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Abstract
We apply the extension of coincidence degree to obtain sufficient conditions for the
existence of at least one solution for a class of higher-order p-Laplacian boundary
value problems with two-dimensional kernel on the half-line. The result obtained
improves and generalizes some of the known results on p-Laplacian boundary value
problems in the literature. We also validate our result with an example.
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1 Introduction
This paper is concerned with the existence of solution for the following higher-order p-
Laplacian boundary value problem:

(
φp

(
y(n–1)(t)

))′ = h
(
t, y(t), y′(t), . . . , y(n–1)(t)

)
, t ∈ (0,∞), n ≥ 3, (1.1)

y(n–2)(∞) =
m∑

i=1

αiy(n–2)(ξi), y(n–3)(0) + y(n–2)(0) =
m∑

j=1

βjy(n–3)(ηj),

y(n–1)(∞) = 0, y(i)(0) = 0, i = 0, 1, 2, . . . , n – 4,

(1.2)

where φp(s) = |s|p–2s, p > 1, 1/p + 1/q = 1, φq = φ–1
p , h : [0,∞)×R

n →R is a Caratheodory’s
function, 0 < ξ1 < ξ2 < · · · < ξm < ∞, 0 < η1 < η2 < · · · < ηm < ∞,αi, βj ∈ R, i = 1, 2, . . . , m,
j = 1, 2, . . . , m,

∑m
i=1 αi =

∑m
j=1 βj =

∑m
j=1 βjηj = 1.

Our result will be based on the extension of Mawhin’s continuation theorem by Ge and
Ren [6]. Higher-order resonant boundary value problems have in recent years become of
great interest to various researchers, see for example [1, 3–5, 7, 8, 12, 13] and the references
therein. Some of the results utilized Mawhin’s coincidence degree theory [14] which has
continued to play a significant role in the study of boundary value problems when the dif-
ferential operator is linear. However, when the differential operator is nonlinear, Mawhin’s
continuation theorem can no longer be applied directly as was the case in the above ref-
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erences. For some results on the application of the extension of coincidence degree by Ge
and Ren, see [10, 11, 13] and the references therein.

p-Laplacian boundary value problems have found applications in diverse areas such as
in nonlinear elasticity, blood flow models, non-Newtonian mechanics, glaciology, etc. Al-
though there have been some results on p-Laplacian boundary value problems at res-
onance with a two-dimensional kernel, see for example [9], to the best of our knowl-
edge this is the first paper on higher-order p-Laplacian boundary value problems with
a resonance of dimension two on the half-line. (1.1)–(1.2) is a problem at resonance if
Ly = (φp(y(n–1)(t))) = 0 has nontrivial solutions under the given boundary conditions. Gen-
erally, resonance problems can be cast in the abstract form Ly = Ny, where L is not an
invertible operator.

The organization of this paper is as follows. In Sect. 2, we recall some technical results
such as definitions, theorems, and lemmas. In Sect. 3, we state and prove the main exis-
tence result, and in Sect. 4, we provide an example to demonstrate our results.

2 Some technical results
We recall some notations, definitions, lemmas, and theorems.

Definition 2.1 Let Y and Z be two Banach spaces with ‖ · ‖Y and ‖ · ‖Z respectively. The
operator L : Y → Z is quasi-linear if

(i) Im L = L(Y ∩ dom L) is a closed subset of Z,
(ii) ker L = {y ∈ Y ∩ dom M : Ly = 0} is linearly homeomorphic to R

n.

Let P : Y → Y1 and Q : Z → Z be projections such that Im P = ker L, ker Q = Im L. Let
Y1 = ker L, Z2 = Im L and Z1, Y2 be the complement spaces of Z2 in Z, Y1 in Y . Then

Y = Y1 ⊕ Y2, Z = Z1 ⊕ Z2.

Definition 2.2 Let Y be a Banach space with Y1 ⊂ Y . The mapping Q : Y → Y1 is a semi-
projector if Q2y = Qy and Q(σy) = σQy, y ∈ Y , σ ∈ R.

Definition 2.3 Let L : Y ∩ dom L → Z be a quasi-linear operator. Let Y1 = ker L and W ⊂
Y be an open and bounded set with 0 ∈ W . Then Lσ : W → Z, σ ∈ [0, 1] is said to be
L-compact in W if Lσ : W → Z is a continuous operator, and there exists an operator
R : W × [0, 1] → Y2 which is continuous and compact such that, for σ ∈ [0, 1],

(i) (I – Q)Nσ (W ) ⊂ Im L ⊂ (I – Q)Z, (2.1)

(ii) QNσ y = 0, σ ∈ (0, 1) iff QNy = 0, (2.2)

(iii) R(·, 0) is the zero operator, (2.3)

(iv) R(·,σ )|�σ = (I – P)|�σ , where �σ = {y ∈ W : Ly = Nσ y}, (2.4)

(v) L
[
P + R(·,σ )

]
= (I – Q)Nσ , (2.5)

where Q is a semi-projector.
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Definition 2.4 ([15]) Let φp : R→R, then φp satisfies the following conditions:

(i) φp(u + v) ≤ (
φp(u) + φp(v)

)
, 1 < p ≤ 2, (2.6)

(ii) φp(u + v) ≤ 2p–2(φp(u) + φp(v)
)
, p > 2. (2.7)

In what follows, we shall need the following space:

Y =
{

y : [0,∞) →R : y,
(
φp

(
y(n–1))) ∈ AC[0,∞), lim

t→∞ e–t∣∣y(i)(t)
∣
∣ exists,

0 ≤ i ≤ n – 1,
(
φp

(
y(n–1)))′ ∈ L1[0,∞)

} (2.8)

with the norm

‖y‖ = max
0≤i≤n–1

sup
t∈(0,∞)

∣
∣y(i)(t)

∣
∣e–t . (2.9)

Then Y is a Banach space.

Definition 2.5 ([14]) h : [0,∞) × R
n → R is L1[0,∞) Caratheodory if it satisfies the fol-

lowing conditions:
(i) For each y ∈R

n, the mapping t → h(t, y) is Lebesgue measurable,
(ii) For a.e. t ∈ [0,∞), the mapping y → h(t, y) is continuous on R

n,
(iii) For each r > 0, there exists αr ∈ L1[0,∞) such that for a.e. t ∈ [0,∞) and every y

such that ‖y‖ ≤ r we have |h(t, y)| < αr .

Theorem 2.1 ([2]) Let X be the space of all continuous and bounded vector-valued func-
tions on [0,∞) and X1 ⊂ X. Then X1 is relatively compact if

(i) X1 is bounded in X ,
(ii) all functions from X1 are equicontinuous on any compact subinterval of [0,∞),

(iii) all functions from X1 are equiconvergent at infinity.

Let L : dom L ⊂ Y → Z where

dom L =

{

y ∈ Y :
(
φp

(
y(n–1)))′ ∈ L1[0,∞), y(n–2)(∞) =

m∑

i=1

αiy(n–2)(ξi)

y(n–3)(0) + y(n–2)(0) =
m∑

j=1

βjy(n–3)(ηj), y(n–1)(∞) = 0,

y(i)(0) = 0, i = 0, 1, 2, . . . , (n – 4)

}

(2.10)

and Nσ : Y → Z is defined by Nσ y = σh(t, y(t), . . . , y(n–1)(t)). Thus (1.1)–(1.2) is of the form

Lu = Nσ y when σ = 1. (2.11)

Theorem 2.2 ([6]) Let W ⊂ Y be an open and bounded set with 0 ∈ W . Let L : Y ∩
dom L → Z be a quasi-linear operator and Nσ : W → Z, σ ∈ [0, 1] be L-compact. In addi-
tion, if the following hold:
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(i) Ly �= Nσ y, y ∈ ∂W ∩ dom L, σ ∈ (0, 1),
(ii) deg(JQN , W ∩ ker L, 0) �= 0, where N = N1 and J : Im Q → ker L is the

homeomorphism with J(0) = 0,
then the abstract equation Ly = Ny has at least one solution in dom L ∩ W .

In what follows we assume the following conditions:

(A1)
m∑

i=1

αi =
m∑

j=1

βj = 1,
m∑

j=1

βjηj = 1, (2.12)

(A2) 
 =

∣
∣∣∣
∣
Q1tn–3e–t Q2tn–3e–t

Q1tn–2e–t Q2tn–2e–t

∣
∣∣∣
∣

=

∣
∣∣∣
∣
c11 c12

c21 c22

∣
∣∣∣
∣

= c11c22 – c12c21 �= 0, (2.13)

where

Q1z =
m∑

j=1

βj

∫ ηj

0

∫ s

0
φq

(∫ ∞

v
z(τ ) dτ

)
dv ds, (2.14)

Q2z =
m∑

i=1

αi

∫ ∞

ξi

φq

(∫ ∞

s
z(τ ) dτ

)
ds. (2.15)

Lemma 2.1 Suppose that (A1) and (A2) hold. Then
(i) ker L = {y ∈ dom L : y(t) = atn–3 + btn–2, a, b ∈R, t ∈ [0,∞)};

(ii) Im L = {z ∈ Z : Q1z = Q2z = 0}.

Proof Obviously, (i) holds. Hence ker L is homeomorphic to R
2. Thus dim ker L = 2. To

prove (ii), let z ∈ Im L and consider the equation

(
φp

(
y(n–1)(t)

))′ = z(t) (2.16)

with boundary conditions (1.2). Then

y(n–3)(t) = –
∫ t

0

∫ s

0
φq

(∫ ∞

v
z(τ ) dτ

)
dv ds + y(n–2)(0)t + y(n–3)(0),

y(n–2)(t) = –
∫ t

0
φq

(∫ ∞

s
z(τ ) dτ

)
ds + y(n–2)(0).

Hence from the boundary conditions we derive

y(n–3)(0) + y(n–2)(0) = –
m∑

j=1

βj

∫ ηj

0

∫ s

0
φq

(∫ ∞

v
z(τ ) dτ

)
dv ds

+
m∑

j=1

βjηjy(n–2)(0) +
m∑

j=1

βjy(n–3)(0).

Since
∑m

j=1 βj =
∑m

j=1 βjηj = 1, we obtain

m∑

j=1

βj

∫ ηj

0

∫ s

0
φq

(∫ ∞

v
z(τ ) dτ

)
dv ds = Q1z = 0.
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Similarly,

y(n–2)(∞) = –
∫ ∞

0
φq

(∫ ∞

s
z(τ ) dτ

)
ds + y(n–2)(0)

= –
m∑

i=1

αi

∫ ξi

0
φq

(∫ ∞

s
z(τ ) dτ

)
ds +

m∑

i=1

αiy(n–2)(0),

which implies

m∑

i=1

αi

∫ ∞

ξi

φq

(∫ ∞

s
z(τ ) dτ

)
ds = Q2z = 0.

Thus L is a quasi-linear operator.
On the other hand, if z ∈ Z satisfies Q1z = Q2z = 0, we take

y(t) = atn–3 + btn–2 –
1

(n – 2)!

∫ t

0
(t – s)n–2φq

(∫ ∞

s
z(τ ) dτ

)
ds, (2.17)

where a, b are arbitrary constants. Then, for y ∈ Y , (φp(y(n–1)(t)))′ = z(t) satisfies (1.2). Thus
y ∈ dom L, that is, z ∈ Im L. �

We define the projector P : Y → ker L by

Py(t) =
y(n–3)(0)tn–3

(n – 3)!
+

y(n–2)(0)
(n – 2)!

tn–2, (2.18)

and the operator T1, T2 : Z → Z1 by

T1z =
e–t



[c22Q1z – c21Q2z], (2.19)

T2z =
e–t



[–c12Q1z + c11Q2z]. (2.20)

Define the operator Q : Z → Z by

Qz = T1z(t)tn–3 + T2z(t)tn–2.

Then we can calculate and obtain T1((T1z)tn–3) = T1z, T1((T2z)tn–2) = 0, T2((T1z)tn–3) = 0,
T2((T2z)tn–2) = T2z. Hence, Q2z = Qz and Q(σ z) = σQz. Thus Q is a semi-projector.

Lemma 2.2 If h is an L1[0,∞) Caratheodory’s function, then Nσ : W → Z is L-compact in
W for W ⊂ Y an open and bounded subset with 0 ∈ W .

Proof To prove (2.1) we have

Q(I – Q)Nσ (W ) = QNσ (W ) – Q2Nσ (W ) = QNσ (W ) – QNσ (W ) = 0.
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Thus, (I – Q)Nσ (W ) ⊂ Im L. Also, for z ∈ Im L, we have Qz = 0. Hence z ∈ ker Q i.e. z ∈
(I – Q)z. Hence, Im L ⊂ (I – Q)z. Therefore,

(I – Q)Nσ (W ) ⊂ Im L ⊂ (I – Q)Z.

To prove (2.2), suppose QNσ y = 0 for σ ∈ (0, 1). Then

0 = QNσ y = Q
(
σh

(
t, y(t), . . . , y(n–1)(t)

))
= σQh

(
t, y(t), . . . , y(n–1)(t)

)
= σQNy.

Thus, QNy = 0. On the other hand, if QNy = 0, we have

0 = QNy = T1(QNσ y)tn–3 – T2(QNσ y)tn–2

=
e–t




[
c22Q1(QNσ y)tn–3 – c21Q2(QNσ y)tn–3

– c12Q1(QNσ y)tn–2 + c11Q2(QNσ y)tn–2]

=
1



[
(c11c22 – c21c12) + (–c21c12 + c11c22)

]
(QNσ y)

= 2QNσ y.

Accordingly, QNσ y = 0. To establish (2.3), (2.4), and (2.5) we define

R(y,σ )(t) = –
1

(n – 2)!

∫ t

0
(t – s)n–2φq

(∫ ∞

s
(I – Q)Nσ y(τ ) dτ

)
ds. (2.21)

Clearly, R(y, 0) = 0. For y ∈ �σ = {y ∈ W : Ly = Nσ y},

(
φp

(
y(n–1)(t)

))′ = σh
(
t, y(t), y′(t), . . . , y(n–1)(t)

) ∈ Im L ⊂ ker Q.

Hence

R(y,σ )(t) = –
1

(n – 2)!

∫ t

0
(t – s)n–2φq

(∫ ∞

s
(I – Q)Nσ y(τ ) dτ

)
ds

=
∫ t

0
(t – s)n–2y(n–1)(s) ds

= y(t) –
y(n–2)(0)tn–2

(n – 2)!
–

y(n–3)(0)tn–3

(n – 3)!

= (I – P)y(t).

(2.22)

Similarly,

L
[
P + R(y,σ )

]
(t) =

{
φp

[
y(n–3)(0)tn–3

(n – 3)!
+

y(n–2)(0)tn–2

(n – 2)!

–
1

(n – 2)!

∫ t

0
(t – s)n–2φq

(∫ ∞

s
(I – Q)Nσ y(τ ) dτ

)
ds)

](n–1)}′
(2.23)
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=
{

–φp

[
φq

(∫ ∞

t
(I – Q)Nσ y(τ ) dτ

)]}′

= (I – Q)Nσ y(t).

This verifies (2.3) and (2.4). Next we show that R is relatively compact for σ ∈ [0, 1].
Let W ⊂ Y be a bounded set, that is, there exists r > 0 such that r = sup{‖y‖ : y ∈ W }.

Since L is L1[0,∞) Caratheodory, there exists αr ∈ L1[0,∞) such that for y ∈ W and a.e.
t ∈ [0,∞)

∣∣h
(
t, y(t), y′(t), . . . , y(n–1)(t)

)∣∣ ≤ α(t). (2.24)

Therefore, for y ∈ W ,

∫ ∞

0

∣
∣Nσ y(τ )

∣
∣dτ +

∫ ∞

0

∣
∣QNσ y(τ )

∣
∣dτ ≤ ‖αr‖1 + ‖QNσ‖1, (2.25)

where ‖z‖1 =
∫ ∞

0 |z(t)|dt, z ∈ Z.
For y ∈ W and setting

En = max
0≤i≤n–2

(
sup

t∈[0,∞)
e–ttn–2–i

)
, (2.26)

we have for 0 ≤ i ≤ n – 2

e–t∣∣R(i)(y,σ )(t)
∣∣ = e–t

∣
∣∣
∣–

1
(n – 2 – i)!

∫ t

0
(t – s)n–2–iφq

(∫ ∞

s
(I – Q)Nσ y(τ ) dτ

)
ds

∣
∣∣
∣

≤ max
0≤i≤n–2

(
sup

t∈[0,∞)
e–ttn–2–i

)
φq

(‖αr‖1 + ‖QNσ‖1
)

(2.27)

= Enφq
(‖αr‖1 + ‖QNσ‖1

)
.

For i = n – 1,

e–t∣∣R(n–1)(y,σ )(t)
∣
∣ = e–t

∣∣
∣∣φq

(∫ ∞

s
(I – Q)Nσ y(τ ) dτ

)∣∣
∣∣

≤ φq
(‖αr‖1 + ‖QNσ‖1

)
.

(2.28)

Therefore from (2.27) and (2.28) we obtain

∥∥R(y,σ )
∥∥ ≤ max(En, 1)φq

(‖αr‖1 + ‖QNσ‖1
)

= C. (2.29)

Thus R(y,σ ) is uniformly bounded in Y . For t1, t2 ∈ [0, D], D ∈ (0,∞) with t1 < t2, y ∈ W
and 0 ≤ i ≤ n – 2, we have

∣∣e–t2 R(i)(y,σ )(t2) – e–t1 R(i)(y,σ )(t1)
∣∣ =

∣∣∣
∣

∫ t2

t1

[
e–τ R(i)(y,σ )(τ )

]′ dτ

∣∣∣
∣

=
∣∣
∣∣

∫ t2

t1

[
–e–τ R(i)(y,σ )(τ ) + e–τ R(i+1)(y,σ )(τ )

]
dτ

∣∣
∣∣

≤ 2(t2 – t1)
∥∥R(y,σ )

∥∥ → 0 as t1 → t2.
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For i = n – 1,

∣∣e–t2φp(R(n–1)(y,σ )(t2) – e–t1φp(R(n–1)(y,σ )(t1)
∣∣

=
∣∣
∣∣e

–t2

∫ ∞

t2

(I – Q)Nσ y(τ ) dτ – e–t1

∫ ∞

t1

(I – Q)Nσ y(τ ) dτ

∣∣
∣∣

≤ ∣
∣e–t2 – e–t1

∣
∣
∫ ∞

t2

∣
∣(I – Q)Nσ y(τ )

∣
∣dτ + e–t1

∫ t1

t2

∣
∣(I – Q)Nσ y(τ )

∣
∣dτ

≤ ∣∣e–t2 – e–t1
∣∣[‖αr‖1 + ‖QNσ‖1

]
+ e–t1

∫ t1

t2

[|αr| + |QNσ |]dτ

→ 0 as t1 → t2.

Thus

∣∣e–t2 R(n–1)(y,σ )(t2) – e–t1 R(n–1)(y,σ )(t1)
∣∣ → 0 as t1 → t2.

We therefore conclude that R(y,σ ) is equicontinuous on every compact subset of [0,∞).
We next show that R(y,σ )(W ) is equiconvergent a infinity.

For y ∈ W and 0 ≤ i ≤ n – 2, we have

e–t∣∣R(i)(y,σ )(t)
∣
∣ = e–t

∣∣
∣∣

1
(n – 2 – i)!

∫ t

0
(t – s)n–2–iφq

(∫ ∞

s
(I – Q)Nσ y(τ ) dτ

)
ds

∣∣
∣∣

≤ e–ttn–2–iφq
(‖αr‖1 + ‖QNσ‖1

) → 0 as t → ∞.

For i = n – 1,

e–t∣∣R(n–1)(y,σ )(t)
∣∣ = e–t

∣
∣∣∣φq

(∫ ∞

t
(I – Q)Nσ y(τ ) dτ

)∣
∣∣∣

≤ φq

(∫ ∞

t

(∣∣αr(τ )
∣∣ +

∣∣QNσ y(τ )
∣∣)dτ

)

→ 0 as t → ∞.

Therefore R(y,σ )(W ) is equiconvergent at infinity. Thus all the conditions of Theorem 2.1
are satisfied. The continuity of R(y,σ ) follows from the Lebesque convergence theorem.
Hence, Nσ is compact in W . �

3 Main result
We assume the following conditions:

(H1)
∑m

i=1 αi =
∑m

j=1 βj =
∑m

j=1 βjηj = 1.
(H2) There exist functions ai, r ∈ L1[0,∞) such that for a.e. t ∈ [0,∞)

∣
∣h(t, y1, y2, . . . , yn)

∣
∣ ≤ φp

(
e–t)

[ n∑

i=1

ai(t)
∣
∣yi(t)

∣
∣p–1

]

+ r(t). (3.1)
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(H3) For y ∈ dom L, there exist constants D > 0, Bn > 0 such that if |y(n–3)(t)| > Bn for
t ∈ [0, D] or |y(n–2)(t)| > Bn for every t ∈ [0,∞), then either

Q1Ny(t) �= 0 or Q2Ny(t) �= 0.

(H4) There exists a constant Dn > 0 such that for |y(n–3)(0)| > Dn or y(n–2)(0) > Dn either

Q1N
(
atn–3 + btn–2) + Q2

(
atn–3 + btn–2) < 0, t ∈ (0,∞)

or

Q1N
(
atn–3 + btn–2) + Q2

(
atn–3 + btn–2) > 0, t ∈ (0,∞).

Theorem 3.1 If conditions (H1)–(H4) are fulfilled, then boundary value problem (1.1)–
(1.2) has at least one solution provided

2q–2

( n∑

i=1

‖ai‖i

)q–1

En(1 + D) < 1 if 1 < p ≤ 2 (3.2)

or

( n∑

i=1

‖ai‖1

)q–1

En(1 + D) < 1 if p > 2. (3.3)

Proof We construct an open bounded set W ⊂ Y that satisfies the assumptions of Theo-
rem 2.1. Let U1 = {y ∈ dom L : Ly = Nσ y,σ ∈ (0, 1)}. For y ∈ U1, then QNσ y = 0. Therefore
from (H3) there exist t1 ∈ [0, D], t2 ∈ [0,∞) such that y(n–3)(t1) < Bn, y(n–3)(t2) < Bn,

∣∣y(n–2)(t)
∣∣ =

∣
∣∣
∣y

(n–2)(t2) –
∫ t2

t
y(n–1)(s) ds

∣
∣∣
∣ ≤ Bn +

∥∥y(n–1)∥∥
1. (3.4)

Hence

∥
∥y(n–2)∥∥∞ ≤ Bn +

∥
∥y(n–1)∥∥

1, (3.5)

∣
∣y(n–3)(0)

∣
∣ =

∣∣
∣∣y

(n–3)(t1) –
∫ t1

0
y(n–2)(s) ds

∣∣
∣∣ ≤ Bn +

∥
∥y(n–2)∥∥∞D. (3.6)

From (3.4) we obtain

∣
∣y(n–2)(0)

∣
∣ ≤ Bn +

∥
∥y(n–1)∥∥

1. (3.7)

From y ∈ U1, (I – P)y ∈ dom L ∩ ker P. Hence, from (2.22) and (2.29), we derive

∥
∥(I – P)

∥
∥ =

∥
∥R(y,σ )

∥
∥ ≤ C. (3.8)

From the definition of P in (2.18) we obtain

(Py)(i)(t) =
y(n–3)(0)tn–3–i

(n – 3 – i)!
0 ≤ i ≤ n – 3 +

y(n–2)(0)tn–2–i

(n – 2 – i)!
0 ≤ i ≤ n – 2,
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‖Py‖ ≤ max
[

max
0≤i≤n–3

(∣∣y(n–3)(0)
∣∣ sup

t∈[0,∞)
e–ttn–3–i +

∣∣y(n–2)(0)
∣∣ sup

t∈[0,∞)
e–ttn–2–i

)
,

sup
t∈[0,∞)

e–t∣∣y(n–2)(0)
∣
∣
]

≤ An
[∣∣y(n–3)(0)

∣∣ +
∣∣y(n–2)(0)

∣∣],

(3.9)

where

An = max
[

max
0≤i≤n–3

(
sup

t∈[0,∞)
e–ttn–3–i + sup

t∈[0,∞)
e–ttn–2–i

)
, 1

]
. (3.10)

Hence, from (3.6) and (3.7), we get

‖Py‖ ≤ An
(
Bn +

∥∥y(n–1)∥∥
1 + Bn +

∥∥y(n–2)∥∥∞D
)

≤ An
[
Bn +

∥∥y(n–1)∥∥
1 + Bn + D

(
Bn +

∥∥y(n–1)∥∥
1

)]

= 2BnAn + AnBnD + An
∥∥y(n–1)∥∥

1 + AnD
∥∥y(n–1)∥∥

1

= BnAn(2 + D) +
∥∥y(n–1)∥∥

1(An + AnD),

(3.11)

‖y‖ =
∥
∥Py + (I – P)y

∥
∥ ≤ ‖Py‖ +

∥
∥(I – P)y

∥
∥

≤ BnAn(2 + D) +
∥
∥y(n–1)∥∥

1(An + AnD) + C.
(3.12)

If p ≤ 2, then from (2.6), (2.17), and (3.1), we obtain

∥
∥y(n–1)∥∥

1 =
∫ ∞

0

∣∣
∣∣φq

(∫ ∞

t
Nσ y(τ ) dτ

)∣∣
∣∣dt

≤ φq

( n∑

i=1

‖ai‖1‖y‖p–1 + ‖r‖1

)

≤ 2q–2

[( n∑

i=1

‖ai‖1

)q–1

‖y‖ + ‖r‖q–1
1

]

.

(3.13)

Using (3.2) in (3.13), we derive

∥∥y(n–1)∥∥
1 ≤ 2q–2

{( n∑

i=1

‖ai‖1

)q–1
[
BnAn(2 + D) +

∥∥y(n–1)∥∥
1(An + AnD)

]
+ Cn + ‖r‖q–1

1

}

or

[

1 – 2q–2

( n∑

i=1

‖ai‖1

)q–1

An(1 + D)

]
∥∥y(n–1)∥∥

1

≤ 2q–2

( n∑

i=1

‖ai‖1

)q–1
[
BnAn(2 + D) + Cn

]
+ 2q–2‖r‖q–1

1 , (3.14)

∥
∥y(n–1)∥∥

1 ≤ 2q–2(
∑n

i=1 ‖ai‖1)q–1[BnAn(2 + D) + C] + 2q–2‖r‖q–1
1

1 – 2q–2(
∑n

i=1 ‖ai‖1)q–1An(1 + D)
.

From (3.12) and (3.14), we obtain C∗
n > 0 such that ‖y‖ ≤ C∗

n . So U1 is bounded.
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Let U2 = {y ∈ ker L : Nσ y ∈ Im L}. For y ∈ U2 = {y ∈ ker L : y(t) = atn–3 + btn–2, a, b ∈R, t ∈
(0,∞)}, Ny ∈ Im L implies that QNy = 0, and hence

Q1N
(
atn–3 + btn–2) = Q2N

(
atn–3 + btn–2) = 0.

From (H4) we get

|a| + |b| < 2Dn. (3.15)

Thus U2 is bounded. We choose W0 > 0 large enough such that

W =
{

y ∈ W : ‖y‖ < W0
} ⊃ U1 ∪ U2.

Then, from the above computations, Ly �= Ny for y ∈ ∂W ∩ dom L. Thus, the first part of
Theorem 2.2 is verified. Let

H(y,λ) = –λJy + (1 – λ)QNy, λ ∈ [0, 1], (3.16)

where J : ker L → Im Q is the homeomorphism

J
(
atn–3 + btn–2) =

e–t




[(
c11|a| + C12|b|)tn–3 +

(
c21|a| + c22|b|)tn–2]. (3.17)

For y ∈ W ∩ ker L, y(t) = atn–3 + btn–2 �= 0 and H(y, 0) = QNy �= 0 since Ny /∈ Im L. Hence,
for λ = 0, λ = 1, H(y,λ) �= 0. Assume H(y,λ) = 0 for 0 < λ < 1, where y(t) = atn–3 + btn–2 ∈
∂W ∩ ker L. Then from (3.16), (3.17) we obtain

λ
[
c11|a| + c12|b|] = (1 – λ)

[
c11Q1N

(
atn–3 + btn–2) + c12Q2N

(
atn–3 + btn–2)],

λ
[
c21|a| + c22|b|] = (1 – λ)

[
c21Q1N

(
atn–3 + btn–2) + c22Q2N

(
atn–3 + btn–2)],

or

c11
[
λ|a| – (1 – λ)Q1N

(
atn–3 + btn–2)] + c12

[
λ|b| – (1 – λ)Q2N

(
atn–3 + btn–2)] = 0,

c21
[
λ|a| – (1 – λ)Q1N

(
atn–3 + btn–2)] + c22

[
λ|b| – (1 – λ)Q2N

(
atn–3 + btn–2)] = 0.

Since 
 =
∣∣ c11 c12

c21 c22

∣∣ = c22c11 – c21c22 �= 0, then

λ|a| = (1 – λ)Q1N
(
atn–3 + btn–2),

λ|b| = (1 – λ)Q2N9atn–3 + btn–2).

If |a| > Dn, |b| > Dn, then from (H4) we obtain

λ
(|a| + |b|) = (1 – λ)

[
Q1N

(
atn–3 + btn–2) + Q2N

(
atn–3 + btn–2)] < 0,

which is a contradiction. If the second part of (H4) holds, let

H(y,λ) = λJy + (1 – λ)Qy, λ ∈ [0, 1].
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Then, using a similar argument as above, we obtain a contradiction. Hence, H(y,λ) �= 0 for
y ∈ ∂W ∩ ker L, λ ∈ [0, 1]. Therefore, by the invariance of the degree under a homotopy,
we obtain

deg(QN |ker L, W ∩ ker L, 0) = deg
(
(H·, 0), W ∩ ker L, 0

)

= deg
(
H(·, 1), W ∩ ker L, 0

)

= deg(±J , W ∩ ker L, 0)

= sgn

{

±
∣∣
∣∣
∣

c11



c21



c21



c22



∣∣
∣∣
∣

}

= sgn

(±1



)
= ±1 �= 0.

Thus from Theorem 2.2 we conclude that Ly = Ny has at least one solution in dom L ∩ W ,
which in turn implies that (1.1)–(1.2) has at least one solution in Y . �

4 Example
Consider the third order boundary value problem

(
φp

(
y′′(t)

))′ = h
(
t, y(t), y′(t), y′′(t)

)
, t ∈ (0,∞), (4.1)

y′(∞) =
2∑

i=1

αiy′(ξi), y(0) + y′(0) =
2∑

j=1

βjy(ξj), y′′(∞) = 0 (4.2)

corresponding to problem (1.1)–(1.2), we have m = 2, n = 3, β1 = –1, β2 = 2, η1 = 1/2,
η2 = 3/4, α1 = α2 = 1/2, ξ1 = 1 ξ2 = 2, p = 4/3, q = 4. Then

∑2
j=1 βjηj =

∑2
i=1 αi =

∑2
j=1 βj = 1.

Hence condition (H1) is satisfied.

h
(
t, y, y′, y′′) = e–t

[
sin

1
3

24
+

y′ 1
3

24
+

sin
1
3 y′

24
+

y′′ 1
3

48
+

sin
1
3 y′′

48
–

1
24

]
,

∣∣h
(
t, y, y′, y′′)∣∣ ≤ e– t

3

[
e– 2

3 t|y| 1
3

24
+

e– 2
3 t|y′| 1

3

2
+

e– 2
3 t|y′′| 1

3

24

]
–

e–t

24
.

Thus condition (H2) is verified. To verify conditions (H3) and (H4), we have


 = c11c22 – c12c22 = 072(0.076) – 0.018(0622) = 0.497 �= 0.

a1(t) = e– 2
3 t

24 , a2(t) = e– 2
3 t

12 , a3(t) = e– 2
3 t

24 , r(t) = – e–t

24 . We set Bn = 53. Let |y′(t)| > Bn, then
y′(t) > Bn or y′(t) < –Bn. If y′(t) > Bn, then

Q2Ny =
1
2

∫ ∞

1
2

(∫ ∞

s
e–t

[
sin

1
3

24
+

y′ 1
3

24
+

sin
1
3 y′

24
+

y′′ 1
3

48
+

sin
1
3 y′′

48
–

1
24

]
dt

)3

ds

+
1
2

∫ ∞

3
4

(∫ ∞

s
e–t

[
sin

1
3

24
+

y′ 1
3

24
+

sin
1
3 y′

24
+

y′′ 1
3

48
+

sin
1
3 y′′

46
–

1
24

]
dt

)3

ds

>
1
2

∫ ∞

1
2

(∫ ∞

s
e–t

[
–

1
24

+
B

1
3
n

24
–

1
24

–
1

48
–

1
24

]
dt

)3

ds
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+
1
2

∫ ∞

3
4

(∫ ∞

s
e–t

[
–

1
24

+
B

1
3
n

24
–

1
24

–
1

48
–

1
24

]
dt

)3

ds

=
1
2

(
2B

1
3
n – 7
48

)3 ∫ ∞

1
2

(∫ ∞

5
e–t

)3

dt ds +
1
2

(
2B

1
3
n – 7
48

)3 ∫ ∞

3
4

(∫ ∞

5
e–t

)3

dt ds

> 0.

If y′(t) < –Bn, then

Q2Ny ≤ 1
2

∫ ∞

1
2

(∫ ∞

s
e–t

[
1

24
–

B
1
3
n

24
+

1
24

+
1

48
–

1
24

]
dt

)3

ds

+
1
2

∫ ∞

3
4

(∫ ∞

s
e–t

[
1

24
–

B
1
3
n

24
+

1
24

+
1

48
–

1
24

]
dt

)3

ds

=
1
2

(
3 – 2B

1
3
n

48

)3 ∫ ∞

1
2

(∫ ∞

s
e–t

)3

dt ds < 0.

Thus condition (H3) is verified. Taking Dn = 63 then for |b| > Dn, that is, b > Dn or b < –Dn.
If b > Dn, then we can verify that

Q1(a + bt) + Q2(a + bt) > 0.

Similarly, if b < –Dn, then

Q1(a + bt) + Q2(a + bt) < 0,

which verifies (H4). Finally, ‖a1‖1 = 1
16 , ‖a2‖1 = 1

8 , ‖a3‖1 = 1
16 ,

An = max
{

sup
t∈[0,∞)

e–t + sup
t∈[0,∞)

te–t , 1
}

= max
[
1 + e–1, 1

]
= 1 + e–1.

Taking D = 1, we have for P ≤ 2

2q–2

( 3∑

i=1

‖ai‖1

)q–1

An(1 + D) = 22
(

1
4

)3

2
(
1 + e–1) =

1 + e–1

8
< 1.

Hence, all the conditions of Theorem 3.1 are verified. Thus (4.1)–(4.2) has at least one
solution.
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