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Abstract
In this paper, we consider the following singular third-order two-point boundary
value problem on the half-line of the form

{
x′′′ + φ(t)f (t, x, x′, x′′) = 0, 0 < t < +∞,

x(0) = 0, x′(0) = a1, x′(+∞) = b1,

where φ ∈ C[0, +∞), f ∈ C([0, +∞)× (0, +∞)×R
2,R) may be singular at x = 0, and

a1, b1 are positive constants. Using the Leray–Schauder nonlinear alternative and the
diagonalization method together with the truncation function technique, we obtain
the existence and qualitative properties of positive solutions for the problem. As
applications, an example is given to illustrate our result.
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1 Introduction
In this paper, we study the existence and qualitative properties of positive solutions to the
singular third-order two-point boundary value problem on the half-line of the form

⎧⎨
⎩x′′′ + φ(t)f (t, x, x′, x′′) = 0, 0 < t < +∞,

x(0) = 0, x′(0) = a1, x′(+∞) = b1,
(1.1)

where φ ∈ C[0, +∞) with φ(t) > 0 for t ∈ (0, +∞), f ∈ C([0, +∞) × (0, +∞) × R
2,R) may

be singular at x = 0, and a1, b1 are positive constants with a1 < b1.
Third-order differential equations on an infinite interval arise from many physical phe-

nomena, such as free convection problems in boundary layer theory, and the draining or
coating fluid flow problems [7, 17, 19, 20]. Hence the third-order boundary value prob-
lems on the infinite interval have been extensively studied. For more details on non-
singular third-order boundary value problems on the infinite interval, see, for instance,
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[1, 3, 4, 8, 9, 13, 15, 18, 21, 22] and the references therein. For singular third-order boundary
value problems on the infinite interval, we refer the reader to [2, 5–7, 10, 12, 14, 16, 19, 20]
and the references therein.

In recent years, Benbaziz and Djebali [5] considered the following singular third-order
multi-point boundary value problem on the half-line:

⎧⎨
⎩x′′′(t) + f (t, x(t), x′(t)) = 0, t > 0,

x(0) =
∑n1

i=1 αix(ξi), x′(0) =
∑n1

i=1 βix(ηi), u′′(+∞) = 0,
(1.2)

where αi ≥ 0 (i = 1, 2, . . . , n1) with
∑n1

i=1 αi < 1, 0 < ξ1 < ξ2 < · · · < ξn1 < +∞, βi ≥ 0 (i =
1, 2, . . . , n2) with

∑n2
i=1 βi < 1, 0 < η1 < η2 < · · · < ξn2 < +∞. The nonlinearity f ∈ C((0, +∞)×

[0, +∞)× [0, +∞), [0, +∞)) satisfies upper and lower-homogeneity conditions in the space
variables x, y and may be singular at time variable t = 0. The authors presented sufficient
conditions which guarantee the existence of positive solutions to problem (1.2) by using
the Krasnosel’skii fixed point theorem on cone compression and expansion of norm type.
In [6], Benmezaï and Sedkaoui considered the following singular third-order two-point
boundary value problem on the half-line:

⎧⎨
⎩x′′′(t) – κ2x′(t) + φ(t)f (t, x(t), x′(t)) = 0, t > 0,

x(0) = 0, x′(0) = 0, x′(+∞) = 0,
(1.3)

where κ is a positive constant, φ ∈ L1(0, +∞) is nonnegative and does not vanish identi-
cally on (0, +∞), the function f : R+ × (0, +∞) × (0, +∞) →R

+ is continuous and may be
singular at the space variable and its derivative. They provided sufficient conditions for
the existence of a positive solution to problem (1.3) by employing the Krasnosel’skii fixed
point theorem on cone compression and expansion of norm type.

It is worthy to note that none of the nonlinearity f in works concerned with the singular
third-order boundary value problems on the half-line we mentioned above involves the
variables x′′. Up to now, we have not found the works that studied the fully nonlinear case
of which f contains explicitly t and every derivative of x up to order two.

Motivated and inspired by the above works and [2], in this paper we present sufficient
conditions for the existence of positive solutions to problem (1.1) and study the qualitative
properties of positive solutions. Our main tool is the Leray–Schauder nonlinear alternative
and the diagonalization method together with the truncation function technique.

The rest of this paper is organized as follows. In Sect. 2, we first discuss the existence
of positive solutions for singular third-order boundary value problems on the finite inter-
val by the Leray–Schauder nonlinear alternative, and then we investigate the existence of
positive solutions to problem (1.1) by using the diagonalization method together with the
truncation function technique. In Sect. 3, as application, we give an example to illustrate
our result.

2 Main results
At first, we present some lemmas, which will be useful in the proof of our main results.

Lemma 2.1 ([11]) Assume that � is a relatively open subset of a convex set C in a Banach
space E. Let T : � → C be a compact map and p ∈ �. Then either
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(1) T has a fixed point in �; or
(2) there are x ∈ ∂� and λ ∈ (0, 1) such that x = (1 – λ)p + λTx.

Lemma 2.2 Let b > 0 and suppose that f : [0, b] ×R
3 →R and φ : [0, b] →R are continu-

ous. In addition, assume that there is a constant M > max{a0 + b
2 (a1 + b1), b1}, independent

of λ, with

‖x‖ = max
{

sup
t∈[0,b]

∣∣x(t)
∣∣, sup

t∈[0,b]

∣∣x′(t)
∣∣, sup

t∈[0,b]

∣∣x′′(t)
∣∣} �= M

for any solution x ∈ C2[0, b] ∩ C3(0, b) to

⎧⎨
⎩x′′′ + λφ(t)f (t, x, x′, x′′) = 0, 0 < t < b,

x(0) = a0 ≥ 0, x′(0) = a1 ≥ 0, x′(b) = b1 > a1
(2.1)λ

for each λ ∈ (0, 1). Then problem (2.1)1 has at least one solution x ∈ C2[0, b] ∩ C3(0, b) with
‖x‖ ≤ M.

Proof Consider the Banach space E = C2[0, b] with the norm

‖x‖ = max
{‖x‖∞,

∥∥x′∥∥∞,
∥∥x′′∥∥∞

}
, x ∈ C2[0, b].

Take the convex subset C = E and the open set � = {x ∈ C : ‖x‖ < M}. Let us define the
operator T : � → E by

(Tx)(t) = a0 + a1t +
b1 – a1

2b
t2 +

∫ b

0
G(t, s)φ(s)f

(
s, x(s), x′(s), x′′(s)

)
ds,

where

G(t, s) =

⎧⎨
⎩– 1

2b t2s + ts – 1
2 s2, 0 ≤ s ≤ t ≤ b;

1
2 t2 – 1

2b t2s, 0 ≤ t ≤ s ≤ b.

By the Arzelà–Ascoli theorem, we can easily prove that T is a compact operator, and x ∈
C2[0, b] ∩ C3(0, b) is the solution to problem (2.1)1 if and only if x ∈ C2[0, b] is a fixed
point of operator T . Let ω(t) = a0 + a1t + b1–a1

2b t2. Then ω ∈ C with ‖ω‖ = max{a0 + b
2 (b1 +

a1), b1} < M. Hence ω ∈ �. Noticing that the solvability of problem (2.1)λ is equivalent to
the solvability of the operator equation x = (1 – λ)ω + λTx, it follows from the assumption
that

x �= (1 – λ)ω + λTx, x ∈ ∂�,λ ∈ (0, 1).

Hence from Lemma 2.1, T has a fixed point on �, and thus problem (2.1)1 has at least one
solution x ∈ �. This completes the proof of the lemma. �

We now discuss the solvability of problem (1.1) by using the diagonalization method
together with the truncation function technique.
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Theorem 2.1 Suppose that f : [0, +∞) × (0, +∞) × R
2 → R is continuous, φ ∈ C[0, +∞)

with φ(t) > 0 for t ∈ (0, +∞), and φ(t) is nondecreasing on (0, +∞). In addition, assume
that the following conditions hold:

(i) zf (t, x, y, z) ≥ 0 for any (t, x, y, z) ∈ [0, +∞) × (0, +∞) ×R
2;

(ii) There exist a function h ∈ C([0, +∞), (0, +∞)) and a nondecreasing function
g ∈ C((0, +∞), (0, +∞)) such that

f (t, x, y, z) ≤ g(x)h(z), (t, x, y, z) ∈ [0, +∞) × (0, +∞) × [a1, b1] × [0, +∞),

where

∫ +∞

0

du
h(u)

>
∫ b1–a1

0

du
h(u)

+
φ(1)
a1

∫ 1+b1

0
g(u) du;

(iii) For any constant K > 0, there exist a continuous function �K (t) defined on [0, +∞),
which is positive and nondecreasing on (0, +∞), and a constant r ∈ [1, 2) such that

f (t, x, y, z) ≥ �K (t)zr , (t, x, y, z) ∈ [0, +∞) × (0, +∞) × [a1, b1] × [0, K].

Then problem (1.1) has a convex and monotonically increasing positive solution x ∈
C2[0, +∞) ∩ C3(0, +∞).

Proof We shall complete the proof in two steps.
Step 1. We show that, for each n ∈N, the singular boundary value problem on the finite

interval

⎧⎨
⎩x′′′ + φ(t)f (t, x, x′, x′′) = 0, 0 < t < n,

x(0) = 0, x′(0) = a1, x′(n) = b1
(2.2)

has a solution x ∈ C2[0, n] ∩ C3(0, n]. For this, consider the nonsingular problem

⎧⎨
⎩x′′′ + φ(t)f (t, x, x′, x′′) = 0, 0 < t < n,

x(0) = 1
m , x′(0) = a1, x′(n) = b1,

(2.3)

where m ∈ N. In order to prove that problem (2.3) has a solution, consider the modified
problems

⎧⎨
⎩x′′′ + λφ(t)f (t, x, x′, x′′) = 0, 0 < t < n,

x(0) = 1
m , x′(0) = a1, x′(n) = b1,

(2.4)λ

where λ ∈ (0, 1) and

f (t, x, y, z) =

⎧⎨
⎩f (t, x, y, z), x ≥ 1

m ;

f (t, 1
m , y, z), x ≤ 1

m .
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Obviously, f  ∈ C([0, +∞) ×R
3,R) and

zf (t, x, y, z) ≥ 0, (t, x, y, z) ∈ [0, +∞) × (0, +∞) ×R
2.

Let x ∈ C3[0, n] be any solution of (2.4)λ. We now assert that

x′′(t) ≥ 0, t ∈ [0, n], x′′(0) > 0. (2.5)

Indeed, for any η ∈ [0, n) and η < t ≤ n, we have

–
(
x′′(t)

)2 +
(
x′′(η)

)2 = 2λ

∫ t

η

φ(s)x′′(s)f 
(
s, x(s), x′(s), x′′(s)

)
ds ≥ 0,

and so

(
x′′(t)

)2 ≤ (
x′′(η)

)2, t ∈ [η, n]. (2.6)

If x′′(0) = 0, then (2.6) with η = 0 implies x′′(t) = 0 for t ∈ [0, n], which contradicts x′(0) =
a1 < b1 = x′(n). Thus x′′(0) �= 0. Now we have two cases to consider:

Case 1. x′′(t) �= 0 for t ∈ [0, n). If x′′(t) < 0 for t ∈ [0, n), then a1 = x′(0) > x′(n) = b1, which
is a contradiction. Thus x′′(t) > 0 for t ∈ [0, n).

Case 2. There exists δ ∈ (0, n) with x′′(t) �= 0 for t ∈ [0, δ) and x′′(δ) = 0. Now (2.6) with
η = δ implies x′′(t) = 0 for t ∈ [δ, n], and so x′(t) ≡ b1 on [δ, n]. If x′′(t) < 0 for t ∈ [0, δ), then
b1 = x′(δ) < x′(0) = a1, which is a contradiction. Hence x′′(t) > 0 for t ∈ [0, δ).

In summary, (2.5) is true. Hence x′′′(t) ≤ 0 for t ∈ [0, n]. Meanwhile,

a1 ≤ x′(t) ≤ b1, t ∈ [0, n], (2.7)

and thus

1
m

≤ a1t +
1
m

≤ x(t) ≤ nb1 + 1, t ∈ [0, n]. (2.8)

Obviously, maxt∈[0,n] x′′(t) = x′′(0). In addition, according to the differential mean value
theorem, there exists ξ ∈ (0, 1) such that

0 ≤ x′′(ξ ) = x′(1) – x′(0) ≤ b1 – a1.

Now, from (2.5), (2.7), (2.8) and assumption (ii), we have

–x′′′(t) = λφ(t)f 
(
t, x(t), x′(t), x′′(t)

) ≤ φ(t)g
(
x(t)

)
h
(
x′′(t)

)
, t ∈ (0, n),

that is,

–x′′′(t)
h(x′′(t))

≤ φ(t)g
(
x(t)

)
, t ∈ (0, n).
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Integrating from 0 to ξ , we obtain

∫ x′′(0)

x′′(ξ )

du
h(u)

≤ φ(1)
∫ ξ

0
g
(
x(s)

)
ds = φ(1)

∫ ξ

0

g(x(s))
x′(s)

x′(s) ds

≤ φ(1)
a1

∫ x(ξ )

x(0)
g(u) du ≤ φ(1)

a1

∫ 1+b1

0
g(u) du.

Consequently,

∫ x′′(0)

0

du
h(u)

≤
∫ b1–a1

0

du
h(u)

+
φ(1)
a1

∫ 1+b1

0
g(u) du. (2.9)

Let

I(z) =
∫ z

0

du
h(u)

, z ∈ (0, +∞).

Then from assumption (iii) and (2.9) we know that

x′′(0) ≤ I–1
(∫ b1–a1

0

du
h(u)

+
φ(1)
a1

∫ 1+b1

0
g(u) du

)
=: V .

Notice that x′′′(t) ≤ 0 for t ∈ [0, n], it follows from (2.5) that

0 ≤ x′′(t) ≤ V , t ∈ [0, n].

This together with (2.7) and (2.8) implies that

‖x‖ < max{nb1 + 1, V } + 1 =: M.

Therefore from Lemma 2.2, problem (2.4)1 [and consequently problem (2.3)] has a solu-
tion vm ∈ C3[0, n] with

a1t +
1
m

≤ vm(t) ≤ nb1 + 1, a1 ≤ v′
m(t) ≤ b1,

0 ≤ v′′
m(t) ≤ V , t ∈ [0, n].

(2.10)

Therefore from (2.10) and assumption (ii) it follows that

–v′′′
m(t) ≤ φ(t)g

(
vm(t)

)
h
(
v′′

m(t)
) ≤ φ(t)g(a1t) max

u∈[0,V ]
h(u), t ∈ [0, n]. (2.11)

Notice that assumption (iii) guarantees that there are a continuous function �V (t), which
is positive and nondecreasing on (0, +∞), and a constant r ∈ [1, 2) such that

f (t, x, y, z) ≥ �V (t)zr , (t, x, y, z) ∈ [0, +∞) × (0, +∞) × [a1, b1] × [0, V ],

and so

–v′′′
m(t) ≥ φ(t)�V (t)

(
v′′

m(t)
)r , t ∈ (0, n). (2.12)
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Now we assert that

v′
m(t) ≥ �r(t), t ∈ [0, n], (2.13)

where

�r(t) =

⎧⎪⎨
⎪⎩

b1 – (b1 – a1) exp(–
∫ t

0 φ(s)�V (s) ds), t ∈ [0, +∞), r = 1;

b1 – 1

((b1–a1)
1–r
2–r + r–1

2–r
∫ t

0 ((2–r)φ(s)�V (s))
1

2–r ds)
2–r
r–1

, t ∈ [0, +∞), r ∈ (1, 2).

Indeed, we have two cases to consider:
Case 1. r = 1. Integrating (2.12) from t to n, we can obtain

v′′
m(t) – v′′

m(n) ≥
∫ n

t
φ(s)�V (s)v′′

m(s) ds

≥ φ(t)�V (t)
(
b1 – v′

m(t)
)
, t ∈ [0, n],

and thus

v′′
m(t) + φ(t)�V (t)v′

m(t) ≥ b1φ(t)�V (t), t ∈ [0, n].

Solving the above inequality, we have

v′
m(t) ≥ b1 – (b1 – a1)e–

∫ t
0 φ(s)�V (s) ds, t ∈ [0, n].

Case 2. 1 < r < 2. Note that either v′′
m(t) > 0 for t ∈ [0, n) or there exists δ ∈ (0, n) such

that v′′
m(t) > 0 for t ∈ [0, δ) and v′′

m(t) = 0 for t ∈ [δ, n]. Hence, there exists δ ∈ (0, n] such
that v′′

m(t) > 0 for t ∈ [0, δ). Multiplying (2.12) by (v′′
m(t))1–r and integrating from t to δ

(note that φ and �V are nondecreasing on [0, +∞)), we have

v′′
m(t) ≥ (

(2 – r)φ(t)�V (t)
(
b1 – v′

m(t)
)) 1

2–r , t ∈ [0, δ).

Consequently,

(
b1 – v′

m(t)
) –1

2–r v′′
m(t) ≥ (

(2 – r)φ(t)�V (t)
) 1

2–r , t ∈ [0, δ).

Integrating from 0 to t, we obtain

(
b1 – v′

m(t)
) 1–r

2–r – (b1 – a1)
1–r
2–r ≥ r – 1

2 – r

∫ t

0

(
(2 – r)φ(s)�V (s)

) 1
2–r ds, t ∈ [0, δ),

and so

1 ≥
(

(b1 – a1)
1–r
2–r +

r – 1
2 – r

∫ t

0

(
(2 – r)φ(s)�V (s)

) 1
2–r ds

)(
b1 – v′

m(t)
) r–1

2–r , t ∈ [0, n].

Therefore

v′
m(t) ≥ b1 –

1
((b1 – a1) 1–r

2–r + r–1
2–r

∫ t
0 ((2 – r)φ(s)�V (s)) 1

2–r ds) 2–r
r–1

, t ∈ [0, +∞).

In summary, (2.13) holds.
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Notice that (2.10), (2.11), (2.13) and the Arzelà–Ascoli theorem guarantee that there
exist a subsequence S of N and a function xn ∈ C2[0, n] such that v(j)

m (t) → x(j)
n (t) (j = 0, 1, 2)

uniformly on [0, n] as m → ∞ (m ∈ S), and

xn(0) = 0, x′
n(0) = a1, x′

n(n) = b1,

a1t ≤ xn(t) ≤ nb1 + 1, �r(t) ≤ x′
n(t) ≤ b1,

0 ≤ x′′
n(n) ≤ V , t ∈ [0, n].

(2.14)

Also note that

v′′
m(t) – v′′

m(0) = –
∫ t

0
φ(s)f

(
s, vm(s), v′

m(s), v′′
m(s)

)
ds, t ∈ [0, n].

Let m → ∞ (m ∈ S), then by the Lebesgue dominated convergence theorem (note (2.11)
and assumption (ii)), we have

x′′
n(t) – x′′

n(0) = –
∫ t

0
φ(s)f

(
s, xn(s), x′

n(s), x′′
n(s)

)
ds, t ∈ [0, n].

Consequently, xn ∈ C2[0, n] ∩ C3(0, n] is a solution of (2.2) and satisfies

–x′′′
n (t) ≤ φ(t)g

(
xn(t)

)
h
(
x′′

n(t)
) ≤ φ(t)g(a1t) max

u∈[0,V ]
h(u), t ∈ (0, n).

Step 2. We prove the existence of solutions to problem (2.2) by using the diagonalization
method. To do this, for n ≥ 1 an integer, we let

un(t) =

⎧⎨
⎩xn(t), 0 ≤ t ≤ n;

xn(n), n ≤ t < ∞.

Then from (2.14) it follows that

a1t ≤ un(t) ≤ b1 + 1, �r(t) ≤ u′
n(t) ≤ b1, 0 ≤ u′′

n(n) ≤ V , t ∈ [0, 1], n ∈ N.

Hence, by the Arzelà–Ascoli theorem, there exist a subsequence N
∗
1 of N and a function

z1(t) ∈ C2[0, 1] with u(j)
n (t) → z(j)

1 (t) (j = 0, 1, 2) uniformly on [0, 1] as n → ∞ (n ∈N
∗
1). Also

a1t ≤ z1(t) ≤ b1 + 1, �r(t) ≤ z′
1(t) ≤ b1, 0 ≤ z′′

1(t) ≤ V , t ∈ [0, 1] and z1(0) = 0, z′
1(0) = a1.

Let N1 = N
∗
1 \ {1}. Also notice that

a1t ≤ un(t) ≤ 2b1 + 1, �r(t) ≤ u′
n(t) ≤ b1, 0 ≤ u′′

n(n) ≤ V , t ∈ [0, 2], n ∈N1,

the Arzelà–Ascoli theorem guarantees the existence of a subsequenceN∗
2 ofN1 and a func-

tion z2(t) ∈ C2[0, 2] with u(j)
n (t) → z(j)

2 (t) (j = 0, 1, 2) uniformly on [0, 2] as n → ∞ (n ∈N
∗
2).

Note that z2(t) = z1(t) on [0, 1] sinceN∗
2 ⊂N1. Also, a1t ≤ z2(t) ≤ 2b1 +1, �r(t) ≤ z′

2(t) ≤ b1,
0 ≤ z′′

2(t) ≤ V , t ∈ [0, 2] and z2(0) = 0, z′
2(0) = a1. Let N2 = N

∗
2 \ {2} and proceed induc-

tively to obtain for k = 1, 2, . . . a subsequence Nk ⊂ N with Nk ⊂ Nk–1 and a function
zk(t) ∈ C2[0, k] such that u(j)

n (t) → z(j)
k (t) (j = 0, 1, 2) uniformly on [0, k] as n → ∞ (n ∈Nk).
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Also note that zk(t) = zk–1(t) for t ∈ [0, k – 1] and a1t ≤ zk(t) ≤ kb1 + 1, �r(t) ≤ z′
k(t) ≤ b1,

0 ≤ z′′
k (t) ≤ V , t ∈ [0, k], zk(0) = 0, z′

k(0) = a1.
We now define a function x(t) as follows. For any fixed t ∈ [0, +∞), take k ∈N such that

k ≥ t. Let x(t) = zk(t). Then x(t) is well defined on [0, +∞), and x ∈ C2[0, +∞). In addition,
we have

a1t ≤ x(t), �r(t) ≤ x′(t) ≤ b1, 0 ≤ x′′(t) ≤ V , t ∈ [0, +∞),

and

x(0) = 0, x′(0) = a1.

Arbitrarily, take k ∈N. Note that ∀t ∈ (0, k] and ∀n ∈Nk , we have

u′′
n(t) – u′′

n(0) = –
∫ t

0
φ(s)f

(
s, un(s), u′

n(s), u′′
n(s)

)
ds.

Let n → ∞ (n ∈Nk), from the Lebesgue dominated convergence theorem, it follows that

z′′
k (t) – z′′

k (0) = –
∫ t

0
φ(s)f

(
s, zk(s), z′

k(s), z′′
k (s)

)
ds,

that is,

x′′(t) – x′′(0) = –
∫ t

0
φ(s)f

(
s, x(s), x′(s), x′′(s)

)
ds.

Thus x ∈ C3(0, k] and

x′′′(t) + φ(t)f
(
t, x(t), x′(t), x′′(t)

)
= 0, t ∈ (0, k].

Since k ∈N is arbitrary, we have x ∈ C2[0, +∞) ∩ C3(0, +∞) and

x′′′(t) + φ(t)f
(
t, x(t), x′(t), x′′(t)

)
= 0, t ∈ (0, +∞).

Notice that �r(t) → b1 (t → +∞) and �r(t) ≤ x′(t) ≤ b1, t ∈ [0, +∞), then x′(+∞) = b1.
In summary, x(t) is a convex and monotonically increasing positive solution of problem
(1.1). This completes the proof of the theorem. �

3 An example
In this section, we give an example to illustrate our main result.

Example 3.1 Consider the singular third-order two-point boundary value problems on
the half-line⎧⎨

⎩x′′′ + t(1 + 1√
x )

√
x′′ = 0, 0 < t < +∞,

x(0) = 0, x′(0) = β , x′(+∞) = 1,
(3.1)

where β ∈ (0, 1).
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Let φ(t) = t, t ∈ (0, +∞), and

f (t, x, y, z) =

⎧⎨
⎩(1 + 1√

x )
√

z, z ≥ 0;

0, z < 0.

Then f ∈ C([0, +∞) × (0, +∞) × R
2,R), φ ∈ C[0, +∞) is positive and nondecreasing on

(0, +∞). Obviously, condition (i) in Theorem 2.1 is satisfied. We now check conditions (ii)
and (iii) of Theorem 2.1. To do this, let

g(x) = 1 +
1√
x

, x ∈ (0, +∞); h(z) = 1 +
√

z, z ∈ [0, +∞).

Then g ∈ C((0, +∞)(0, +∞)), h ∈ C([0, +∞), (0, +∞)), and ∀(t, x, y, z) ∈ [0, +∞)×(0, +∞)×
(0, 1) × [0, +∞), we have

f (t, x, y, z) ≤ g(x)h(z).

In addition, it is clear that
∫ 2

0
g(u) du =

∫ 2

0

√
u + 1√

u
du < 3

∫ 2

0

1√
u

du < +∞,

and by the Cauchy inequality we have
∫ +∞

0

du
h(u)

=
∫ +∞

0

du√
u + 1

≥ 1√
2

∫ +∞

1

ds√
s

= +∞.

Thus condition (ii) holds.
Finally, for any constant K > 0, take �K (t) ≡ 1/

√
K on [0, +∞) and r = 1. Then

∀(t, x, y, z) ∈ [0, +∞) × (0, +∞) × (0, 1] × [0, K], we have

g(t, x, y, z) ≥ �K (t)z,

that is, condition (iii) holds.
In summary, all the conditions in Theorem 2.1 are satisfied. Therefore, problem (3.1)

has at least one convex, strictly increasing positive solution.
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