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Abstract
This paper provides conditions for determining the sign of all the partial derivatives of
the Green functions of n-th order boundary value problems subject to a wide set of
homogeneous two-point boundary conditions, removing restrictions of previous
results about the distance between the two extremes that define the problem. To do
so, it analyzes the sign of the derivatives of the solutions of related two-point n-th
order boundary value problems subject to n – 1 boundary conditions by introducing
a new property denoted by ‘hyperdisfocality’.
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1 Introduction
Let J be a compact interval in R, and let us consider the real differential operator L :
Cn(J) → C(J) defined by

Ly = y(n)(x) + an–1(x)y(n–1)(x) + · · · + a0(x)y(x), x ∈ J , (1)

where aj(x) ∈ C(J), 0 ≤ j ≤ n – 1.
In this paper, we will study the sign of the derivatives of the Green function of the prob-

lem

Ly = 0, x ∈ [a, b]; y(i)(a) = 0, i ∈ α; y(j)(b) = 0, j ∈ β ; (2)

where [a, b] ⊂ J , α is the ordered set of integers {α1,α2, . . . ,αk}, β is the ordered set of
integers {β1,β2, . . . ,βn–k}, 1 ≤ k ≤ n – 1, both α1,β1 ≥ 0 and αk ,βn–k < n.

We will impose the condition that the number of boundary conditions at a and b set on
derivatives of order lower than t is greater or equal than t for t = 1, . . . , n. Elias denoted
these conditions by poised in [1], term which we will use in the rest of the manuscript,
although they are called admissible in other sources, including reference [2].
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If for every integer m such that 1 ≤ m ≤ p + 1, exactly m terms of the sequence α1, . . . ,αk ,
β1, . . . ,βn–k are less than m, we will say that the boundary conditions are p-alternate. In the
case p = n – 1, we will call the boundary conditions strongly poised. The poised conditions
cover well-known cases like conjugate boundary conditions (α1 = 0,α2 = 1, . . . ,αk = k – 1
and β1 = 0,β2 = 1, . . . ,βn–k = n – k – 1), focal boundary conditions (right focal with α1 =
0,α2 = 1, . . . ,αk = k –1 and β1 = k,β2 = k +1, . . . ,βn–k = n–1 or left focal with α1 = n–k,α2 =
n – k + 1, . . . ,αk = n – 1 and β1 = 0,β2 = 1, . . . ,βn–k = n – k – 1), and many others. The focal
boundary conditions are also strongly poised (or (n – 1)-alternate).

It is well known (see, for instance, [3, Chap. 3]) that problems of the type

Ly = f , x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β ;
(3)

with f ∈ C[a, b], have a solution given by y(x) =
∫ b

a G(x, t)f (t) dt. Therefore, the knowledge
of the sign of G(x, t) and its derivatives can provide information about the sign of the
solution y(x) and these same derivatives, at least when f does not change sign on (a, b).
Likewise, there is a large amount of literature ([4–8], and [9]) on the use of the sign of
G(x, t) to define cones that, by means of Krein and Rutman’s [10] works, allow finding
information about the eigenvalues and eigenfunctions of the general problem

Ly = λ

μ∑

l=0

cl(x)y(l)(x), x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β ;

(4)

with μ ≤ n – 1, cl(x) ∈ C(J) for 0 ≤ l ≤ μ, and even calculate them.
Incidentally, the calculation of the smallest eigenvalue of (4) with μ = 0 is also relevant

to prove the existence of solutions of nonlinear boundary value problems of the type Ly +
p(x)g(y) = 0, in particular, by comparing that eigenvalue with the quotient g(y)

y for different
values of y, especially when y → 0+ and when y → +∞. This approach was started by Erbe
[11] for symmetric kernels and extended by Webb and Lan [12–14] and many others, [15]
being a recent example.

Most of the literature that has addressed problem (4) has done it via an explicit cal-
culation of the Green function G(x, t) to determine its positive character. Whereas this
calculation is necessary in some cases, in many others, it suffices to obtain information
about the sign of G(x, t) and some of its partial derivatives.

The first steps in that direction were made by Levin [16] and Pokornyi [17], who de-
termined the sign of the Green function of (2) in the conjugate case. Their works were
broadened by Karlin [18], who introduced the concept of total positivity of the kernel de-
fined by G(x, t). Peterson [19, 20], Elias [21], and Peterson and Ridenhour [22] extended it
to several particular cases. Later Eloe and Ridenhour [23] provided some sign results for
the lowest derivatives in the general poised case, which included the left focal and right
focal cases. Other recent works worth mentioning are those of Webb and Infante [24, 25],
who provided an elegant framework to address non-local boundary value conditions, and
Cabada and Saavedra [26], who characterized a set of parameters where a Green function
dependent on that parameter had a constant sign.
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The focus of most of these papers has been the assessment of the sign of the Green
function, with only a few exceptions addressing the sign of the partial derivatives of G(x, t).
That is the case of Eloe and Ridenhour’s work [23], which identified the signs of the partial
derivatives ∂ iG(x,t)

∂xi for i = 0, . . . max(α1,β1). In [2], the present authors extended Eloe and
Ridenhour’s results by increasing the order of the partial derivatives for which a sign could
be determined, and in [8], they showed that in the case of linear boundary value problems
defined in terms of quasi-derivatives, it was actually possible to determine the sign of all
the partial quasi-derivatives.

However, the results of [2] suffered from the following limitations:
1. The need for Ly = 0 to be disfocal on [a, b]. According to Nehari [27], it means that

y(x) ≡ 0 is the only solution for Ly = 0 satisfying y(i)(xi) = 0, i = 0, 1, 2, . . . , n – 1, with
xi ∈ [a, b]. This restriction was already present in Eloe and Ridenhour’s work and, in
general, implies that [a, b] must be a short interval, shorter than the intervals where
G(x, t) can be defined (namely those in which (2) has only the trivial solution).

2. The fact that only the sign of some of the lowest order partial derivatives was
provided, even in cases (like the strongly poised one) where one could expect
constant signs in all partial derivatives.

In this paper, we will provide some conditions on the signs of the coefficients ai(x) and
the existence of solutions of boundary value problems linked to (2), which will remove the
two aforementioned restrictions, providing the sign of all the partial derivatives ∂ iG(x,t)

∂xi

that have a constant sign on [a, b].
With regards to nomenclature, we will use the expression Gab(x, t) to stress the depen-

dence of the Green function on the extremes a and b, where problem (2) is defined. Note
that some theorems will require a and b to change as part of their proofs. In these cases,
a and b in the aforementioned expression could be replaced by other variables, accord-
ing to the proof needs, but they will keep always the meaning of the extremes where the
conditions α and β are specified. We will denote indistinctly by α\αi or α\{αi} the set re-
sulting from removing the index αi from the set α. Likewise, we will use indistinctly the
expressions β\βi or β\{βi} to refer to the set obtained by removing the index βi from the
set β .

The organization of the paper is as follows: Sect. 2 will analyze the sign of the derivatives
of boundary value problems with n – 1 boundary conditions, which will be used in Sect. 3
to provide signs for the partial derivatives of the Green function of (2). Finally, Sect. 4 will
formulate some conclusions.

2 Preliminary results
In this section, we will study the signs of the derivatives of the nontrivial solutions of the
boundary value problem

Ly = 0, x ∈ [a, b]; y(j)(a) = 0, j ∈ α′; y(j)(b) = 0, j ∈ β ′; (5)

where α′ can be either α or α\{αi}, and β ′ can be either β\{βi} or β , respectively. That
is, (α′,β ′) are basically (α,β) of (2) without either one boundary condition αi at a or one
boundary condition βi at b. Accordingly, solutions y of (5) are subject to only n – 1 bound-
ary conditions. We will assume throughout the section that (α,β) are poised.

We will need the following definitions:



Almenar and Jódar Boundary Value Problems         (2022) 2022:50 Page 4 of 22

Definition 1 If y is a nontrivial solution of (5), then
• A zero component is a closed subinterval of [a, b] where a derivative of y is identically

zero. If a derivative has several zero components, there must be subintervals of [a, b]
of positive measure separating them. Otherwise, they will be considered the same
zero component. In what follows, we will use the term zero to refer to an isolated zero
or a zero component indistinctly.

• zj[a, b] is the number of isolated zeroes or zero components of y(j)(x) on [a, b], for
j = 0, . . . , n.

• zj(a, b) is the number of isolated zeroes or zero components of y(j)(x) entirely lying on
(a, b), for j = 0, . . . , n.

• Zj{α′,β ′} is the number of derivative orders with homogeneous boundary conditions
defined in {α′,β ′}, which are lower or equal to j.

• Ej[a, b] is the excess of isolated zeroes or zero components of y(j)(x) on [a, b], for
j = 0, . . . , n, which are not due to the boundary conditions and the Rolle theorem and
which, for reasons that will become clear later, we will define as

Ej[a, b] = zj[a, b] – Zj
{
α′,β ′} + j, j = 0, . . . , n. (6)

• m(α′, j) is the number of derivatives of order equal to or higher than j, which the
boundary conditions α′ do not specify to vanish at a.

• n(β ′, j) is the number of derivatives of order higher than j, which the boundary
conditions β ′ do specify to vanish at b.

• I(α′,β ′) is the set of derivative orders j such that zj(a, b) = 0 and (therefore) y(j) has a
constant sign on (a, b).

• K(α′,β ′) is the lowest derivative order j such that Zj{α′,β ′} = j. Note that K(α′,β ′)
always exists when there are only n – 1 boundary conditions, since
Zn–1{α′,β ′} = n – 1. Note also that K(α′,β ′) /∈ α′ ∪ β ′. Otherwise, K(α′,β ′) – 1 would
contradict the minimal character of K(α′,β ′).

• H(α,β) (note the use of α and β instead of α′ and β ′) is the set of derivative orders j
such that Zj–1{α,β} = j.

• If αk = n – 1, then α∗ is the lowest derivative order such that {α∗,α∗ + 1, . . . , n – 1} ⊂ α;
if αk < n – 1, then α∗ = K(α\αk ,β) + 1. Analogously, if βn–k = n – 1, then β∗ is the
lowest derivative order such that {β∗,β∗ + 1, . . . , n – 1} ⊂ β , and if βn–k < n – 1, then
β∗ = K(α,β\βn–k) + 1.

Lemma 1 Ej[a, b] satisfies Ej[a, b] ≥ Ej–1[a, b] ≥ 0, for j = 1, . . . , n.

Proof The proof mimics that of [8, Lemma 1], although this one applied to Green func-
tions and not solutions of (5). Thus, from the definition (6) of Ej[a, b], it is clear that

zj[a, b] = Ej[a, b] + Zj
{
α′,β ′} – j, j = 0, . . . , n. (7)

Since y does not vanish identically, it cannot have a single zero component covering [a, b].
This implies that z0[a, b] = E0[a, b]+Z0{α′,β ′} ≥ Z0{α′,β ′}, so E0[a, b] ≥ 0. Then, by Rolle’s
theorem

zj(a, b) ≥ zj–1[a, b] – 1,
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and

zj[a, b] ≥ Zj
{
α′,β ′} – Zj–1

{
α′,β ′} + zj–1[a, b] – 1.

From here and (7), one has

zj(a, b) ≥ Ej–1[a, b] + Zj–1
{
α′,β ′} – j, (8)

and

zj[a, b] ≥ Zj
{
α′,β ′} – Zj–1

{
α′,β ′} + Ej–1[a, b] + Zj–1

{
α′,β ′} – j + 1 – 1

= Ej–1[a, b] + Zj
{
α′,β ′} – j, (9)

which together with (7) prove the statement. �

Lemma 1 shows that keeping the value of En[a, b] low allows controlling the number of
zeroes zj(a, b) of y(j)(x) on (a, b). In the next results, we will find out conditions that use
that mechanism to fix the derivative orders j for which zj(a, b) = 0, that is, the derivative
orders that belong to I(α′,β ′). To achieve that goal, besides the poisedness of (α,β), we
need additional tools. In the case of [9], it was the own nature of the quasi-derivatives,
which ensured that En[a, b] = E0[a, b] = 0. In the case under study, as we will see, we will
need other mechanisms that grant that y(n) does not change sign on [a, b].

We will start with the following lemma:

Lemma 2 If Ly = 0 is disfocal on [a, b], then l = K(α′,β ′) is the only derivative order for
which y(l) satisfies zl[a, b] = 0, for 0 ≤ l ≤ n – 1. In addition, Ej[a, b] = 0 for j = 0, . . . , K(α′,β ′)
and Ej[a, b] ≥ 1 for j = K(α′,β ′) + 1, . . . , n – 1.

Proof Let us assume that α′ = α\{αi} and β ′ = β (the case α′ = α and β ′ = β\{βi} can be
proven in the same manner). The poisedness of (α,β) implies that Zj{α′,β ′} ≥ j + 1 for
j = 0, . . . , K(α′,β ′) – 1 and Zj{α′,β ′} ≥ j for j = K(α′,β ′), . . . , n – 1.

From (7), it follows that zj[a, b] ≥ Ej[a, b] + 1 ≥ 1, j = 0, . . . , K(α′,β ′) – 1, that is, all deriva-
tives of y up to the (K(α′,β ′) – 1)-th have at least one zero on [a, b]. Likewise, from the
definition of K(α′,β ′) one has zK (α′ ,β ′)[a, b] = EK (α′ ,β ′)[a, b]. If EK (α′ ,β ′)[a, b] ≥ 1, Lemma 1
would give again zj[a, b] ≥ Ej[a, b] ≥ EK (α′ ,β ′)[a, b] ≥ 1 for j = K(α′,β ′), . . . , n – 1, contra-
dicting the disfocality of Ly = 0 on [a, b]. Therefore, zK (α′ ,β ′)[a, b] = EK (α′ ,β ′)[a, b] = 0, that
is, y(K (α′ ,β ′)) has no zero on [a, b].

If K(α′,β ′) = n – 1, the proof is completed. Otherwise, from the definition of K(α′,β ′)

zK (α′ ,β ′)+1[a, b]

≥ ZK (α′ ,β ′)+1
{
α′,β ′} – ZK (α′ ,β ′)

{
α′,β ′} = ZK (α′ ,β ′)+1

{
α′,β ′} – K

(
α′,β ′). (10)

Applying Rolle’s theorem to (10) in the same way as in Lemma 1, one gets

zj[a, b] ≥ Zj
{
α′,β ′} – j + 1 ≥ 1, j = K

(
α′,β ′) + 1, . . . , n – 1, (11)
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so that all derivatives of y higher than the K(α′,β ′)-th have at least one zero on [a, b].
A comparison of (7) and (11) for these derivatives also yields Ej[a, b] ≥ 1. This completes
the proof. �

Lemma 2 ensures that, if [a, b] is a short enough interval, the only derivative of y of order
lower than n, which does not vanish in [a, b], is the K(α′,β ′)-th one. However, this does
not prevent that the derivatives higher than the K(α′,β ′)-th one may have more than one
zero and even change the sign several times on [a, b]. The following Theorem introduces
the concept of hyperdisfocality, which targets exactly that problem.

Theorem 1 Let us suppose that aK (α′ ,β ′)(a) �= 0, and y is a nontrivial solution of (5). Then,
there is c ∈ J such that if b in (5) is smaller than c, y(n) does not vanish in [a, b].

Proof We will follow an argument similar to the one used in [1, Chap. 0].
From [3, Chap. 3] one can find d > a with d ∈ J such that Ly = 0 is disfocal on [a, d],

meaning that all derivatives y(j), 0 ≤ j ≤ n – 1 have a zero in (a, d) but y(K (α′ ,β ′)), according
to Lemma 2 (Coppel’s proof focuses on disconjugacy, but the reasoning for disfocality is
exactly the same).

Likewise, since aK (α′ ,β ′)(x) is continuous on J by hypothesis, one can find a d′ > a with
d′ ∈ J such that |aK (α′ ,β ′)(x) – aK (α′ ,β ′)(a)| < |aK (α′ ,β ′)(a)|/2 for x ∈ [a, d′], so that aK (α′ ,β ′)(x) �=
0 in [a, d′].

Then, let us assume that there exists a sequence {bl} with bl ∈ (a, min(d, d′)) and bl → a+

such that the derivative y(n)
l of the solution yl of (5) with b = bl vanishes in [a, bl].

If {um} is a fundamental system of solutions of Lu = 0 such that u(s–1)
m (a) = δms, 1 ≤ m, s ≤

n, then each yl can be expressed as

yl(x) = d1,lu1(x) + · · · + dn,lun(x), x ∈ [a, bl]. (12)

Let us normalize dm,l such that
∑n

m=1 |dm,l|2 = 1, l ≥ 1. Given that for each l the n-tuple
(d1,l, . . . , dn,l) ∈ B(0, 1) ⊂ R

n, and B(0, 1) is a compact set, if one makes bl tend to a, then
there will be a subsequence blj such that dm,lj → d∗

m ∈ B(0, 1). In turn, this implies that {ylj}
will converge uniformly to the function y∗ defined by

y∗(x) = d∗
1u1(x) + · · · + d∗

nun(x),

which is a solution of Ly = 0 on J with zeroes in all its derivatives y(j)
∗ (a) (j = 0, . . . , n) but

potentially at y(K (α′ ,β ′))
∗ (a). However, given that aK (α′ ,β ′) �= 0 on each [a, bl], from (1) one

has that y(K (α′ ,β ′))
∗ (a) = 0 too. But that is impossible, since um were linearly independent.

Therefore, the sequence {bl} cannot exist, and there must be a minimum c > a such that
y(n) does not vanish in [a, b] for any b < c. �

Remark 1 It is straightforward to obtain an equivalent theorem for the case aK (α′ ,β ′)(b) �= 0,
mutatis mutandis.

We will denote the property described in Theorem 1 by K(α′,β ′)-hiperdisfocality.
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Corollary 1 Under the assumptions of Theorem 1, if b ∈ (a, c), then Ej[a, b] = 1 for j =
K(α′,β ′) + 1, . . . , n – 1, all zeroes are isolated, and the set I(α′,β ′) is composed by those
derivative orders j for which

Zj–1
{
α′,β ′} = j, (13)

if 0 ≤ j ≤ K(α′,β ′), and

Zj–1
{
α′,β ′} = j – 1, (14)

if K(α′,β ′) < j ≤ n – 1.

Proof If Ej[a, b] > 1 for an index j such that K(α′,β ′) < j ≤ n – 1, then by Lemma 1, one
would have En–1[a, b] > 1 and by (7) zn–1[a, b] > 1. Rolle’s Theorem would give zn[a, b] ≥ 1,
contradicting Theorem 1. This and Lemma 2 imply Ej[a, b] = 1 for K(α′,β ′) < j ≤ n – 1. All
these zeroes are isolated as otherwise, y(n) would vanish in a subinterval of [a, b], violating
Theorem 1. Next, since

zj(a, b) = Ej[a, b] + Zj–1
{
α′,β ′} – j,

equations (13) and (14) follow from the definition of I(α′,β ′) and the value of Ej[a, b] for
values of j lower and higher than K(α′,β ′), respectively. �

In the following results, we will use widely the continuity of the solution of (5) with the
extremes a and b, which we will prove in the next Lemma.

Lemma 3 Let us assume that problem (5) does not have a nontrivial solution that satisfies
y(K (α′ ,β ′))(x∗) = 0 for the extremes a and b where it is defined, with x∗ ∈ [a, b]. Then the
solution y(x) of (5) for which y(K (α′ ,β ′))(x∗) = 1 and its derivatives up to the n-th order are
continuous with regards to these extremes.

Proof If um(x), 1 ≤ m ≤ n are defined as in Theorem 1, then the solution y of (5) for which
y(K (α′ ,β ′))(x∗) = 1 is given by

y(x) =
n∑

m=1

dmum(x),

where dm are the solutions of the system of equations comprised of k equations (if α′ = α)
or k – 1 equations (if α′ = α\{αi}) of the type

d1u(αj)
1 (a) + · · · + dnu(αj)

n (a) = 0,

n – k – 1 equations (if β ′ = β\{βi}) or n – k equations (if β ′ = β) of the type

d1u(βj)
1 (b) + · · · + dnu(βj)

n (b) = 0,
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and one equation

d1u(K (α′ ,β ′))
1

(
x∗) + · · · + dnu(K (α′ ,β ′))

n
(
x∗) = 1.

All coefficients of the system are continuous with respect to a and b, so that by Cramer’s
rule the solutions dm will be continuous with respect to a and b as long as the determinant
of the coefficient matrix does not vanish, which is exactly the necessary and sufficient
condition for (5) not to have a nontrivial solution such that y(K (α′ ,β ′))(x∗) = 0. �

We can start proving results on the sign of the solutions of (5).

Theorem 2 Let x∗ ∈ [a, b], and let us assume that for x ∈ [a, b]

aj(x) ≡ 0, j /∈ I
(
α′,β ′);

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))aj(x)aK (α′ ,β ′)(x) ≥ 0, j ∈ I
(
α′,β ′), 0 ≤ j < K

(
α′,β ′);

aK (α′ ,β ′)(x) �= 0,

(–1)m(α′ ,j)aj(x) ≤ 0, j ∈ I
(
α′,β ′), K

(
α′,β ′) < j < n.

(15)

Let us also suppose that the following boundary value problems

Lv = 0, x ∈ (
a′, b′); v(j)(a′) = 0, j ∈ α′ ∪ {

K
(
α′,β ′)};

v(j)(b′) = 0, j ∈ β ′;
(16)

Lw = 0, x ∈ (
a′, b′); w(j)(a′) = 0, j ∈ α′;

w(j)(b′) = 0, j ∈ β ′ ∪ {
K

(
α′,β ′)};

(17)

and

Lχ = 0, x ∈ (
a′, b′); χ (j)(a′) = 0, j ∈ α′; χ (j)(b′) = 0, j ∈ β ′;

χ (K (α′ ,β ′))(x∗) = 0;
(18)

do not have solutions other than the trivial one for any [a′, b′] ⊆ [a, b].
If y is a solution of (5) such that y(K (α′ ,β ′))(x∗) = 1, then each y(j)(x) does not change sign in

(a, b) for j ∈ I(α′,β ′) ∪ {n}, and such a sign is given by

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))y(j)(x) > 0, j = 0, . . . , K
(
α′,β ′), j ∈ I

(
α′,β ′), (19)

and

(–1)m(α′ ,j)aK (α′ ,β ′)(x)y(j)(x) < 0, j = K
(
α′,β ′) + 1, . . . , n, j ∈ I

(
α′,β ′) ∪ {n}. (20)

Proof Let us consider the problem (5) taking a′ and b′ (with [a′, b′] ⊆ [a, b]) as extremes
instead of a and b. Let us set a′ = x∗ (if x∗ = b, we could select a′ and x∗ as extremes and
repeat exactly the same argument that follows with a′ instead of b′). From Corollary 1, it
follows that there is a c > x∗ such that, if b′ < c, the derivatives of the nontrivial solutions



Almenar and Jódar Boundary Value Problems         (2022) 2022:50 Page 9 of 22

of that problem, whose orders satisfy (13) and (14), have a constant sign on (x∗, b′), and
all zeroes are isolated. Thus, let us set b′ < c. From Lemma 2 and Theorem 1, one has that
y(K (α′ ,β ′)) and y(n) neither vanish nor change the sign on [x∗, b′]. Given that we are imposing
the condition y(K (α′ ,β ′))(x∗) = 1 that implies that the sign of y(K (α′ ,β ′))(x) must be positive on
[x∗, b′].

Next, if y(j)(x∗) = 0 for some j ≤ n – 1, then obviously there exists δ > 0 such that
y(j)(x)y(j+1)(x) > 0 for x ∈ (x∗, x∗ + δ). On the contrary, if y(j)(x∗) �= 0 for some j ≤ n – 1, then
unless j = K(α′,β ′), y(j)(x) must have at least an isolated zero in (x∗, b′] due to Lemma 2 and
Corollary 1. Let xj be the minimum of these zeroes. Given that y(j+1) cannot have a zero in
(x∗, xj) (the only possible zeroes of y(j+1) in (x∗, b′) are those forced by Rolle’s theorem as
per Lemma 2 and Corollary 1), it follows

–y(j)(x∗) = y(j)(xj) – y(j)(x∗) =
∫ xj

x∗
y(j+1)(x) dx,

so that y(j)(x) and y(j+1)(x) must have opposite signs on (x∗, xj). Combining both cases, we
obtain that the sign of y(j)(x) for x ∈ (x∗, x∗ + δ) is given by

(–1)m(α′ ,j)y(j)(x)y(n)(x) > 0, j = K
(
α′,β ′) + 1, . . . , n – 1, (21)

and

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))y(j)(x) > 0, j = 0, . . . , K
(
α′,β ′). (22)

Following the reasoning of Theorem 1 and taking (1) into account, let us also suppose
that b′ is so close to x∗ that the sign of y(n)(x) is the same as that of –aK (α′ ,β ′)(x)y(K (α′ ,β ′))(x)
on (x∗, b′), that is, the same as –aK (α′ ,β ′)(x∗). This and (21) give

(–1)m(α′ ,j)aK (α′ ,β ′)
(
x∗)y(j)(x) < 0, j = K

(
α′,β ′) + 1, . . . , n, (23)

for x ∈ (x∗, x∗ + δ). For those derivative orders j ∈ I(α′,β ′), the signs given by (22) and (23)
will apply to the whole interval (x∗, b′) by the definition of I(α′,β ′), which means that (19)
and (20) hold for the extremes x∗, b′. Next, let us start gradually increasing b′ to b while a′

is kept fixed at a′ = x∗. Note that according to Lemma 3 and (18), y(j)(x) is continuous with
respect to b′ for 0 ≤ j ≤ n. Let us suppose that during that process, there appears a new
zero in any of the derivatives of y(j), 0 ≤ j ≤ n, x ∈ [x∗, b′]. Let b∗ ≤ b be the smallest value
of b′ for which such a new zero appears in any of these derivatives and l be the order of
such a derivative. We can have the following cases:

1. l < K(α′,β ′). By Rolle’s theorem and the facts that zj[x∗, b′] ≥ 1 for j < K(α′,β ′) and
b′ ≤ b∗ (that is, all these derivatives lower than the K(α′,β ′)-th have at least a zero in
[x∗, b∗] besides the new one) there should also be a change of sign of y(K (α′ ,β ′)) in
(x∗, b∗). By continuity, this zero of y(K (α′ ,β ′)) should have appeared for a b′ < b∗,
contradicting the definition of b∗, so this case is not possible.

2. K(α′,β ′) < l < n. Again by Rolle’s theorem and the fact that zj[x∗, b′] ≥ 1 for
K(α′,β ′) < j < n and b′ ≤ b∗, this new zero would force a change of sign of y(n) in
(x∗, b∗). By continuity of y(n) with b′ that change of sign should have been a zero in
y(n) for a b′ < b∗, contradicting the definition of b∗.
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3. l = K(α′,β ′). Here, we have three subcases:
• Either the zero appears at x∗ or at b∗, which is impossible since (16) and (17) have

only the trivial solution for any x∗, b′ ∈ [a, b] by hypothesis.
• Or the zero implies the change of sign of y(K (α′ ,β ′)) in (x∗, b∗). This is also

impossible, as that change of sign, by continuity, should have happened for a
b′ < b∗, contradicting the definition of b∗.

• Or such a zero is also a local extreme of y(K (α′ ,β ′)) in (x∗, b∗), let us call it d. But this
implies that y(K (α′ ,β ′)+1)(d) must also vanish, leading us to the reasoning of case 2.

4. l = n. Since the term aK (α′ ,β ′)(x)y(K (α′ ,β ′))(x) cannot vanish in [x∗, b∗], as per the
previous case, according to (1), (15), (19), and (20), this option is not possible either.

Generally, this means that no new zero will appear on [x∗, b′] in any of the derivatives of y
lower than or equal to the n-th as b′ grows up to b, so that Ej[a, b] will be as in Corollary 1.
Consequently, the derivatives whose orders belong to I(α′,β ′) and are lower than or equal
to K(α′,β ′) will keep the signs given by (22); whereas, those whose orders belong to I(α′,β ′)
but are higher than K(α′,β ′) will have signs determined by (23), that is, (19) and (20),
respectively, for x ∈ (x∗, b).

Repeating the same reasoning with the lower extreme a′ decreasing from x∗ to a, one
finally obtains (19) and (20) for x ∈ (a, b). �

Remark 2 Apart from the K(α′,β ′)-hyperdisfocality of the problem, the keys to ensure
the constant sign of the derivatives of y whose orders belong to I(α′,β ′) as b′ increases
(or a′ decreases), are the constant signs of y(K (α′ ,β ′)) and y(n) during the process. The first
one is achieved by the second one plus forcing that no extra zero appears at y(K (α′ ,β ′))(a′)
or y(K (α′ ,β ′))(b′) during the decrease of a′ and the growth of b′ (that is, (16) and (17)). The
way selected in this paper to achieve the latter is to make that all terms different from y(n)

in (1) have the same sign on (a′, b′), although any other mechanisms ensuring it would
work too. One must note that forcing that the boundary value problem (5) does have only
a trivial solution when either the condition y(n–1)(a′) = 0 or the condition y(n–1)(b′) = 0 are
added, does not suffice, since a zero of y(n–1)(x) that is simultaneously a local extreme could
appear in (a′, b′) as b′ grows (or a′ decreases) and become a component of different sign
for greater values of b′(lower values of a′).

Next, we will show that the condition aK (α′ ,β ′)(x) �= 0, x ∈ [a, b] can, in fact, be dropped.

Theorem 3 Let us assume that for x ∈ [a, b]

aj(x) ≡ 0, j /∈ I
(
α′,β ′);

(–1)m(α′ ,j)aj(x) ≤ 0, j ∈ I
(
α′,β ′), K

(
α′,β ′) < j ≤ n – 1,

(24)

and either

(–1)m(α′ ,j)aj(x) ≤ 0, j ∈ I
(
α′,β ′), 0 ≤ j ≤ K

(
α′,β ′), (25)

or

(–1)m(α′ ,j)aj(x) ≥ 0, j ∈ I
(
α′,β ′), 0 ≤ j ≤ K

(
α′,β ′). (26)
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Let us also assume that the hypotheses (16)–(17) hold. If y is a solution of (5) such that
y(K (α′ ,β ′))(x∗) = 1, with either x∗ = a or x∗ = b, then each y(j)(x) does not change sign on (a, b)
for j ∈ I(α′,β ′) ∪ {n}, and such a sign is given by

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))y(j)(x) > 0, j = 0, . . . , K
(
α′,β ′), j ∈ I

(
α′,β ′), (27)

and

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))y(j)(x) ≥ 0, j = K
(
α′,β ′) + 1, . . . , n, j ∈ I

(
α′,β ′) ∪ {n}, (28)

if (25) holds, and

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))y(j)(x) ≤ 0, j = K
(
α′,β ′) + 1, . . . , n, j ∈ I

(
α′,β ′) ∪ {n}, (29)

if (26) holds. Inequalities (28) and (29) are strict if there is a derivative order l ≤ K(α′,β ′)
such that al(x) does not vanish in (a, b). On the contrary, if all al(x) ≡ 0 for all l ≤ K(α′,β ′),
then y(j)(x) ≡ 0 on [a, b] for K(α′,β ′) < j ≤ n (note that these two options do not exhaust all
possible alternatives). In any case, the number of zeroes of y(j) in [a, b] is given by Zj{α′,β ′}– j
for j ≤ K(α′,β ′), and by Zj{α′,β ′} – j + 1 for K(α′,β ′) < j < n.

Proof If aK (α′ ,β ′)(x) �= 0 in [a, b], then the result follows from the previous theorem, so let
us assume that aK (α′ ,β ′)(x) vanishes in [a, b]. Let us pick ε > 0, and let us build the function
aK (α′ ,β ′),ε : [a, b] → R as

aK (α′ ,β ′),ε(x) =

⎧
⎨

⎩

(–1)m(α′ ,K (α′ ,β ′))+1 max{ε, |aK (α′ ,β ′)(x)|} if (25) holds,

(–1)m(α′ ,K (α′ ,β ′)) max{ε, |aK (α′ ,β ′)(x)|} if (26) holds.
(30)

aK (α′ ,β ′),ε is obviously continuous on [a, b], so that we can replace aK (α′ ,β ′)(x) by aK (α′ ,β ′),ε(x)
in the definition of the operator L and obtain the operator

Lεy = y(n)(x) + an–1(x)y(n–1)(x) + · · · + aK (α′ ,β ′),ε(x)y(K (α′ ,β ′))(x) + · · · + a0(x)y(x),

x ∈ J . (31)

Let yε be the solution of the boundary value problem similar to (5)

Lεyε = 0, x ∈ [a, b];

y(j)
ε (a) = 0, j ∈ α′; y(j)

ε (b) = 0, j ∈ β ′; y(K (α′ ,β ′))
ε

(
x∗) = 1. (32)

We will prove first that yε is continuous with respect to ε at ε = 0. For that let us recall
that, if um, 1 ≤ m ≤ n, are defined as in Theorem 1, and um,ε , 1 ≤ m ≤ n, are the solutions
of Lεu = 0 satisfying

u(s–1)
m,ε (a) = δms, 1 ≤ m, s ≤ n, (33)
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then the solutions of (5) (plus y(K (α′ ,β ′))(x∗) = 1) and (32) are given by

y = c1u1 + · · · + cnun, x ∈ [a, b], (34)

and

yε = c1,εu1,ε + · · · + cn,εun,ε , x ∈ [a, b], (35)

respectively. The functions um,ε , 1 ≤ m ≤ n, and their derivatives of order up to the n-th
are continuous with respect to ε at ε = 0. This can be proven using Gronwall inequality.
To do so, let wm,ε be defined by

wm,ε(x) = um,ε(x) – um(x), x ∈ [a, b], 1 ≤ m ≤ n. (36)

Let us construct the vectors Wm,ε , Um,ε and Um ∈R
n×1 as

Wm,ε =

⎛

⎜
⎜
⎜
⎝

wm,ε(x)
w′

m,ε(x)
· · ·

w(n–1)
m,ε (x)

⎞

⎟
⎟
⎟
⎠

, Um,ε =

⎛

⎜
⎜
⎜
⎝

um,ε(x)
u′

m,ε(x)
· · ·

u(n–1)
m,ε (x)

⎞

⎟
⎟
⎟
⎠

, Um =

⎛

⎜
⎜
⎜
⎝

um(x)
u′

m(x)
· · ·

u(n–1)
m (x)

⎞

⎟
⎟
⎟
⎠

, (37)

and the matrices M, Mε ∈R
n×n as

Mε =

⎛

⎜
⎜
⎜
⎝

0 1 0 . . . . . . . . . 0
0 0 1 . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .

–a0(x) –a1(x) –a2(x) . . . –aK (α′ ,β ′),ε(x) . . . –an–1(x)

⎞

⎟
⎟
⎟
⎠

(38)

and

M =

⎛

⎜
⎜
⎜
⎝

0 1 0 . . . . . . . . . 0
0 0 1 . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .

–a0(x) –a1(x) –a2(x) . . . –aK (α′ ,β ′)(x) . . . –an–1(x)

⎞

⎟
⎟
⎟
⎠

. (39)

Obviously one has U ′
m,ε = MεUm,ε , U ′

m = MUm and Wm,ε(a) = Um,ε(a) – Um(a) = (0, . . . , 0)T .
In addition,

W ′
m,ε(x) = MεWm,ε(x) + (Mε – M)Um, (40)

that is

Wm,ε(x) =
∫ x

a
Mε(t)Wm,ε(t) dt +

∫ x

a
(Mε – M)(t)Um(t) dt. (41)

Applying matrix norms to (41) and taking (30) into account gives

∥
∥Wm,ε(x)

∥
∥ ≤

∫ x

a

∥
∥Mε(t)

∥
∥
∥
∥Wm,ε(t)

∥
∥dt +

∫ x

a

∣
∣aK (α′ ,β ′),ε(t) – aK (α′ ,β ′)(t)

∣
∣
∥
∥Um(t)

∥
∥dt
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≤
∫ x

a

∥
∥Mε(t)

∥
∥
∥
∥Wm,ε(t)

∥
∥dt + ε

∫ x

a

∥
∥Um(t)

∥
∥dt. (42)

From Gronwall inequality [28], one finally gets

∥
∥Wm,ε(x)

∥
∥ ≤ ε

∫ x

a

∥
∥Um(t)

∥
∥dt + ε

∫ x

a

∥
∥Mε(t)

∥
∥

∫ t

a

∥
∥Um(s)

∥
∥ds exp

(∥
∥Mε(t)

∥
∥
)

dt,

x ∈ [a, b]. (43)

The inequality (43) clearly shows that um,ε and its derivatives up to the (n – 1)-th order
(indeed up to the n-th order if we consider (31) and the fact that um,ε satisfy Lεum,ε = 0)
tend uniformly to um and its derivatives, respectively, in [a, b], when ε tends to zero.

Next, (32), (33), and (35) imply that cm,ε = 0, for m – 1 ∈ α′, and that the remaining cm,ε ,
m – 1 /∈ α′, must satisfy

n∑

m=1,m–1 /∈α′
cm,εu(βj)

m,ε(b) = 0, βj ∈ β ′;
n∑

m=1,m–1 /∈α′
cm,εu(K (α′ ,β ′))

m,ε
(
x∗) = 1. (44)

This is a system of equations whose coefficient matrix determinant is composed by prod-
ucts of u(βj)

m,ε(b) and u(K (α′ ,β ′))
m,ε (x∗) terms, which, in turn, tend to u(βj)

m (b) and u(K (α′ ,β ′))
m (x∗),

when ε tends to zero as per the previous discussion. The corresponding determinant
with u(βj)

m (b) and u(K (α′ ,β ′))
m (x∗) terms instead does not vanish as otherwise, it would vio-

late (16)–(17), so one can find an ε small enough such that the determinant of the system
(44) does not vanish either. Therefore, one can apply Cramer’s rule to (44) and deduce that
the solutions cm,ε tend to the respective cm, when ε tends to zero.

From the fact that

y(j)
ε (x) – y(j)(x) =

n∑

m=1

(cm,ε – cm)u(j)
m,ε +

n∑

m=1

cm
(
u(j)

m,ε – u(j)
m

)
,

one concludes that y(j)
ε (x) tends to y(j)(x) uniformly on [a, b], when ε tends to zero for 0 ≤

j ≤ n.
From Theorem 2 and the hypotheses of the present Theorem, it is clear that if ε �= 0,

then yε satisfies (19)–(20). The continuity of all y(j) at ε = 0 grants (28) and

(–1)m(α′ ,j)–m(α′ ,K (α′ ,β ′))y(j)(x) ≥ 0, j = 0, . . . , K
(
α′,β ′), j ∈ I

(
α′,β ′), x ∈ (a, b), (45)

if the signs of the coefficients aj(x), j ≤ K(α′,β ′), are given by (25). However, as in the
previous Theorem, (45) must be strict (that is, (27)). To prove this, if (45) was not strict,
because of Lemma 1 and (7), y(K (α′ ,β ′)) would have a zero on [a, b]. If that zero was at a or
b, then this would violate (16) or (17), respectively. Otherwise, the zero of y(K (α′ ,β ′)) would
be in (a, b), and it would be a local extreme, so that y(K (α′ ,β ′)+1) should also vanish there. By
Rolle’s theorem, this additional zero of y(K (α′ ,β ′)+1) in (a, b) would force a change of sign of
y(n) in (a, b), violating (28).

Likewise, the continuity of all y(j) at ε = 0 ensures (27) and (29) if the signs of the coeffi-
cients aj(x), j ≤ K(α′,β ′), are given by (26).
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Next, if there is a derivative order l ≤ K(α′,β ′) such that al(x) does not vanish in (a, b),
from (1) and the fact that l ∈ I(α′,β ′) (otherwise, al ≡ 0 as per (24)), one has that y(n) cannot
vanish in (a, b), having the same sign in that interval. This prevents zero components and
additional zeroes in derivatives of the lower order in [a, b], so that (28) and (29) are strict.
On the contrary, if all al(x) ≡ 0 for l ≤ K(α′,β ′) then y(j)(x) ≡ 0, K(α′,β ′) < j ≤ n, on [a, b].
The reason is that (5) can be converted into a boundary value problem of order n–K(α′,β ′)
with n – K(α′,β ′) boundary conditions just by considering the derivatives y(j), K(α′,β ′) <
j ≤ n. That problem has only the trivial solution, which gives y(K (α′ ,β ′)) ≡ 1. If there was
another solution, then the difference between this one and the one given by y(K (α′ ,β ′)) ≡ 1
would violate (16)–(17).

Last, given that y(K (α′ ,β ′)) does not vanish in [a, b], from Lemma 1 Ej[a, b] = 0 for l ≤
K(α′,β ′) and therefore zj[a, b] = Zj{α′,β ′} – j for such derivatives. In addition, one can re-
peat the same reasoning of Lemma 2 to obtain Ej[a, b] ≥ 1 for all j > K(α′,β ′). If Ej[a, b] > 1
for some j > K(α′,β ′), from Lemma 1 and (7) one would get zn–1[a, b] > 1, and by Rolle’s
theorem there would be a change of signs of y(n) in (a, b), contradicting (28)–(29). There-
fore, Ej[a, b] = 1 for all j > K(α′,β ′), and from (7), it follows zj[a, b] = Zj{α′,β ′} – j + 1. This
completes the proof. �

Remark 3 In the previous Theorem, the existence of a single index l ≤ K(α′,β ′) such
that al(x) does not vanish in [a, b] can be replaced by the existence of several indices
l ≤ K(α′,β ′), l ∈ I(α′,β ′), such that each al(x) does not vanish in a subinterval of [a, b],
and the union of all these subintervals covers [a, b].

Interestingly, we can also drop one of the conditions (16)–(17) in Theorem 3 without
altering its outcome.

Theorem 4 The conclusions of Theorem 3 are valid for (α′,β ′) = (α\αi,β), y(K (α\αi ,β))(a) = 1
and hypotheses (24) and (26) if one replaces hypotheses (16)–(17) by only (16). Likewise,
they are also valid for (α′,β ′) = (α,β\βi), y(K (α,β\βi))(b) = 1 and hypotheses (24) and (25) if
one replaces hypotheses (16)–(17) by only (17).

Proof Let us suppose that (α′,β ′) = (α\αi,β) and y(K (α\αi ,β))(a) = 1. Let us also suppose that
(17) was violated for some a′, b′ ∈ (a, b) for which (16) holds, and hypotheses (16), (17),
(24), and (26) hold for all pairs a′′, b′ such that a′ < a′′ < b′. In that case, (27) and (29) must
be met for the solution of (5) associated to the extremes a′′, b′. Given that K(α\{αi},β) /∈ α,
m(α, K(α\αi,β)) = m(α, K(α\αi,β) + 1) + 1, so that y(K (α\αi ,β))(x) and y(K (α\αi ,β)+1)(x) must
have the same sign in (a′′, b′). From Lemma 3, we know that y(K (α\αi ,β)+1)(x) is continuous
with respect to a′′ if (16) holds, regardless of (17), that is, even in the case of a′′ = a′. But,
if (17) is violated, y(K (α\αi ,β))(b′) = 0, y(K (α\αi ,β))(x) > 0 for x < b′ and therefore y(K (α\αi ,β))(x)
must be positive and decreasing at least on a subinterval of (a′′, b′), contradicting the fact
that y(K (α\αi ,β))(x) and y(K (α\αi ,β)+1)(x) must have the same sign in (a′′, b′).

The proof for the case (α′,β ′) = (α,β\βi) is similar and will not be repeated. �

3 The sign of the partial derivatives of the Green function
In this section, we will apply the results of the preceding section to determine the signs
of the partial derivatives of G(x, t) with regards to x. As in the previous section, we will
assume that {α,β} are poised. We will also assume that the boundary value problem (2)



Almenar and Jódar Boundary Value Problems         (2022) 2022:50 Page 15 of 22

does not have a nontrivial solution, as this is a necessary condition for the existence of
G(x, t).

To start with, the next Lemma (see [2, Lemma 2]) assesses the dependence of G(x, t) and
its partial derivatives with regards to the extremes a and b. Note that by definition, ∂G

∂a and
∂G
∂b have all derivatives up to the n-th order continuous for x ∈ [a, b].

Lemma 4 Fixed t ∈ [a, b], ∂G(x,t)
∂b is the solution of the problem

L
∂G
∂b

= 0, x ∈ (a, b);

∂ j

∂xj
∂G(a, t)

∂b
= 0, j ∈ α; (46)

∂ j

∂xj
∂G(b, t)

∂b
= –

∂ j+1G(b, t)
∂xj+1 , j ∈ β .

Likewise, ∂G(x,t)
∂a is the solution of the problem

L
∂G
∂a

= 0, x ∈ (a, b);

∂ j

∂xj
∂G(a, t)

∂a
= –

∂ j+1G(a, t)
∂xj+1 , j ∈ α;

∂ j

∂xj
∂G(b, t)

∂a
= 0, j ∈ β .

(47)

The lack of nontrivial solutions of (2) allows decomposing ∂G
∂b as

∂G(x, t)
∂b

=
n–k∑

i=1

hβi (x, t), (48)

where, fixed t ∈ [a, b], hβi (x, t) is the solution of

Lhβi = 0, x ∈ (a, b); h(j)
βi

(a, t) = 0, j ∈ α;

h(j)
βi

(b, t) = 0, j ∈ β\βi; h(βi)
βi

(b, t) = –
∂βi+1G(b, t)

∂xβi+1 .
(49)

Note that if βi +1 ∈ β then hβi (x, t) ≡ 0. That implies that we only need to take into account
those βi such that βi + 1 /∈ β . Similarly,

∂G(x, t)
∂a

=
k∑

i=1

gαi (x, t), (50)

where, fixed t ∈ [a, b], gαi (x, t) is the solution of

Lgαi = 0, x ∈ (a, b); g(j)
αi

(b, t) = 0, j ∈ β ;

g(j)
αi

(a, t) = 0, j ∈ α\αi; g(αi)
αi

(a, t) = –
∂αi+1G(a, t)

∂xαi+1 .
(51)
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As before, if αi + 1 ∈ α, then gαi (x, t) ≡ 0, so that we only need to take into account those
αi such that αi + 1 /∈ α.

The advantage of the aforementioned decomposition is that each of problems (49) and
(51) has the same structure as problem (5). If we manage to find conditions that allow that,
fixed the derivative order j, all h(j)

βi
have the same sign, such a sign will coincide with that

of ∂ j

∂xj
∂G
∂b (a similar reasoning can be made with g(j)

αi (x, t) and ∂ j

∂xj
∂G
∂a ). The next lemmas will

explore that.

Lemma 5 Given βi ∈ β with βi + 1 /∈ β , let us assume that

(–1)n(β ,βi+1) ∂
βi+1G(b, t)
∂xβi+1 > 0. (52)

Let us also assume that for x ∈ [a, b]

aj(x) ≡ 0, j /∈ I(α,β\βi);

(–1)m(α,j)aj(x) ≤ 0, j ∈ I(α,β\βi),
(53)

and that (17) holds for (α′,β ′) = (α,β\βi). Then, for j ∈ I(α,β\βi), one has

(–1)m(α,j)h(j)
βi

(x, t) > 0, 0 ≤ j ≤ K(α,β\βi), a < x < b, (54)

and

(–1)m(α,j)h(j)
βi

(x, t) ≥ 0, K(α,β\βi) < j ≤ n – 1, a < x < b. (55)

If there exists an index l ≤ K(α,β\βi) such that al(x) does not vanish in [a, b], then the
inequality (55) is strict.

Proof In this case, {α′,β ′} = {α,β\βi}. Given that α′ = α, it is clear that m(α′, j) = m(α, j), so
that the conditions (17) and (24)–(25) of Theorems 3 and 4 hold for the set {α,β\βi}, with
the exception of h(K (α,β\βi))

βi
(b, t) = 1. The linearity of the problem, however, implies that the

signs of the derivatives of h(j)
βi

(x, t) will be given by the product of the sign of h(K (α,β\βi))
βi

(b, t)
and those of (27)–(28).

In effect, from (49) and (52), one has that (–1)n(β ,βi+1)h(βi)
βi

(b, t) < 0. Following an ar-
gument similar to that of Theorem 2 on the changes of sign of y(i)(x) and y(i+1)(x)
for x ∈ (b – δ, b) only happening when y(i)(b) = 0, it is straightforward to show that
(–1)n(β ,K (α,β\βi))h(K (α,β\βi))

βi
(b, t) < 0. Next, the definition of K(α,β\βi) implies that

ZK (α,β\βi){α,β\βi} = K(α,β\βi). This means that the sum of the vanishing boundary con-
ditions at a and b for derivatives of order higher than K(α,β\βi) is n – 1 – K(α,β\βi).
Since the number of derivative orders between the K(α,β\βi) one (not included) and
n – 1 (included) is also n – 1 – K(α,β\βi), this gives n(β , K(α,β\βi)) = m(α, K(α,β\βi) + 1).
As K(α,β\βi) /∈ α, m(α, K(α,β\βi)) = m(α, K(α,β\βi) + 1) + 1, and one concludes that
(–1)m(α,K (α,β\βi))h(K (α,β\βi))

βi
(b, t) > 0. Combining this result with (27)–(28), one gets to (54)

and (55). As in Theorem 3, if there exists an index l ≤ K(α,β\βi) such that al(x) does not
vanish in [a, b], then inequality (55) is strict. �

In a similar manner one can prove the following Lemma for gαi (x, t).
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Lemma 6 Given αi ∈ α with αi + 1 /∈ α, let us assume that

(–1)m(α,αi+1) ∂
αi+1G(a, t)
∂xαi+1 > 0. (56)

Let us also assume that for x ∈ [a, b]

aj(x) ≡ 0, j /∈ I(α\αi,β), or αi < j ≤ K(α\αi,β),

(–1)m(α,j)aj(x) ≤ 0, j ∈ I(α\αi,β),
(57)

and that (16) holds for (α′,β ′) = (α\αi,β). Then, for j ∈ I(α\αi,β), one has

(–1)m(α,j)g(j)
αi

(x, t) < 0, 0 ≤ j ≤ αi, a < x < b, (58)

(–1)m(α,j)g(j)
αi

(x, t) > 0, αi < j ≤ K(α\αi,β), a < x < b, (59)

and

(–1)m(α,j)g(j)
αi

(x, t) ≤ 0, K(α\αi,β) < j ≤ n – 1, a < x < b. (60)

If there exists an index l ≤ K(α\αi,β) such that al(x) does not vanish in [a, b], then inequal-
ity (60) is strict.

Proof It can be proved similarly to the previous one using (26), (27), and (29) in Theorems
3 and 4 and noting that (–1)m(α\αi ,K (α\αi ,β))g(K (α\αi ,β))

αi (a, t) > 0. �

Next, we will prove a short lemma that will be used in later calculations.

Lemma 7 If j ∈ H(α,β) and j /∈ β , then n(β , j) = m(α, j).

Proof From the definition of H(α,β), it follows that if j ∈ H(α,β), then Zj–1{α,β} = j, so
that the number of boundary conditions set at a and b in derivatives of order higher than
j – 1 is n – j. In consequence, n(α, j – 1) + n(β , j – 1) = n – j. On the other hand, n(α, j – 1) +
m(α, j) = n – 1 – (j – 1) = n – j also, so that m(α, j) = n(β , j – 1). Since j /∈ β , then n(β , j – 1) =
n(β , j), and one concludes that m(α, j) = n(β , j). �

Lemmas 5 and 6 suggest an alignment of signs between the functions h(j)
βi

(x, t) and
g(j)
αi (x, t). This alignment is confirmed by the next Lemma.

Lemma 8 Let us assume that

(–1)n(β ,j) ∂
jG(b, t)
∂xj > 0, 0 ≤ j ≤ n – 1, j /∈ β , (61)

and

(–1)m(α,j) ∂
jG(a, t)
∂xj > 0, 1 ≤ j ≤ n – 1, j /∈ α. (62)
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Let us also assume that for x ∈ [a, b]

(–1)m(α,j)aj(x) ≤ 0, j ∈ H(α,β),

aj(x) ≡ 0, j /∈ H(α,β),
(63)

that there is an index l ∈ H(α,β), with l < min(α∗,β∗), such that al(x) does not vanish in
[a, b], and that (2) and the following boundary value problems

Lw = 0, x ∈ (
a′, b′); w(j)(a′) = 0, j ∈ α;

w(j)(b′) = 0, j ∈ {β\βi} ∪ {
K(α,β\βi)

}
,

(64)

for 1 ≤ i ≤ n – k and βi + 1 /∈ β , and

Lv = 0, x ∈ (
a′, b′); v(j)(a′) = 0, j ∈ {α\αi} ∪ {

K(α\αi,β)
}

;

v(j)(b′) = 0, j ∈ β ,
(65)

for 1 ≤ i ≤ k and αi + 1 /∈ α, do not have solutions other than the trivial one for any a′, b′ ∈
[a, b]. Then

(–1)m(α,j) ∂ j

∂xj
∂G(x, t)

∂b
> 0, j ∈ H(α,β), a < x < b. (66)

and

(–1)m(α,j) ∂ j

∂xj
∂G(x, t)

∂a
< 0, j ∈ H(α,β), a < x < b. (67)

Proof We will prove first that if j ∈ H(α,β), then j ∈ I(α,β\βi), 1 ≤ i ≤ n – k. Thus, the
definition of H(α,β) tells us that any index j that is part of that set must satisfy

Zj–1{α,β} = j.

If j ≤ βi, then Zj–1{α,β\βi} = j, and therefore j satisfies (13), so that j ∈ I(α,β\βi). Likewise,
if j > K(α,β\βi), then Zj–1{α,β\βi} = j – 1, and j satisfies (14). Therefore, j ∈ I(α,β\βi) also.
There cannot be j ∈ H(α,β) such that βi < j ≤ K(α,β\βi), as otherwise, Zj–1{α,β\βi} =
j – 1, which contradicts the definition of K(α,β\βi). In the same way, one can prove that if
j ∈ H(α,β), then j ∈ I(α\αi,β). As a result, the hypothesis (63) implies conditions (53) and
(57) for each set {α,β\βi}, 1 ≤ i ≤ n – k, and {α\αi,β}, 1 ≤ i ≤ k, respectively. From here,
(61)–(62), and (64)–(65), it is obvious that most of the conditions of Lemmas 5 and 6 are
met for each set {α,β\βi}, 1 ≤ i ≤ n – k, and {α\αi,β}, 1 ≤ i ≤ k, respectively.

If max(αk ,βn–k) < n – 1, then (61) and (62) grant (52) and (56) (that is, the remaining
conditions of Lemmas 5 and 6) are also met. The definition of β∗, in this case, and the
fact that there exists an index l ∈ H(α,β), with l < min(α∗,β∗), such that al(x) does not
vanish in [a, b], give that inequalities (55) and (60) are strict for h(j)

βn–k
(x, t) and g(j)

αk (x, t),
respectively.

Otherwise, let us assume βn–k = n – 1. From (1), Lemma 7, (61), and (63), one has that
∂nG(b,t)

∂xn ≥ 0. If the index l /∈ β , then ∂nG(b,t)
∂xn > 0, the remaining condition (52) for βn–k is
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met, and the inequality (54) for hβn–k (x, t), which is strict, will apply to all derivative orders
j ∈ H(α,β). On the contrary, if the index l ∈ β , then ∂nG(b,t)

∂xn may be zero depending on the
values of aj(b), but even so (in which case hβn–k (x, t) ≡ 0) there must be another βm such
that aβm (x) does not vanish in [a, b] and inequality (55) for hβm (x, t) will be strict and will
apply to all derivative orders j ∈ H(α,β). Thus, in both cases we have strict inequalities for
some h(j)

βi
(x, t) and all j ∈ H(α,β).

A similar result can be obtained for g(j)
αi (x, t) if αk = n – 1.

Applying Lemma 5 to the decomposition (48), taking into account that at least for
one hβi the inequalities are strict for all j ∈ H(α,β), one gets (66). Likewise, applying
Lemma 6 to the decomposition (50) and noting as before that no j ∈ H(α,β) can meet
αi < j ≤ K(α\αi,β), 1 ≤ i ≤ k, one obtains (67). �

By Lemma 8 and following an argument analogous to that used in [2, Theorem 6], one
can finally determine the searched signs.

Theorem 5 Let us assume that the hypotheses (63)–(65) hold, and there is an index l ∈
H(α,β), with l < min(α∗,β∗), such that al(x) does not vanish in [a, b]. Then, one has

(–1)m(α,j) ∂
jG(a, t)
∂xj > 0, 0 ≤ j ≤ n – 1, j /∈ α, (68)

(–1)n(β ,j) ∂
jG(b, t)
∂xj > 0, 0 ≤ j ≤ n – 1, j /∈ β , (69)

and

(–1)m(α,j) ∂
jG(x, t)
∂xj > 0, j ∈ H(α,β), a < x < b. (70)

Proof We will first assess the case Ly = 0 is disfocal on [a, b], dividing the proof in two
subcases: x > t and x < t.

Thus, let us suppose in the first place that x > t. We can write

∂ jGab(x, t)
∂xj =

∂ jGax(x, t)
∂xj +

∫ b

x

∂ j

∂xj
∂Gas(x, t)

∂s
ds, a ≤ t < x ≤ b. (71)

From the boundary conditions of (2), one has that ∂ jGax(x,t)
∂xj = 0 for j ∈ β . Analogously, from

[2, Theorem 3] and the disfocality of Ly = 0 on [a, x] ⊂ [a, b], one has that

(–1)n(β ,j) ∂
jGax(x, t)

∂xj > 0, j /∈ β , j < n, (72)

which from Lemma 7, for j ∈ H(α,β), is equivalent to

(–1)m(α,j) ∂
jGax(x, t)

∂xj > 0, j /∈ βj < n. (73)

Inequality (72) ensures condition (61) of Lemma 8. All in all, from (66), (71), and (73) one
obtains (70).
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Let us suppose now that x < t. As before, one can write

∂ jGab(x, t)
∂xj =

∂ jGxb(x, t)
∂xj –

∫ x

a

∂ j

∂xj
∂Gsb(x, t)

∂s
ds, a ≤ x < t ≤ b. (74)

Again from the boundary conditions α, [2, Theorem 3], and the disfocality of Ly = 0 on
[a, x] ⊂ [a, b], one has that

(–1)m(α,j) ∂
jGxb(x, t)

∂xj > 0, j /∈ α;
∂ jGxb(x, t)

∂xj = 0, j ∈ α. (75)

From (67), (74), and (75), one gets to (70).
In conclusion, one has that (68)–(70) are valid when Ly = 0 is disfocal on [a, b]. Let c be

the supremum of the values of b that ensure the disfocality, let us fix a, and t ∈ (a, c), and
let us start increasing b and surpass c. Following a similar argument as before and taking
into account that

∂ jGab(x, t)
∂xj =

∂ jGax(x, t)
∂xj +

∫ b

x

∂ j

∂xj
∂Gas(x, t)

∂s
ds, a ≤ t < x ≤ b,

and (66), one can show that if the sign of ∂ jGab′ (b′ ,t)
∂xj complies with (69), for any b′ ∈ [c, b],

then (70) will hold for x ∈ [a, b]. But given that ∂ jGab′ (x,t)
∂xj is continuous with regards to b′

(in fact, it is differentiable as per Lemma 4), for ∂ jGab′ (b′ ,t)
∂xj to change sign for j /∈ β , when b′

grows to b, it must vanish at some b′. Let b∗ the lowest value of b′ for which that happens for
a j /∈ β . Following the same reasoning as in Lemma 1, the poisedness of {α,β} and Rolle’s
theorem imply that ∂n–1G(x,t)

∂xn–1 must have either a zero at a or b∗ (if defined by the boundary
conditions {α,β}) and a change of sign in (a, b∗), or two changes of sign in (a, b∗). Since
∂n–1G(x,t)

∂xn–1 has only one discontinuity point at x = t, with a positive jump, ∂nG(x,t)
∂xn must be

negative in an interval of nonzero measure within (a, b∗). But this is not possible due to
(63), the continuity of ∂nGab′ (x,t)

∂xn with respect to b′ at b′ = b∗ and the fact that all ∂ jGab′ (x,t)
∂xj ,

j ∈ H(α,β), have their signs for x ∈ [a, b′] given by (70) for b′ < b∗. Therefore, such a new
zero or change of sign of ∂ jGab′ (b′ ,t)

∂xj cannot appear at any b′ = b∗ ≤ b, and the signs of ∂ jG(x,t)
∂xj

for x ∈ [a, b], 0 ≤ j ≤ n – 1 must be given by (68)–(70).
The reasoning can be repeated with a decreasing, which makes the placement of t ∈

[a, b] irrelevant given that we could fix t first and build the previous arguments in the
same way. This completes the proof. �

Remark 4 Theorem 5 improves [2, Theorem 6] as it increases significantly the number
of the partial derivatives ∂ jG(x,t)

∂xj for which a sign can be provided in comparison with the
latter.

Finally, for the strongly poised case, one has the following result

Theorem 6 Let us assume that for x ∈ [a, b]

(–1)m(α,j)aj(x) ≤ 0, 0 ≤ j ≤ n – 1, (76)
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and there is an index l < min(α∗,β∗), such that al(x) does not vanish in [a, b]. Let us also
assume that (2) does not have solutions other than the trivial one for any extremes a′, b′ ∈
[a, b]. Then

(–1)m(α,j) ∂
jG(a, t)
∂xj > 0, 0 ≤ j ≤ n – 1, j /∈ α, (77)

(–1)m(α,j) ∂
jG(b, t)
∂xj > 0, 0 ≤ j ≤ n – 1, j /∈ β , (78)

and

(–1)m(α,j) ∂
jG(x, t)
∂xj > 0, 0 ≤ j ≤ n – 1, a < x < b. (79)

Proof The proof follows immediately from Theorem 5 on noting that in the strongly
poised case all derivative orders j, 0 ≤ j ≤ n – 1, belong to H(α,β), βi = K(α,β\βi),
1 ≤ i ≤ n – k, and αi = K(α\αi,β), 1 ≤ i ≤ k. �

Remark 5 Theorem 6 improves [2, Theorem 7] as it holds for any combination of strongly
poised conditions in comparison with the latter.

4 Conclusions
This paper has presented conditions that permit identifying the partial derivatives of the
Green function of (2) that have a constant sign on (a, b), and has also provided their signs,
extending the results of [2, Theorems 6 and 7] and removing some of the limitations of that
paper. This information is relevant to know the properties of solutions of problems of the
type (3) when f does not change sign, and also allows extending many results of the cone
theory to problems like (4). The paper has also introduced the concept of hyperdisfocality,
which can become a very useful tool to assess the zeroes of the derivatives of boundary
value problems, in general, and it has provided signs for the derivatives of the solutions of
boundary value problems with n – 1 boundary conditions too. All these findings are new,
as far as the authors are aware.

The main limitations of the results displayed here are related to the sign requirements of
the coefficients ai(x) displayed on Theorems 5 and 6, which are needed to grant a constant
sign on the n-th partial derivative. However, as indicated in Remark 2, other mechanisms
that granted such a constant sign would also work. This is a possible area for further future
research.
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