
∣≤ M

(
k = 1, 2, . . . , x ∈R

n) (2.17)

for some constant M, and {fk}∞k=1 are uniformly equicontinuous. Then there exist a subse-
quence {fkj}∞j=1 ⊂ {fk}∞k=1 and a continuous function f such that fkj → f uniformly on compact
subsets of Rn.

3 Existence and uniqueness of solutions
The next lemma points us in the direction of establishing the solution’s existence and
uniqueness.

Lemma 3.1 Let x(t) be the solution of (2.1) for which assumptions (2.4)–(2.6), (2.12) and
(H1) hold. Then

E

[
sup

–τ≤t≤T

∥
∥x(t)

∥
∥2
X

]
≤ c1e

4T2αS2
2(‖A‖2

L(X)γ
2+L3+4L4)

(1–γ )(2α–1) . (3.1)

Moreover, the solution x(t) belongs to C([–τ , T]; L2(�,X)).

Proof Let τm be the stopping time defined as

τm = T ∧ inf
{

t ∈ [0, T] : ‖xt‖Cτ ≥ m
}

for any m ≥ 1. Fix xm = x(t ∧ τm) for t ∈ [–τ , T]. Then, for 0 ≤ t ≤ T , we have

xm(t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+ g

(
t, xm

t
)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g
(
s, xm

s
)
I[[0,τm]](s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f
(
s, xm

s
)
I[[0,τm]](s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xm

s
)
I[[0,τm]](s) dW (s).
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Applying Lemma 2.2, assumptions (2.4)–(2.6), (2.12) and Doob’s martingale inequality,
one can derive that

E

[
sup

0≤r≤t

∥
∥xm(r)

∥
∥2
X

]

≤ γE
[

sup
–τ≤r≤t

(
1 +

∥
∥xm(r)

∥
∥2
X

)]
+

8S2
1(1 + γ 2)
1 – γ

‖φ‖2
Cτ

+
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)

E

∫ T

0
sup

–τ≤r≤s

(
1 +

∥
∥xm(r)

∥
∥2
X

)
ds.

Note that

E

[
sup

–τ≤r≤t

∥
∥xm(r)

∥
∥2
X

]
≤ ‖φ‖2

Cτ
+ E

[
sup

0≤r≤t

∥
∥xm(r)

∥
∥2
X

]
. (3.2)

Using (3.2), we get

E

[
sup

–τ≤r≤t

∥
∥xm(r)

∥
∥2
X

]

≤ c1 +
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)

E

∫ T

0
sup

–τ≤r≤s

(
1 +

∥
∥xm(r)

∥
∥2
X

)
ds,

where c1 = γ

(1–γ ) + ( 1
(1–γ ) + 8S2

1(1+γ 2)
(1–γ )2 )‖φ‖2

Cτ
+

4T2αS2
2(‖A‖2

L(X)γ
2+L3+4L4)

(1–γ )(2α–1) . Finally, by means of
Gronwall’s inequality,

E

[
sup

–τ≤t≤T

∥
∥xm(t)

∥
∥2
X

]
≤ c1e

4T2αS2
2(‖A‖2

L(X)γ
2+L3+4L4)

(1–γ )(2α–1) .

Thus,

E

[
sup

–τ≤t≤τm

∥
∥x(t)

∥
∥2
X

]
≤ c1e

4T2αS2
2(‖A‖2

L(X)γ
2+L3+4L4)

(1–γ )(2α–1) . (3.3)

Hence, the required inequality is obtained by letting m → ∞. �

Theorem 3.1 Let assumptions (2.2)–(2.7), (2.12) and (H1) hold. Then there exists a unique
solution x(t) ∈ C([–τ , T]; L2(�,X)) to system (2.1).

Proof Uniqueness: Let x(t) and x̄(t) be the solutions of (2.1) with the initial data x(t) =
φ(t) and x̄(t) = φ(t) for t ∈ [–τ , T]. Both the solutions belong to the solution space
C([–τ , T]; L2(�,X)) by Lemma 3.1. Note that the difference in the solutions is

x(t) – x̄(t) = g(t, xt) – g(t, x̄t) + J (t),

where

J (t) =
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)(
g(s, xs) – g(s, x̄s)

)
ds
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+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)(
f (s, xs) – f (s, x̄s)

)
ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)(
σ (s, xs) – σ (s, x̄s)

)
dW (s).

Applying Lemmas 2.2 and (2.7), we get

∥
∥x(t) – x̄(t)

∥
∥2
X

≤ η‖xt – x̄t‖2
Cτ

+
1

1 – η

∥
∥J (t)

∥
∥2
X

.

Therefore,

E

[
sup

0≤u≤t

∥
∥x(u) – x̄(u)

∥
∥2
X

]
≤ 1

(1 – η)2 E
[

sup
0≤u≤t

∥
∥J (u)

∥
∥2
X

]
. (3.4)

And one can easily derive that

E

[
sup

0≤u≤t

∥
∥J (u)

∥
∥2
X

]
≤ 3

T2α–1

2α – 1
S2

2
(‖A‖2

L(X)η
2 + L2

1 + 4L2
2
)
∫ t

0
E

[
sup

0≤u≤s

∥
∥x(s) – x̄(s)

∥
∥2
X

]
ds.

Consequently, we have

E

[
sup

0≤u≤t

∥
∥x(u) – x̄(u)

∥
∥2
X

]

≤ 3T2α–1S2
2(‖A‖2

L(X)η
2 + L2

1 + 4L2
2)

2α – 1

∫ t

0
E

[
sup

0≤u≤s

∥
∥x(u) – x̄(u)

∥
∥2
X

]
ds.

Gronwall’s inequality implies

E

[
sup

0≤u≤t

∥
∥x(u) – x̄(u)

∥
∥2
X

]
= 0. (3.5)

Therefore, the solutions x(t) and x̄(t) are equal for 0 ≤ t ≤ T , hence for all –τ ≤ t ≤ T ,
almost surely.

Existence: Let us split the existence of the solution into the following two steps.
Step 1: We consider T is sufficiently small so that it satisfies

ρ := γ +
3T2αS2

2(‖A‖2
L(X)γ

2 + L2
1 + 4L2

2)
(1 – γ )(2α – 1)

< 1. (3.6)

Set x0
0 = φ and x0 = φ(0) for 0 ≤ t ≤ T . In addition, let xn

0 = φ for each n = 1, 2, 3, . . . , and
define the Picard iterations as follows:

xn(t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+ g

(
t, xn–1

t
)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g
(
s, xn–1

s
)

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f
(
s, xn–1

s
)

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xn–1

s
)

dW (s). (3.7)
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It is self-evident that x0(t) is Ft-measurable and belongs to C([–τ , T]; L2(�,X)). Then, by
induction, it is easy to say xn(t) ∈ C([–τ , T]; L2(�,X)). Consequently, we have

sup
0≤t≤T

E
{∥
∥x0(t)

∥
∥2
X

}
< ∞.

Applying Lemma 2.2, linear growth conditions (2.4)–(2.5), (2.12), and Doob’s martingale
inequality on (3.7), one can derive that

E

[
sup

0≤t≤T

∥
∥xn(t)

∥
∥2
X

]

≤ γE
[

sup
0≤t≤T

(
1 +

∥
∥xn–1

t
∥
∥2

Cτ

)]
+

4S2
1

(1 – γ )
∥
∥φ(0) – g(0,φ)

∥
∥2
X

+ 4‖A‖2
L(X)

T2α–1

(1 – γ )(2α – 1)
S2

2γ
2
E

∫ T

0
sup

0≤s≤T

(
1 +

∥
∥xn–1

s
∥
∥2

Cτ

)
ds

+ 4
T2α–1

(1 – γ )(2α – 1)
S2

2L3E

∫ T

0
sup

0≤s≤T

(
1 +

∥
∥xn–1

s
∥
∥2

Cτ

)
ds

+ 16
T2α–1

(1 – γ )(2α – 1)
S2

2L4E

∫ T

0
sup

0≤s≤T

(
1 +

∥
∥xn–1

s
∥
∥2

Cτ

)
ds

≤ γE
[

sup
–τ≤t≤T

(
1 +

∥
∥xn–1(t)

∥
∥2
X

)]
+

8S2
1(1 + γ 2)
1 – γ

‖φ‖2
Cτ

+
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)

E

∫ T

0
sup

–τ≤s≤T

(
1 +

∥
∥xn–1(s)

∥
∥2
X

)
ds.

Therefore,

E

[
sup

–τ≤t≤T

∥
∥xn(t)

∥
∥2
X

]

≤ γE
[

sup
–τ≤t≤T

(
1 +

∥
∥xn–1(t)

∥
∥2
X

)]
+
(

1 +
8S2

1(1 + γ 2)
1 – γ

)

‖φ‖2
Cτ

+
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)

∫ T

0
E

(
sup

–τ≤s≤T

(
1 +

∥
∥xn–1(s)

∥
∥2
X

))
ds

≤ k1 +
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)

∫ T

0
E

(
sup

–τ≤s≤T

∥
∥xn–1(s)

∥
∥2
X

)
ds,

where k1 = γE[sup–τ≤t≤T (1 + ‖xn–1(t)‖2
X

)] + (1 + 8S2
1(1+γ 2)
1–γ

)‖φ‖2
Cτ

+
4T2αS2

2(‖A‖2
L(X)γ

2+L3+4L4)
(1–γ )(2α–1) .

For any r ≥ 1, we have

max
1≤n≤r

E

[
sup

–τ≤t≤T

∥
∥xn(t)

∥
∥2
X

]
≤ k1 +

4T2α–1S2
2(‖A‖2

L(X)γ
2 + L3 + 4L4)

(1 – γ )(2α – 1)

×
∫ T

0
max

1≤n≤r
E

(
sup

–τ≤s≤T

∥
∥xn–1(s)

∥
∥2
X

)
ds

≤ k1 +
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)
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×
∫ T

0

(
E‖x0‖2

Cτ
+ max

1≤n≤r
E

(
sup

–τ≤s≤T

∥
∥xn(s)

∥
∥2
X

))
ds

≤ k2 +
4T2α–1S2

2(‖A‖2
L(X)γ

2 + L3 + 4L4)
(1 – γ )(2α – 1)

×
∫ T

0
max

1≤n≤r
E

(
sup

–τ≤s≤T

∥
∥xn(s)

∥
∥2
X

)
ds,

where k2 = k1 +
4T2αS2

2(‖A‖2
L(X)γ

2+L3+4L4)
(1–γ )(2α–1) E‖x0‖2

Cτ
. Eventually, Gronwall’s inequality yields

max
1≤n≤r

E

[
sup

–τ≤t≤T

∥
∥xn(t)

∥
∥2
X

]
≤ k2e

4T2αS2
2(‖A‖2

L(X)γ
2+L3+4L4)

(1–γ )(2α–1) .

Since r is arbitrary, we find that

E

[
sup

–τ≤t≤T

∥
∥xn(t)

∥
∥2
X

]
≤ k2e

4T2αS2
2(‖A‖2

L(X)γ
2+L3+4L4)

(1–γ )(2α–1) . (3.8)

Note that, for 0 ≤ t ≤ T ,

E

[
sup

0≤t≤T

∥
∥x1(t) – x0(t)

∥
∥2
X

]

≤ 2γE‖φ‖2
Cτ

+
3T2α–1S2

2(‖A‖2
L(X)γ

2 + L2
1 + 4L2

2)
(1 – γ )(2α – 1)

E

∫ T

0

(
1 +

∥
∥x0(s)

∥
∥2
X

)
ds

≤ 2γE‖φ‖2
Cτ

+
3T2α–1S2

2(‖A‖2
L(X)γ

2 + L2
1 + 4L2

2)
(1 – γ )(2α – 1)

(
1 + E‖φ‖2

Cτ

)
T

:= K (3.9)

for n ≥ 1. Next, we claim that

E

[
sup

0≤t≤T

∥
∥xn+1(t) – xn(t)

∥
∥2
X

]
≤ Kρn. (3.10)

For any n ≥ 1,

xn+1(t) – xn(t) = g
(
t, xn

t
)

– g
(
t, xn–1

t
)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)[
g
(
s, xn

s
)

– g
(
t, xn–1

s
)]

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
f
(
s, xn

s
)

– f
(
s, xn–1

s
)]

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
σ
(
s, xn

s
)

– σ
(
s, xn–1

s
)]

dW (s).

Simplifying in the same way as above, we get

E

[
sup

0≤t≤T

∥
∥xn+1(t) – xn(t)

∥
∥2
X

]



Siva Ranjani et al. Boundary Value Problems         (2022) 2022:49 Page 13 of 26

≤ γE
[

sup
0≤t≤T

∥
∥xn(t) – xn–1(t)

∥
∥2
X

]

+
3T2α–1S2

2(‖A‖2
L(X)γ

2 + L2
1 + 4L2

2)
(1 – γ )(2α – 1)

∫ T

0
E

[
sup

0≤s≤T

∥
∥xn(s) – xn–1(s)

∥
∥2
X

]

≤ ρE
[

sup
0≤t≤T

∥
∥xn(t) – xn–1(t)

∥
∥2
X

]

≤ ρn
E

[
sup

0≤t≤T

∥
∥x1(t) – x0(t)

∥
∥2
X

]

≤ Kρn. (3.11)

In view of (3.11), we say that (3.10) holds for some n ≥ 0. Thereupon, by means of Cheby-
shev’s inequality,

P
[

sup
0≤t≤T

∥
∥xn+1(t) – xn(t)

∥
∥2
X

>
1
2n

]

≤ 1
(1/2n)2 E

[
sup

0≤t≤T

∥
∥xn+1(t) – xn(t)

∥
∥2
X

]
.

Thus, by applying (3.11) and summing up the resultant inequalities, we get

∞∑

n=0

P
[

sup
0≤t≤T

∥
∥xn+1(t) – xn(t)

∥
∥2
X

>
1
2n

]

≤
∞∑

n=0

K(4ρ)n.

Since the sum of series
∑∞

n=0 K(4ρ)n is finite, using the Borel–Cantelli lemma we can con-
clude that sup0≤t≤T ‖xn+1(t) – xn(t)‖2

X
converges to zero, almost surely. Thus, the Picard

iterations xn(t) converge almost surely to a limit x(t) on t ∈ [0, T] defined by

lim
n→∞

[

x0(t) +
n–1∑

i=0

(
xi+1(t) – xi(t)

)
]

= lim
n→∞ xn(t)

= x(t).

From (3.7), we have

x(t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+ g(t, xt) +

∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g(s, xs) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f (s, xs) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ (s, xs) dW (s). (3.12)

Step 2: We now eliminate condition (3.6). Take δ > 0 to be sufficiently small for

γ +
3δ2αS2

2(‖A‖2
L(X)γ

2 + L2
1 + 4L2

2)
(1 – γ )(2α – 1)

< 1. (3.13)

In consequence, there exists a solution on [–τ , δ] to system (2.1) by performing step 1. Let
us now consider system (2.1) on [δ, 2δ] with the initial condition xδ . Again by step 1, there
exists a solution on [δ, 2δ]. Subsequently, we repeat step 1 until the existence of solution
on the interval [pδ, T] occurs. Hence, we conclude that there exists a solution on the entire
interval [–τ , T] as desired. �
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4 Large deviation principle
This section is concerned with large deviations for the stochastic neutral fractional func-
tional differential equation with multiplicative noise

⎧
⎨

⎩

CDα(xε(t) – g(t, xε
t )) = Axε(t) + f (t, xε

t ) +
√

εσ (t, xε
t ) dW (t)

dt , t ∈ [0, T],

xε(t) = φ(t), t ∈ [–τ , 0].
(4.1)

There exists a Borel measurable function G ε : C([0, T];H) → C([–τ , T];X) with xε(·) =
G ε(W (·)). Let us define the control space

A =
{

v : v is H0-valued Ft-predictable process and
∫ T

0

∥
∥v(s)

∥
∥2

0 ds < ∞ a.s.
}

and

SN =
{

ψ ∈ L2([0, T];H0
)

:
∫ T

0

∥
∥ψ(s)

∥
∥2

0 ds ≤ N
}

(4.2)

for N ∈ N and where L2([0, T];H0) is regarded as the space of all H0-valued square inte-
grable functions on [0, T]. Moreover, SN is a compact Polish space under the weak topol-
ogy. Define

AN =
{

v ∈A : v(ω) ∈ SN ,P-a.s.
}

.

In our work, the weak convergence approach is employed to establish the Laplace principle
which is equivalent to LDP in a Polish space. The following condition (A) is required to
show the Laplace principle for xε as ε → 0.

(A) There exists a measurable map G 0 : C([0, T];H) → C([–τ , T];X) such that the fol-
lowing two conditions hold:

(i) Consider N < ∞ and the families {vε : ε > 0} ⊂AN such that vε converges in
distribution (as SN -valued random elements) to v. Then

G ε

(

W (·) +
1√
ε

∫ .

0
vε(s) ds

)

−→ G 0
(∫ .

0
v(s) ds

)

in distribution as ε → 0.
(ii) For each N < ∞, the set

KN =
{

G 0
(∫ .

0
ψ(s) ds

)

: ψ ∈ SN

}

is a compact subset of C([–τ , T];X).
From Theorem 4.4 of [5], if G ε satisfies condition (A), then the family xε = G ε(W (·)) sat-
isfies the Laplace principle in C([–τ , T];X) with rate function I defined by

I(h) = inf
v∈L2([0,T];H0):h=G 0(

∫ .
0 v(s) ds)

{
1
2

∫ T

0

∥
∥v(s)

∥
∥2

0 ds
}

. (4.3)
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Hence, in order to establish the Laplace principle, it is enough to show that conditions (i)
and (ii) hold. Let us construct an equation associated with (4.1):

⎧
⎨

⎩

CDα[zψ (t) – g(t, zψ
t )] = Azψ (t) + f (t, zψ

t ) + σ (t, zψ
t )ψ(t), t ∈ [0, T],

zψ (t) = φ(t), t ∈ [–τ , 0],
(4.4)

with zψ as its solution and represented as

zψ (t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+ g

(
t, zψ

t
)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g
(
s, zψ

s
)

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f
(
s, zψ

s
)

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, zψ

s
)
ψ(s) ds,

where ψ ∈ L2([0, T];H0). The main result of this work is as follows.

Theorem 4.1 Under assumptions (2.2)–(2.7), (2.12) and (H1), the family {xε(t)} which is
the solution to (4.1) satisfies the LDP (equivalently, the Laplace principle) in C([–τ , T];X)
with good rate function

I(h) = inf

{
1
2

∫ T

0

∥
∥ψ(t)

∥
∥2

0 dt; zψ = h
}

,

where ψ ∈ L2([0, T];H0), otherwise, I(h) = ∞.

Since our work is devoted to verifying condition (A), we split those proofs into the fol-
lowing lemmas.

Lemma 4.1 Define G 0 : C([0, T];H) −→ C([–τ , T];X) by

G 0(φ) =

⎧
⎨

⎩

zψ , if φ =
∫ .

0 ψ(s) ds for some ψ ∈ SN ,

0, otherwise.
(4.5)

Then, for each N < ∞, the set

KN =
{

G 0
(∫ .

0
ψ(s) ds

)

: ψ ∈ SN

}

is a compact subset of C([–τ , T];X).

Proof We first assume that ψn → ψ weakly in SN as n → ∞ and note that a compact
operator transforms weakly convergent sequences into strong convergent sequences. To
estimate the continuity, we consider

zψn
(t) – zψ (t) = g

(
t, zψn

t
)

– g
(
t, zψ

t
)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)(
g
(
s, zψn

s
)

– g
(
s, zψ

s
))

ds
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+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
f
(
s, zψn

s
)

– f
(
s, zψ

s
)]

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
σ
(
s, zψn

s
)

– σ
(
s, zψ

s
)]

ψn(s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, zψ

s
)[

ψn(s) – ψ(s)
]

ds. (4.6)

Put

ζ n(t) =
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, zψ

s
)[

ψn(s) – ψ(s)
]

ds.

Applying Holder’s inequality, (2.12), and (2.5), we get

∥
∥ζ n(t)

∥
∥
X

≤ S2

(
T2α–1

2α – 1

)1/2(∫ t

0

∥
∥σ

(
s, zψ

s
)[

ψn(s) – ψ(s)
]∥
∥2
X

ds
)1/2

≤ S2TαL4

(∫ t

0

(
1 +

∥
∥zψ

s
∥
∥2

Cτ

)∥
∥ψn(s) – ψ(s)

∥
∥2

0 ds
)1/2

< ∞, (4.7)

where Tα = Tα–1/2√
2α–1 . Therefore, it is uniformly bounded by some constant. Note the fact

that a pointwise bounded family of continuous linear operators between Banach spaces
is equicontinuous. Thus we can say that ζ n(t) is equicontinuous. Since we assumed that
ψn → ψ weakly in L2([0, T];H0), we have, by Arzela–Ascoli theorem, ζ n(t) → 0 in
C([0, T];X), which implies

lim
n→∞

∥
∥ζ n(t)

∥
∥
X

= 0. (4.8)

Taking norm on both sides of (4.6) and applying (2.7) and (2.12), we get

∥
∥zψn

(t) – zψ (t)
∥
∥
X

≤ η
∥
∥zψn

t – zψ
t
∥
∥

Cτ
+
∥
∥ζ n(t)

∥
∥
X

+ ηS2

∫ t

0
‖A‖L(X)(t – s)α–1∥∥zψn

s – zψ
s
∥
∥

Cτ
ds

+ S2

∫ t

0
(t – s)α–1∥∥f

(
s, zψn

s
)

– f
(
s, zψ

s
)∥
∥
X

ds

+ S2

∫ t

0
(t – s)α–1∥∥σ

(
s, zψn

s
)

– σ
(
s, zψ

s
)∥
∥

LQ

∥
∥ψn(s)

∥
∥

0 ds.

Using the Lipschitz condition of f and σ given by (2.2) and (2.3), taking supremum over
u ∈ [0, t], and then by setting κn(t) = sup–τ≤u≤t ‖zψn (u) – zψ (u)‖X, one can then derive that

sup
0≤u≤t

∥
∥zψn

(u) – zψ (u)
∥
∥
X

≤ ηκn(t) +
∥
∥ζ n(t)

∥
∥
X

+ ηS2

∫ t

0
‖A‖L(X)(t – s)α–1κn(s) ds

+ L1S2

∫ t

0
(t – s)α–1κn(s) ds + L2S2

∫ t

0
(t – s)α–1κn(s)

∥
∥ψn(s)

∥
∥

0 ds.
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Since by the fact sup–τ≤u≤t ‖zψn (u) – zψ (u)‖X ≤ ‖φ‖Cτ + sup0≤u≤t ‖zψn (u) – zψ (u)‖X, we get

(1 – η)κn(t) ≤ ‖φ‖Cτ +
∥
∥ζ n(t)

∥
∥
X

+ ηS2

∫ t

0
(t – s)α–1‖A‖L(X)κ

n(s) ds

+ L1S2

∫ t

0
(t – s)α–1κn(s) ds + L2S2

∫ t

0
(t – s)α–1κn(s)

∥
∥ψn(s)

∥
∥

0 ds,

κn(t) ≤ 1
(1 – η)

‖φ‖Cτ +
1

(1 – η)
∥
∥ζ n(t)

∥
∥
X

+
ηS2

(1 – η)

∫ t

0
(t – s)α–1‖A‖L(X)κ

n(s) ds

+
L1S2

(1 – η)

∫ t

0
(t – s)α–1κn(s) ds +

L2S2

(1 – η)

∫ t

0
(t – s)α–1κn(s)

∥
∥ψn(s)

∥
∥

0 ds.

By the use of Gronwall’s inequality, we obtain

κn(t) ≤
(

1
(1 – η)

‖φ‖Cτ +
1

(1 – η)
∥
∥ζ n(t)

∥
∥
X

)

× exp

(
ηS2

(1 – η)

∫ t

0
(t – s)α–1‖A‖L(X) ds

+
L1S2

(1 – η)

∫ t

0
(t – s)α–1 ds +

L2S2

(1 – η)

∫ t

0
(t – s)α–1∥∥ψn(s)

∥
∥

0 ds
)

.

Therefore, by applying Holder’s inequality, we have

κn(t) ≤
(

1
(1 – η)

‖φ‖Cτ +
1

(1 – η)
∥
∥ζ n(t)

∥
∥
X

)

× exp

(
ηS2Tα

(1 – η)α
‖A‖L(X) +

L1S2Tα

(1 – η)α

+
L2S2

(1 – η)

(∫ t

0
(t – s)2α–2 ds

)1/2(∫ t

0

∥
∥ψn(s)

∥
∥2

0 ds
)1/2)

. (4.9)

By some elementary simplification, we can end up with

κn(t) ≤
(‖φ‖Cτ + ‖ζ n(t)‖X

(1 – η)

)

× exp

(
ηS2Tα‖A‖L(X)

(1 – η)α
+

L1S2Tα

(1 – η)α
+

L2S2
√

N
(1 – η)

(
T2α–1

2α – 1

)1/2)

.

Combining this observation with (4.8), we arrive at continuity, and thus the compactness
of KN is achieved. �

The following construction is needed for further analysis. Let us frame the controlled
stochastic equation with some perturbation:

⎧
⎪⎪⎨

⎪⎪⎩

CDα(xε
vε (t) – g(t, xε

t,vε ))

= Axε
vε (t) + f (t, xε

t,vε ) + σ (t, xε
t,vε )v(t) +

√
εσ (t, xε

t,vε ) dW (t)
dt , t ∈ [0, T],

xε
vε (t) = φ(t), t ∈ [–τ , 0].

(4.10)

Then there exists a unique solution

xε
vε (t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+ g

(
t, xε

t,vε

)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g
(
s, xε

s,vε

)
ds
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+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f
(
s, xε

s,vε

)
ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
v(s) ds

+
√

ε

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s). (4.11)

The following lemma is needed to estimate the weak convergence criterion.

Lemma 4.2 Let assumptions (2.2)–(2.7), (2.12) and (H1) hold, then the solution xε
vε (t) sat-

isfies

E

[
sup

–τ≤t≤T

∥
∥xε

vε (t)
∥
∥2
X

]
≤ C. (4.12)

Proof From the solution of controlled stochastic equation (4.11), we write

xε
vε (t) = g

(
t, xε

t,vε

)
+ J(t), (4.13)

where

J(t) = Eα

(
Atα

)[
φ(0) – g(0,φ)

]
+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g
(
s, xε

s,vε

)
ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f
(
s, xε

s,vε

)
ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
v(s) ds

+
√

ε

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s). (4.14)

Using (2.15) and then (2.6) in (4.13),

∥
∥xε

vε (t)
∥
∥2
X

≤ 1
γ

∥
∥g
(
t, xε

t,vε

)∥
∥2
X

+
1

1 – γ

∥
∥J(t)

∥
∥2
X

≤ 1
γ

[
γ 2(1 +

∥
∥xε

t,vε

∥
∥2

Cτ

)]
+

1
1 – γ

∥
∥J(t)

∥
∥2
X

≤ γ + γ
∥
∥xε

t,vε

∥
∥2

Cτ
+

1
1 – γ

∥
∥J(t)

∥
∥2
X

. (4.15)

Taking square norm on both sides of (4.14) and using the elementary inequality

|x1 + x2 + · · · + xp|2 ≤ p
(|x1|2 + |x2|2 + · · · + |xp|2

)
,

we would get

∥
∥J(t)

∥
∥2
X

≤ 5
∥
∥Eα

(
Atα

)∥
∥2

L(X)

∥
∥φ(0) – g(0,φ)

∥
∥2
X

+ 5
∥
∥
∥
∥

∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)
g
(
s, xε

s,vε

)
ds
∥
∥
∥
∥

2

X
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+ 5
∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
f
(
s, xε

s,vε

)
ds
∥
∥
∥
∥

2

X

+ 5
∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
v(s) ds

∥
∥
∥
∥

2

X

+ 5
∥
∥
∥
∥
√

ε

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s)

∥
∥
∥
∥

2

X

.

Making use of Holder’s inequality and (2.12), we get

∥
∥J(t)

∥
∥2
X

≤ 5S2
1
∥
∥φ(0) – g(0,φ)

∥
∥2
X

+ 5S2
2‖A‖2

L(X)
T2α–1

2α – 1

∫ t

0

∥
∥g
(
s, xε

s,vε

)∥
∥2
X

ds

+ 5S2
2

T2α–1

2α – 1

∫ t

0

∥
∥f
(
s, xε

s,vε

)∥
∥2
X

ds + 5S2
2

T2α–1

2α – 1

∫ t

0

∥
∥σ

(
s, xε

s,vε

)∥
∥2

LQ

∥
∥v(s)

∥
∥2

0 ds

+ 5
∥
∥
∥
∥
√

ε

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s)

∥
∥
∥
∥

2

X

.

Defining the stopping time, for every m ≥ 1,

τm,ε = T ∧ inf
{

t ∈ [0, T] :
∥
∥xε

vε (t)
∥
∥
X

≥ m
}

.

Applying the linear growth condition and taking supremum on both sides over t ∈ [0, τm,ε],
we obtain

E

[
sup

0≤t≤τm,ε

∥
∥J(t)

∥
∥2
X

]

≤ 10S2
1
{‖φ‖2

Cτ
+ γ 2‖φ‖2

Cτ

}

+ 5S2
2
(
γ 2‖A‖2

L(X) + L3 + NL4
) T2α–1

2α – 1

∫ t

0

(
1 + E sup

–τ≤s≤τm,ε

∥
∥xε

vε (s)
∥
∥2
X

)
ds

+ 5ε sup
0≤t≤τm,ε

∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s)

∥
∥
∥
∥

2

X

. (4.16)

Using Doob’s martingale inequality and (2.12) on the stochastic integral, we get

sup
0≤t≤τm,ε

∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s)

∥
∥
∥
∥

2

X

≤ 4S2
2

T2α–1

2α – 1
E

(
sup

0≤t≤τm,ε

∥
∥σ

(
t, xε

t,vε

)∥
∥2

LQ

)

≤ 4S2
2L4

T2α–1

2α – 1

(
1 + E sup

–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

)
. (4.17)

From (4.15), one easily sees that

E

[
sup

0≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

]
+ ‖φ‖2

Cτ

≤ ‖φ‖2
Cτ

+ γ + γE
[

sup
–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

]
+

1
(1 – γ )

E

[
sup

0≤t≤τm,ε

∥
∥J(t)

∥
∥2
X

]
, (4.18)
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E

[
sup

–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

]
≤ ‖φ‖2

Cτ

(1 – γ )
+

γ

(1 – γ )
+

1
(1 – γ )2 E

[
sup

0≤t≤τm,ε

∥
∥J(t)

∥
∥2
X

]
.

Using (4.16) and (4.17) in (4.18), we get

E

[
sup

–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

]

≤ γ

(1 – γ )
+

1
(1 – γ )

(

1 +
10S2

1
(1 – γ )

(
1 + γ 2)

)

‖φ‖2
Cτ

+
5S2

2(γ 2‖A‖2
L(X) + L3 + NL4)

(1 – γ )2
T2α–1

(2α – 1)

∫ t

0

(
1 + E sup

–τ≤s≤τm,ε

∥
∥xε

vε (s)
∥
∥2
X

)
ds

+
20εS2

2L4

(1 – γ )2
T2α–1

(2α – 1)

(
1 + E sup

–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

)
.

Consequently,

E

[
sup

–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

]
≤ 1

K

(
γ

(1 – γ )
+

1
(1 – γ )

(

1 +
10S2

1
(1 – γ )

(
1 + γ 2)

)

‖φ‖2
Cτ

+
20εS2

2L4

(1 – γ )2
T2α–1

(2α – 1)
+

5S2
2(γ 2‖A‖2

L(X) + L3 + NL4)
(1 – γ )2

T2α–1

(2α – 1)

×
∫ t

0

(
1 + E sup

–τ≤s≤τm,ε

∥
∥xε

vε (s)
∥
∥2
X

)
ds
)

,

where K = (1 – 20εS2
2L4

(1–γ )2
T2α–1

(2α–1) ). By means of Gronwall’s inequality, we finally arrive at

E

[
sup

–τ≤t≤τm,ε

∥
∥xε

vε (t)
∥
∥2
X

]

≤
(

1 +
1
K

(
γ

(1 – γ )
+

1
(1 – γ )

(

1 +
10S2

1
(1 – γ )

(
1 + γ 2)

)

‖φ‖2
Cτ

+
20S2

2L4

(1 – γ )2
T2α–1

(2α – 1)

))

× exp

(5S2
2(γ 2‖A‖2

L(X) + L3 + NL4)
K(1 – γ )2

T2α–1

(2α – 1)

)

.

Now the required inequality (4.12) for the stopping processes xε
vε (t) is estimated. There-

fore, the general case follows by letting m → ∞ i.e. τm,ε ↑ T . Hence the solution of a
controlled stochastic system is bounded by some constant. �

Next follows the weak convergence of the solutions as it is the only remaining condition
needed to assert the main result.

Lemma 4.3 Let {vε : ε > 0} ⊂AN for some N < ∞. Assume vε converge to v in distribution
as SN -valued random elements. Then

G ε

(

W (·) +
1√
ε

∫ .

0
vε(s) ds

)

→ G 0
(∫ .

0
v(s) ds

)

in distribution as ε → 0.
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Proof Since we have to prove that the solution G ε converges to the solution G 0, we con-
sider

xε
vε (t) – zv(t) = g

(
t, xε

t,vε

)
– g

(
t, zv

t
)

+
∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)[
g
(
s, xε

s,vε

)
– g

(
s, zv

s
)]

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
f
(
s, xε

s,vε

)
– f

(
s, zv

s
)]

ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
σ
(
s, xε

s,vε

)
– σ

(
s, zv

s
)]

vε(s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, zv

s
)[

vε(s) – v(s)
]

ds

+
√

ε

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s). (4.19)

Taking ‖ · ‖2 on both sides of (4.19), we obtain

∥
∥xε

vε (t) – zv(t)
∥
∥2
X

≤ 1
η

∥
∥g
(
t, xε

t,vε

)
– g

(
t, zv

t
)∥
∥2
X

+
1

(1 – η)
(
I1(t) + I2(t) + I3(t) + I4(t) + I5(t)

)

≤ η
∥
∥xε

t,vε – zv
t
∥
∥2

Cτ
+

1
(1 – η)

(
I1(t) + I2(t) + I3(t) + I4(t) + I5(t)

)
, (4.20)

where

I1(t) = 5
∥
∥
∥
∥

∫ t

0
A(t – s)α–1Eα,α

(
A(t – s)α

)[
g
(
s, xε

s,vε

)
– g

(
s, zv

s
)]

ds
∥
∥
∥
∥

2

X

,

I2(t) = 5
∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
f
(
s, xε

s,vε

)
– f

(
s, zv

s
)]

ds
∥
∥
∥
∥

2

X

,

I3(t) = 5
∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)[
σ
(
s, xε

s,vε

)
– σ

(
s, zv

s
)]

vε(s) ds
∥
∥
∥
∥

2

X

,

I4(t) = 5
∥
∥
∥
∥

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, zv

s
)[

vε(s) – v(s)
]

ds
∥
∥
∥
∥

2

X

,

I5(t) = 5
∥
∥
∥
∥
√

ε

∫ t

0
(t – s)α–1Eα,α

(
A(t – s)α

)
σ
(
s, xε

s,vε

)
dW (s)

∥
∥
∥
∥

2

X

.

Taking the expectation of supremum on (4.20), we have

E

[
sup

0≤u≤t

∥
∥xε

vε (u) – zv(u)
∥
∥2
X

]

≤ ηE
[

sup
–τ≤u≤t

∥
∥xε

vε (u) – zv(u)
∥
∥
X

]

+
1

(1 – η)

{
E

[
sup

0≤u≤t
I1(u)

]
+ E

[
sup

0≤u≤t
I2(u)

]
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+ E

[
sup

0≤u≤t
I3(u)

]
+ E

[
sup

0≤u≤t
I4(u)

]
+ E

[
sup

0≤u≤t
I5(u)

]}
, (4.21)

E

[
sup

–τ≤u≤t

∥
∥xε

vε (u) – zv(u)
∥
∥2
X

]

≤ ‖φ‖2
Cτ

(1 – η)
+

1
(1 – η)2

{
E

[
sup

0≤u≤t
I1(u)

]
+ E

[
sup

0≤u≤t
I2(u)

]

+ E

[
sup

0≤u≤t
I3(u)

]
+ E

[
sup

0≤u≤t
I4(u)

]
+ E

[
sup

0≤u≤t
I5(u)

]}
.

Using the bound of Mittag-Leffler function and (2.7) on I1(t), we obtain

I1(t) ≤ 5
T2α–1

2α – 1

∫ t

0
‖A‖2

L(X)
∥
∥Eα,α

(
A(t – s)α

)∥
∥2

L(X)

∥
∥g
(
s, xε

s,vε

)
– g

(
s, zv

s
)∥
∥2
X

ds

≤ 5S2
2η

2 T2α–1

2α – 1
(2α – 1)(�(α))2

T2α

∫ t

0

∥
∥xε

s,vε – zv
s
∥
∥2

Cτ
ds

≤ 5S2
2η

2 (�(α))2

T

∫ t

0

∥
∥xε

s,vε – zv
s
∥
∥2

Cτ
ds. (4.22)

Next consider the integral I2(t), and by means of (2.12) followed by the Lipschitz condi-
tion of f , we get

I2(t) ≤ 5S2
2

T2α–1

2α – 1

∫ t

0

∥
∥f
(
s, xε

s,vε

)
– f

(
s, zv

s
)∥
∥2
X

ds

≤ 5S2
2L2

1
T2α–1

2α – 1

∫ t

0

∥
∥xε

s,vε – zv
s
∥
∥2

Cτ
ds. (4.23)

Applying (2.3) and (2.12) on I3(t), we estimate

I3(t) ≤ 5S2
2

T2α–1

2α – 1

∫ t

0

∥
∥σ

(
s, xε

s,vε

)
– σ

(
s, zv

s
)∥
∥2

LQ

∥
∥vε(s)

∥
∥2

0 ds

≤ 5S2
2L2

2
T2α–1

2α – 1

∫ t

0

∥
∥xε

s,vε – zv
s
∥
∥2

Cτ

∥
∥vε(s)

∥
∥2

0 ds. (4.24)

Similarly, consider I4(t), apply Holder’s inequality, (2.12), and the linear growth condition
of σ , it follows that

I4(t) ≤ 5S2
2

T2α–1

2α – 1

∫ t

0

∥
∥σ

(
s, zv

s
)[

vε(s) – v(s)
]∥
∥2
X

ds

< ∞. (4.25)

From the above estimate, we conclude that the map ζ ε : SN → C([0, T];X) defined by

ζ ε(t) :=
∫ t

0
Eα,α

(
A(t – s)α

)
σ
(
s, zv

s
)[

vε(s) – v(s)
]

ds

is bounded continuous and hence converges to 0 in distribution as vε → v in distribution
as SN -valued random elements. Therefore, ζ ε(t) → 0 in C([0, T];X). Finally, taking supre-
mum and expectation on both sides of the stochastic integral I5(t), and then to bound
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the stochastic integral, we apply Doob’s martingale inequality

E

[
sup

0≤u≤t
I5(u)

]
= 5E

{

sup
0≤u≤t

∥
∥
∥
∥
√

ε

∫ u

0
(u – s)α–1Eα,α

(
A(u – s)α

)
σ
(
s, xε

s,vε

)
dW (s)

∥
∥
∥
∥

2

X

}

≤ 5S2
2ε

T2α–1

2α – 1
4E

(
sup

0≤u≤T

∥
∥σ

(
u, xε

u,vε

)∥
∥2

LQ

)

≤ 20S2
2ε

T2α–1

2α – 1

(
1 + E sup

0≤u≤T

∥
∥xε

u,vε

∥
∥2

Cτ

)
. (4.26)

Substituting estimates (4.22)–(4.26) in (4.21) and then putting κε(t) = E[sup–τ≤u≤t ‖xε
vε (u)–

zv(u)‖2
X

], we get

κε(t) ≤ ‖φ‖2
Cτ

(1 – η)
+

5S2
2η

2

(1 – η)2
(�(α))2

T

∫ t

0
κε(s) ds

+
5S2

2
(1 – η)2

T2α–1

(2α – 1)

∫ t

0

(
L2

1 + L2
2
∥
∥vε(s)

∥
∥2

0

)
κε(s) ds

+ E

[
sup

0≤u≤t
I4(u)

]
+

20S2
2ε

(1 – η)2
T2α–1

(2α – 1)

(
1 + E sup

–τ≤u≤T

∥
∥xε

vε (u)
∥
∥2
X

)
.

Herein, Gronwall’s inequality is used to finish the proof:

κε(t) ≤
( ‖φ‖2

Cτ

(1 – η)
+ E

[
sup

0≤u≤t
I4(u)

]
+

20S2
2ε

(1 – η)2
T2α–1

(2α – 1)

(
1 + E sup

–τ≤u≤T

∥
∥xε

vε (u)
∥
∥2
X

))

× exp

(
5S2

2
(1 – η)2

∫ t

0

(
η2(�(α))2

T
+

T2α–1

(2α – 1)
[
L1 + L2

∥
∥vε(s)

∥
∥2

0

]
)

ds
)

. (4.27)

By applying Lemma 4.2, it follows that xε
vε (t) converges in probability to zv(t). According

to the fact that convergence in probability implies convergence in distribution or a weak
convergence, we conclude that xε

vε (t) converges weakly to zv(t) as ε → 0. �

Thus, the LDP for the considered system is established by ensuring the solution of a con-
trolled stochastic system weakly converges to the solution of its controlled deterministic
system.

5 Example
The following examples illustrate the LDP for stochastic neutral fractional delay differen-
tial equation as it is a special and important class of stochastic neutral fractional functional
differential equations.

Example 5.1 Consider the following equation:

⎧
⎨

⎩

CD3/5[x(t) – 0.5x(t – 1)] = – 1
1+t x(t) +

√
ε

1+t
dW (t)

dt , t ∈ (0, T],

x(t) = φ(t), t ∈ [–1, 0],
(5.1)

where W (t) is a one-dimensional Brownian motion.
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Let us take the control to be v ∈ L2([0, T];R), and so the corresponding controlled equa-
tion is

⎧
⎨

⎩

CD3/5[zv(t) – 0.5zv(t – 1)] = – 1
1+t zv(t) + 1

1+t v(t), t ∈ (0, T],

zv(t) = φ(t), t ∈ [–1, 0].
(5.2)

The coefficients of equation (5.1) satisfy the hypothesis of Theorem 4.1, and so the LDP
holds with the rate function I : C([0, T];R) → [0, +∞] defined by

I(ϕ) =

⎧
⎨

⎩

1
2
∫ T

0 |CD3/5[ϕ – 0.5ϕ(s – 1)](1 + s) + ϕ(s)|2 ds, if ϕ ∈ L2([0, T];R),

∞, otherwise,
(5.3)

where

zv(t) = 0.5zv(t – 1) + φ – 0.5φ +
1

�(3/5)

∫ t

0

(t – s)2/5

(1 + s)
zv(s) ds

+
1

�(3/5)

∫ t

0

(t – s)2/5

(1 + s)
v(s) ds

is the unique solution of (5.2).

Example 5.2 Consider the stochastic neutral fractional delay differential equation with
multiplicative noise

⎧
⎨

⎩

CD2/3[x(t) – 0.2x(t – τ )] = – 1
1+t x(t) +

√
ε(3 + sin x(t)) dW (t)

dt , t ∈ (0, T],

x(t) = φ(t), t ∈ [–τ , 0].
(5.4)

The rate function I : C([0, T];R) → [0, +∞] is defined as

I(ϕ) = inf

{
1
2

∫ T

0

∥
∥v(s)

∥
∥2

0 ds : v ∈ (
L2[0, T];R

)
such that zv = ϕ

}

, (5.5)

where infimum over an empty set is taken as ∞ and where zv(t), the solution of the equa-
tion

zv(t) = 0.2zv(t – τ ) + φ(0) – 0.2φ(–τ ) +
1

�(2/3)

∫ t

0
(t – s)1/3 1

1 + s
zv(s) ds

+
1

�(2/3)

∫ t

0
(t – s)1/3(3 + sin zv(s)

)
v(s) ds, (5.6)

is the unique solution of an appropriate controlled system of (5.4).
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