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Abstract
This paper is devoted to investigating the initial boundary value problem for a
semilinear wave equation with strong damping and scattering damping on an
exterior domain. By introducing suitable multipliers and applying the test-function
technique together with an iteration method, we derive the blow-up dynamics and
an upper-bound lifespan estimate of the solution to the problem with power-type
nonlinearity |u|p , derivative-type nonlinearity |ut|p, and combined type nonlinearities
|ut|p + |u|q in the scattering case, respectively. The novelty of the present paper is that
we establish the upper-bound lifespan estimate of the solution to the problem with
strong damping and scattering damping, which are associated with the well-known
Strauss exponent and Glassey exponent.
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1 Introduction
In the present paper, we mainly consider the following initial boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u – �ut + μ

(1+t)β ut = f (u, ut), x ∈ �c, t > 0,

u(x, 0) = εu0(x), ut(x, 0) = εu1(x), x ∈ �c,

u|∂�c = 0, t > 0,

(1.1)

where � =
∑n

i=1
∂2

∂x2
i

, μ > 0, β ≥ 1, f (u, ut) = |u|p, |ut|p, |ut|p + |u|q for 1 < p, q < ∞, � = B1(0)
is the unit ball in R

n, �c = R
n\B1(0) (n ≥ 1). The initial data u0(x) ∈ H1(�c), u1(x) ∈ L2(�c)

are compactly supported functions and supp(u0(x), u1(x)) ⊂ BR(0) ∩ �c, where BR(0) =
{x||x| ≤ R}, R > 2. ε ∈ (0, 1) is a small parameter.

In recent years, many researchers are interested in exploring blow-up results and lifes-
pan estimates of solutions to the semilinear wave equation. The following classical Cauchy
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problems without damping

⎧
⎨

⎩

ut – �u = |u|p, x ∈R
n, t > 0,

u(x, 0) = u0(x), x ∈R
n

(1.2)

and
⎧
⎨

⎩

utt – �u = f (u, ut), x ∈R
n, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈R
n

(1.3)

have been studied extensively (see [1–17]). It is worth noting that problem (1.2) admits the
Fujita exponent pF (n) = 1 + 2

n . Fujita [3] shows that the solution to problem (1.2) blows up
in finite time when 1 < p < pF (n), while there exists a global solution when p > pF (n). Xu
and Su [14] discuss the asymptotic behavior of the solution to problem (1.2) with strong
damping on the exterior domain. Global existence and the blow-up dynamics of solu-
tion are verified under certain assumptions on the initial value. The problem (1.3) with
f (u, ut) = |u|p asserts the Strauss exponent pS(n). If n = 1, pS(n) = ∞. If n ≥ 2, pS(n) is the
positive root of the quadratic equation

r(p, n) = –(n – 1)p2 + (n + 1)p + 2 = 0.

John [7] establishes the blow-up result of solution in the case 1 < p < pS(3) and the exis-
tence of a global solution in the case p > pS(3). Zhou and Han [17] consider the blow-up
dynamics and the upper-bound lifespan estimate of the solution to the variable-coefficient
wave equation with f (u, ut) = |u|p by applying the test-function method and the Kato
lemma when n ≥ 3. Nonexistence of a global solution to problem (1.3) with f (u, ut) = |u|p
in the critical case p = pS(n)(n ≥ 4) is demonstrated by taking advantage of the Kato lemma
(see [15]). Han [4, 5] investigates the nonexistence of a global solution and the upper-
bound lifespan estimate of the solution to the variable-coefficient wave equation with
f (u, ut) = |u|p by using the Kato lemma when n = 1, 2. Wakasa and Yordanov [13] ver-
ify the sharp lifespan estimate of the solution in the critical case p = pS(n)(n ≥ 2). The
strategy of proof is based on the test-function method and an iteration technique. Lai et
al. [8] acquire local well-posedness and an upper-bound lifespan estimate of the solution
to problem (1.3) with f (u, ut) = |u|p(1 < p ≤ pS(2)) on an asymptotically Euclidean exte-
rior domain. The Cauchy problem (1.3) with f (u, ut) = |ut|p affirms the Glassey exponent
pG(n). When n = 1, pG(n) = ∞. When n ≥ 2, pG(n) = n+1

n–1 . Zhou [16] illustrates the blow-
up phenomenon and the upper-bound lifespan estimate of the solution to problem (1.3)
with f (u, ut) = |ut|p. Zhou and Han [17] establish the upper-bound lifespan estimate of
the solution to the variable-coefficient wave equation with f (u, ut) = |ut|p by deriving an
ordinary differential inequality. Han and Zhou [6] employ the Kato lemma to present the
blow-up dynamics for problem (1.3) with f (u, ut) = |ut|p + |u|q.

Let us turn our attention to the following problem with a damping term

⎧
⎨

⎩

utt – �u + μ

(1+t)β ut = 0, x ∈R
n, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈R
n.

(1.4)
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The behaviors of the solution are divided into four cases according to the decay rate β .
When β ∈ (–∞, –1), the damping term is overdamping, which means that the solution
dose not decay to zero when t → ∞. When β ∈ [–1, 1), the damping term is effective and
the solution behaves like that of the heat equation. When β = 1, the damping term is scale
invariant by imposing the scaling u(x, t) = u(λx,λ(1 + t) – 1)(λ > 0). When β ∈ (1,∞), the
solution scatters to the free-wave equation when t → ∞. This is the scattering case. The
corresponding nonlinear damped wave equation

⎧
⎨

⎩

utt – �u + μ

(1+t)β ut = f (u, ut), x ∈ R
n, t > 0,

u(x, 0) = εu0(x), ut(x, 0) = εu1(x), x ∈ R
n

(1.5)

causes extensive attention (see detailed illustrations in [18–30]), where f (u, ut) = |u|p,
|ut|p, |ut|p + |u|q, respectively. In the scattering case β > 1, Lai et al. [24] derive the blow-
up result and the upper-bound lifespan estimate of the solution to problem (1.5) with
f (u, ut) = |u|p by employing an appropriate multiplier and an iteration method in the sub-
critical case 1 < p < pS(n). Wakasa and Yordanov [30] demonstrate the upper-bound lifes-
pan estimate of the solution to the variable-coefficient wave equation with f (u, ut) = |u|p in
the critical case p = pS(n)(n ≥ 2). The existence of the global solution in the super-critical
case p > pS(n)(n = 3, 4) is investigated (see [27]). Lai et al. [25] deduce the upper-bound
lifespan estimate of solution to problem (1.5) with f (u, ut) = |ut|p by introducing some
multipliers and constructing the Riccati equation in the scattering and scale-invariant
cases, respectively. The upper-bound lifespan estimate of the solution to problem (1.5)
with f (u, ut) = |ut|p + |u|q is discussed by utilizing an iteration approach (see [26]). Ming
et al. [28] investigate the upper-bound lifespan estimates of the solutions to the coupled
system of semilinear wave equations with |vt|p1 + |v|q1 , |ut|p2 + |u|q2 in the subcritical and
critical cases. The methods applied in the proofs are the functional method and an iter-
ation technique. In the scale-invariant case β = 1, Imai et al. [20] establish the lifespan
estimate of the solution to problem (1.5) with f (u, ut) = |u|p when μ = 2 and 1 < p ≤ pF (2).
Wakasa [29] and Kato et al. [22] verify the blow-up and lifespan estimate of the solution
in the subcritical and critical cases 1 < p ≤ pF (1) when μ = 2. Kato et al. [21] discuss the
blow-up dynamics and lifespan estimate of the solution to problem (1.5) with μ = 2, β = 1,
f (u, ut) = |u|p(1 < p ≤ pS(5)) in three space dimensions. Moreover, it is shown that the
existence of the global solution without a spherically symmetric assumption is obtained
when p > pS(5). Lai et al. [23] consider the Cauchy problem with scale-invariant damping
μ1
1+t ut and mass term μ2

(1+t)2 u. Formation of a singularity of the solution is derived by im-
posing certain assumptions on the initial values. Chen [31] illustrates blow-up phenom-
ena and the upper-bound lifespan estimate of the solution to problem (1.5) with β = 1 and
f (u, ut) = |ut|p, |ut|p + |u|q, respectively. The key tool used in the proofs is the test-function
technique. We refer the readers to the works in [32–36] for more details.

Many scholars focus on studying the Cauchy problem for the wave equation with a
strong damping term

⎧
⎨

⎩

utt – �u – �ut = f (u, ut), x ∈R
n, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈R
n.

(1.6)
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D’Abbicco and Reissig [37] prove the blow-up of the solution to problem (1.6) with
f (u, ut) = |u|p when 1 < p < 1 + 2

n . In addition, the existence of a global solution is ob-
tained when p > 1 + 3

n–1 (n ≥ 2). Ikehata and Inoue [38] demonstrate the global existence
of the solution to problem (1.6) with f (u, ut) = |u|p on the exterior domain in two space
dimensions when p > 6. Fino [39] considers the initial boundary value problem for wave
equation with f (u, ut) = |u|p and small initial values. The blow-up dynamics of the so-
lution to the problem is established by applying the Kato lemma. Fino [40] employs the
test-function technique to present the blow-up result of the solution to problem (1.6) with
f (u, ut) = |u|p on an exterior domain. Lian and Xu [41] investigate the existence of a global
solution to the initial boundary value problem of the wave equation with weak and strong
dampings and f (u, ut) = u ln |u| by utilizing the contraction mapping principle. Yang and
Zhou [42] study the existence of the global solution to the fractional Kirchhoff wave equa-
tion with structural damping or strong damping on an exterior domain. Chen and Fino
[43] discuss the formation of the singularity of the solution to the initial boundary value
problem (1.6) with f (u, ut) = |ut|p and f (u, ut) = |ut|p + |u|q by taking advantage of the test-
function method. However, the upper bound of the lifespan estimate of solution has not
been derived in [39, 40, 43].

Motivated by the previous works in [24–26, 40, 43], we are concerned with the blow-up
dynamics and the upper-bound lifespan estimate of the solution to problem (1.1) on an ex-
terior domain. The nonlinear terms are presented in the form of f (u, ut) = |u|p, |ut|p, |ut|p +
|u|q, respectively. The method utilized in this paper is different from the Kato lemma em-
ployed in [4–6, 17], where the semilinear wave equations without damping are discussed.
We observe that Lai et al. [24–26] consider the nonexistence of a global solution and
the upper-bound lifespan estimate of the solution to the Cauchy problem with scatter-
ing damping in n space dimensions by applying an iteration approach. The results derived
in [24–26] are extended to the case on an exterior domain. Fino et al. [40, 43] illustrate
the blow-up of the solution to the initial boundary value problem with strong damping by
making use of the test-function technique. Concerning that the upper-bound lifespan es-
timate of the solution to the semilinear wave equation with strong damping has not been
established yet in [40, 43], we fill this gap by introducing appropriate multipliers and utiliz-
ing the test-function technique together with an iteration method. It is worth mentioning
that the interaction between the strong damping term and the scattering damping term on
the blow-up of the solution is analyzed. The main new contribution is that we provide an
upper-bound lifespan estimate of the solution to the problem with two types of damping
terms if the exponents in nonlinear terms and initial values satisfy some conditions. To
the best of our knowledge, the results in Theorems 1.1–1.7 are new for problem (1.1).

The main results in this paper are stated by the following theorems.

Theorem 1.1 Let n ≥ 3, 1 < p < pS(n), μ > 0 and β > 1. Assume that (u0, u1) ∈ H1(�c) ×
L2(�c) are nonnegative functions and u0 does not vanish identically. If a solution u to prob-
lem (1.1) with f (u, ut) = |u|p satisfies supp u ⊂ {(x, t) ∈ �c × [0, T)||x| ≤ t + R}, then u blows
up in finite time. Moreover, there exists a constant ε0 = ε0(u0, u1, n, p,μ,β , R) > 0 such that
the lifespan estimate of solution T(ε) satisfies

T(ε) ≤ Cε
– 2p(p–1)

r(p,n) , (1.7)

where 0 < ε ≤ ε0, C > 0 is a constant independent of ε.
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Theorem 1.2 Let n = 2, 1 < p < pS(2), μ > 0, and β > 1. Assume that the initial values
satisfy the same conditions in Theorem 1.1. If

∫

�c
u1(x)φ0(x) dx 	= 0,

then (1.7) is replaced by

T(ε) ≤
⎧
⎨

⎩

Cε
– p–1

3–p , 1 < p < 2,

Cε
– 2p(p–1)

r(p,2) , 2 ≤ p < pS(2).

Theorem 1.3 Let n = 1, μ > 0 and β > 1. Assume that the initial values satisfy the same
conditions in Theorem 1.1. If

∫

�c
u1(x)φ0(x) dx 	= 0,

then (1.7) is replaced by

T(ε) ≤
⎧
⎨

⎩

Cε
– p–1

3–p , 1 < p < 2,

Cε– p(p–1)
2 , 2 ≤ p < +∞.

Theorem 1.4 Let n ≥ 1, μ > 0 and β > 1. Assume that (u0, u1) ∈ H1(�c) × L2(�c) are
nonnegative functions and u1 does not vanish identically. If a solution u to problem (1.1)
with f (u, ut) = |ut|p satisfies supp u ⊂ {(x, t) ∈ �c × [0, T)||x| ≤ t + R}, then u blows up in
finite time. Moreover, the lifespan estimate of solution T(ε) satisfies

T(ε) ≤
⎧
⎨

⎩

Cε
– 2(p–1)

2–(n–1)(p–1) , 1 < p < pG(n),

exp(Cε–(p–1)), p = pG(n),

where C > 0 is a constant independent of ε.

Theorem 1.5 Let n ≥ 1, μ > 0, and β = 1. Assume that the initial values satisfy the same
conditions in Theorem 1.4. The lifespan estimate of solution T(ε) satisfies

T(ε) ≤
⎧
⎨

⎩

Cε
– 2(p–1)

2–(n+2μ–1)(p–1) , 1 < p < pG(n + 2μ),

exp(Cε–(p–1)), p = pG(n + 2μ),
(1.8)

where C > 0 is a constant independent of ε.

Theorem 1.6 Let n ≥ 1, μ > 0 and β > 1. Assume that (u0, u1) ∈ H1(�c) × L2(�c) are non-
negative functions and u1 does not vanish identically. Suppose that a solution u to problem
(1.1) with f (u, ut) = |ut|p + |u|q satisfies supp u ⊂ {(x, t) ∈ �c × [0, T)||x| ≤ t + R}. If p > 1
and

⎧
⎨

⎩

1 < q < min{1 + 4
(n–1)p–2 , 2n

n–2 }, n ≥ 2,

1 < q, n = 1,
(1.9)
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then u blows up in finite time. Moreover, the lifespan estimate of solution T(ε) satisfies

T(ε) ≤
⎧
⎨

⎩

Cε
– 2p(q–1)

2q+2–(n–1)p(q–1) , n ≥ 2,

Cε– p(q–1)
2 , n = 1,

where C > 0 is a constant independent of ε.

Theorem 1.7 Let n ≥ 2, μ > 0, and β > 1. Assume that the initial values satisfy the same
conditions in Theorem 1.6. If p > 2n

n–1 and 1 < q < n+1
n–1 , then a solution u to problem (1.1) with

f (u, ut) = |ut|p + |u|q blows up in finite time. Moreover, the lifespan estimate of solution T(ε)
satisfies

T(ε) ≤ Cε
– q–1

q+1–n(q–1) ,

where C > 0 is a constant independent of ε.

Remark 1.1 The restriction q < 2n
n–2 is necessary to guarantee the integrability of the non-

linear term |u|q in Theorem 1.6.

2 Preliminaries
In order to prove the main results, we present several related lemmas and the definition
of a weak solution.

Lemma 2.1 ([4, 5, 17]) There exists a function φ0(x) ∈ C2(�c) that satisfies

⎧
⎨

⎩

�φ0(x) = 0, x ∈ �c, n ≥ 1,

φ0|∂�c = 0.

In the case n ≥ 3, φ0(x) → 1 as |x| → ∞, 0 < φ0(x) < 1 for all x ∈ �c. In the case n = 2,
φ0(x) → ∞ as |x| → ∞, 0 < φ0(x) ≤ C ln |x| for all x ∈ �c. In the case n = 1, φ0(x) → ∞ as
|x| → ∞, C1x ≤ φ0(x) ≤ C2x for all x ∈ �c. Here, C, C1, C2 are positive constants.

Lemma 2.2 ([39]) There exists a function ϕ1(x) ∈ C2(�c) satisfying the following boundary
value problem

⎧
⎪⎪⎨

⎪⎪⎩

�ϕ1(x) = 1
2ϕ1(x), x ∈ �c, n ≥ 1,

ϕ1|∂�c = 0,

|x| → ∞, ϕ1(x) → ∫

Sn–1 ex·ω dω.

Moreover, 0 < ϕ1(x) < C(1 + |x|)–(n–1)/2e|x| for all x ∈ �c, where C > 0 is a constant.

We define ψ1(x, t) = e–tϕ1(x). Direct calculation shows

(ψ1)t = –ψ1, (ψ1)tt = ψ1, �ψ1 =
1
2
ψ1. (2.1)
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Lemma 2.3 ([17]) Let n ≥ 1, p > 1. It holds that

∫

�c∩{|x|≤t+R}

(
φ0(x)

)– 1
p–1

(
ψ1(x, t)

)p′
dx ≤ C(t + R)n–1– (n–1)p′

2 ,

where p′ = p
p–1 , C is a positive constant.

Lemma 2.4 ([17]) Let n ≥ 1, p > 1. For all t ≥ 0, it holds that

∫

�c∩{|x|≤t+R}
ψ1(x, t) dx ≤ C(t + R)(n–1)/2,

where C is a positive constant.

Definition 2.1 Assume that u ∈ C([0, T), H1(�c))∩C1([0, T), L2(�c)). u ∈ Lp
loc([0, T)×�c)

when the nonlinear term is f (u, ut) = |u|p. ut ∈ Lp
loc([0, T) × �c) when the nonlinear term

is f (u, ut) = |ut|p. ut ∈ Lp
loc([0, T) × �c) and u ∈ Lq

loc([0, T) × �c) when the nonlinear term
is f (u, ut) = |ut|p + |u|q. It holds that

∫

�c
ut(x, t)φ(x, t) dx –

∫

�c
εu1(x)φ(x, 0) dx

–
∫ t

0

∫

�c

{
us(x, s)φs(x, s) + u(x, s)�φ(x, s) + us(x, s)�φ(x, s)

}
dx ds

+
∫ t

0

∫

�c

μ

(1 + s)β
us(x, s)φ(x, s) dx ds

=
∫ t

0

∫

�c
f (u, ut)φ(x, s) dx ds, (2.2)

where u(x, 0) = εu0(x), φ ∈ C∞
0 ([0, T) × �c).

Employing the integration by parts in (2.2) and letting t → T , we obtain

∫ T

0

∫

�c
u(x, s)

{

φss(x, s) – �φ(x, s) + �φs(x, s) –
(

μφ(x, s)
(1 + s)β

)

s

}

dx ds

=
∫

�c
εu1(x)φ(x, 0) dx –

∫

�c
εu0(x)φt(x, 0) dx –

∫

�c
εu0(x)�φ(x, 0) dx

+
∫

�c
εu0(x)μφ(x, 0) dx +

∫ T

0

∫

�c
f (u, ut)φ(x, s) dx ds.

We present a multiplier

m(t) = exp

(

μ
(1 + t)1–β

1 – β

)

. (2.3)

In the case β > 1, we have

m′(t) =
μ

(1 + t)β
m(t), 0 < m(0) ≤ m(t) ≤ 1, t ≥ 0. (2.4)
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3 Proof of Theorem 1.1
We set

⎧
⎪⎪⎨

⎪⎪⎩

F0(t) =
∫

�c u(x, t)φ0(x) dx,

F1(t) =
∫

�c u(x, t)ψ1(x, t) dx,

F2(t) =
∫

�c ut(x, t)ψ1(x, t) dx.

Lemma 3.1 Let n ≥ 1. Under the same assumptions in Theorem 1.1, for all t ≥ 0, it holds
that

F1(t) ≥ 1
3

m(0)ε
∫

�c
u0(x)ϕ1(x) dx > 0.

Proof of Lemma 3.1 Employing (2.2), we deduce

d
dt

∫

�c
ut(x, t)φ(x, t) dx +

∫

�c

μ

(1 + t)β
ut(x, t)φ(x, t) dx

–
∫

�c

{
ut(x, t)φt(x, t) + u(x, t)�φ(x, t) + ut(x, t)�φ(x, t)

}
dx

=
∫

�c
f (u, ut)φ(x, t) dx. (3.1)

Multiplying (3.1) by m(t) and integrating over (0, t) yields

m(t)
∫

�c
ut(x, t)φ(x, t) dx – m(0)

∫

�c
εu1(x)φ(x, 0) dx

–
∫ t

0

∫

�c
m(s)

{
us(x, s)φs(x, s) + u(x, s)�φ(x, s) + us(x, s)�φ(x, s)

}
dx ds

=
∫ t

0

∫

�c
m(s)f (u, ut)φ(x, s) dx ds.

Replacing φ(x, t) by ψ1(x, t), we come to

m(t)
(

F ′
1(t) +

3
2

F1(t)
)

= m(0)
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx

+
1
2

∫ t

0

∫

�c

μ

(1 + s)β
m(s)u(x, s)ψ1(x, s) dx ds

+
∫ t

0

∫

�c
m(s)f (u, ut)ψ1(x, s) dx ds.

It follows that

F ′
1(t) +

3
2

F1(t) ≥ m(0)
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx

+
1

2m(t)

∫ t

0

μ

(1 + s)β
m(s)F1(s) ds. (3.2)
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From straightforward computations, we observe

e
3
2 tF1(t) ≥ m(0)

∫

�c
εu0(x)ϕ1(x) dx

+ m(0)
2
3
(
e

3
2 t – 1

)
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx

≥ 1
3

m(0)e
3
2 t

∫

�c
εu0(x)ϕ1(x) dx,

which results in

F1(t) ≥ 1
3

m(0)ε
∫

�c
u0(x)ϕ1(x) dx > 0.

This completes the proof of Lemma 3.1. �

Proof of Theorem 1.1 Letting φ(x, t) = φ0(x) in (2.2) with f (u, ut) = |u|p and applying
Lemma 2.1, we derive

F ′′
0 (t) +

μ

(1 + t)β
F ′

0(t) =
∫

�c
|u|pφ0(x) dx. (3.3)

Multiplying (3.3) by m(t), we acquire

[
m(t)F ′

0(t)
]′ = m(t)

∫

�c
|u|pφ0(x) dx. (3.4)

Integrating (3.4) over the interval (0, t) and employing (2.4) yields

F ′
0(t) ≥ m(t)F ′

0(t) ≥ m(0)
∫ t

0

∫

�c
|u|pφ0(x) dx dt. (3.5)

Applying the Holder inequality and Lemma 2.1 gives rise to

∫

�c
|u|pφ0(x) dx ≥ | ∫

�c uφ0(x) dx|p
(
∫

�c∩{|x|≤t+R} φ0(x) dx)p–1

= C3(t + R)–n(p–1)∣∣F0(t)
∣
∣p. (3.6)

Inserting (3.6) into (3.5), we deduce

F0(t) ≥ C4

∫ t

0

∫ s

0
(r + R)–n(p–1)∣∣F0(r)

∣
∣p dr ds. (3.7)

Taking advantage of the Holder inequality and Lemma 2.3, we come to

∫

�c
|u|pφ0(x) dx ≥ | ∫

�c uψ1 dx|p
(
∫

�c∩{|x|≤t+R}(φ0)– 1
p–1 (ψ1)

p
p–1 )p–1

≥ C5(t + R)(n–1)(1–p/2)∣∣F1(t)
∣
∣p. (3.8)
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Combining (3.5) and (3.8) with Lemma 3.1, we conclude

F0(t) ≥ C6ε
p
∫ t

0

∫ s

0
(r + R)(n–1)(1–p/2) dr ds

≥ C6

n(n + 1)
εp(t + R)–(n–1)p/2tn+1, (3.9)

where C6 = C5m(0)( 1
3 m(0)

∫

�c u0(x)ϕ1(x) dx)p > 0.
Suppose that

F0(t) ≥ Dj(t + R)–aj tbj , t ≥ 0, j ∈N
∗ (3.10)

with D1 = C6
n(n+1)ε

p, a1 = (n–1)p
2 , b1 = n + 1. Inserting (3.10) into (3.7) leads to

F0(t) ≥ Dj+1(t + R)–aj+1 tbj+1 ,

where

Dj+1 ≥ C4Dp
j

(bjp + 2)2 , aj+1 = ajp + n(p – 1), bj+1 = bjp + 2.

Direct calculation indicates

aj = pj–1((n – 1)p/2 + n
)

– n,

bj = pj–1(n + 1 + 2/(p – 1)
)

– 2/(p – 1),

Dj ≥
C7Dp

j–1

p2(j–1) ,

where C7 = C4
(n+1+2/(p–1))2 . A straightforward calculation shows

Dj ≥ exp
(
pj–1(log D1 – Sp(∞)

))
,

where Sp(∞) = limj→∞
∑j–1

k=1
2k log p–log C7

pk . From (3.10), we acquire

F0(t) ≥ (t + R)nt– 2
p–1 exp

(
pj–1J(t)

)
, (3.11)

where J(t) = –((n – 1)p/2 + n) log(t + R) + (n + 1 + 2/(p – 1)) log t + log D1 – Sp(∞). When
t ≥ R, we come to

J(t) ≥ log
(
t

γ (p,n)
2(p–1) D1

)
– C8,

where C8 = ((n – 1)p/2 + n) log 2 + Sp(∞) > 0. It turns out that J(t) > 1 when t > C9ε
– 2p(p–1)

r(p,n) .
It is deduced from (3.11) that F0(t) → ∞ as j → ∞. Consequently, we arrive at the lifespan
estimate

T(ε) ≤ Cε
– 2p(p–1)

r(p,n) .

The proof of Theorem 1.1 is finished. �
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4 Proofs of Theorems 1.2 and 1.3
4.1 Proof of Theorem 1.2
Taking advantage of Lemma 2.1, we obtain

∫

�c∩{|x|≤t+R}
φ0(x) dx ≤

∫

{|x|≤t+R}\B1(0)
ln |x|dx

≤ C10(t + R)2 ln(t + R).

Thus, we have
∫

�c
|u|pφ0(x) dx ≥ C11(t + R)–2(p–1)∣∣F0(t)

∣
∣p, (4.1)

where C11 = C–(p–1)
10 (ln(T + R))–(p–1) > 0. Inserting (4.1) into (3.5), we deduce

F0(t) ≥ C11m(0)
∫ t

0

∫ s

0
(r + R)–2(p–1)∣∣F0(r)

∣
∣p dr ds. (4.2)

Similar to the proof of Theorem 1.1, we achieve

F0(t) ≥ C6

6
εp(t + R)– p

2 t3. (4.3)

Assume that

F0(t) > D̄j(t + R)–āj tb̄j , t ≥ 0, j ∈N
∗ (4.4)

with D̄1 = C6
6 εp, ā1 = p

2 , b̄1 = 3. Inserting (4.4) into (4.2) yields

F0(t) ≥ C11m(0)D̄p
j

(b̄jp + 2)2
(t + R)–ājp–2(p–1)tb̄jp+2.

Direct computation gives rise to

F0(t) ≥ (t + R)2t– 2
p–1 exp

(
pj–1 J̄(t)

)
,

where J̄(t) ≥ log(D̄1t
–p2+3p+2

2(p–1) ) – C12. Consequently, we come to the lifespan estimate

T(ε) ≤ Cε
– 2p(p–1)

r(p,2) . (4.5)

On the other hand, thanks to the conditions u1(x) ≥ 0,
∫

�c u1(x)φ0(x) dx 	= 0, we derive
∫

�c u1(x)φ0(x) dx > 0. Applying (3.4) and (2.4) leads to

F ′
0(t) ≥ m(0)F ′

0(0) = C13ε,

where C13 = m(0)
∫

�c u1(x)φ0(x) dx > 0. It follows that

F0(t) ≥ C13ε +
∫

�c
εu0(x)φ0(x) dx ≥ C14ε(1 + t), (4.6)
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where C14 = min{C13,
∫

�c u0(x)φ0(x) dx} > 0. Inserting (4.6) into (4.2), we arrive at

F0(t) ≥ C15ε
p
∫ t

0

∫ s

0
(r + R)–(p–2) dr ds

≥ C15ε
p

6
(t + R)–(p–1)t3, (4.7)

where C15 = C11m(0)Cp
14 > 0. Assume that

F0(t) ≥ D̄j(t + R)–āj tb̄j , t ≥ 0, j ∈N
∗ (4.8)

with D̄1 = C15εp

6 , ā1 = p – 1, b̄1 = 3. Combining (4.8) with (4.2), we acquire

F0(t) ≥ D̄j+1(t + R)–āj+1 tb̄j+1 ,

where

D̄j+1 >
C11m(0)D̄p

j

(b̄jp + 2)2
, āj+1 = pāj + 2(p – 1), b̄j+1 = pb̄j + 2.

Straightforward calculation shows

āj = pj–1(p + 1) – 2, b̄j = pj–1
(

3 +
2

p – 1

)

–
2

p – 1
,

D̄j ≥
C16D̄p

j–1

p2(j–1) ≥ exp
(
pj–1(log D̄1 – S̄p(∞)

))
,

where S̄p(∞) = limj→∞
∑j–1

k=1
2k log p–log C16

pk . Thus, taking advantage of (4.8) generates

F0(t) ≥ (t + R)2t– 2
p–1 exp

(
pj–1 J̄(t)

)
,

where J̄(t) ≥ log(D̄1t
p(3–p)

p–1 ) – C17 with t ≥ R. When 1 < p < 2 and t ≥ Cε
– p–1

3–p , we have J(t) >
1. Therefore, we derive the lifespan estimate

T(ε) ≤ Cε
– p–1

3–p . (4.9)

It is easy to check that (4.9) is stronger than (4.5) when 1 < p < 2, which is equivalent to

p – 1
3 – p

<
2p(p – 1)

r(p, 2)
.

This completes the proof of Theorem 1.2.

4.2 Proof of Theorem 1.3
Utilizing Lemma 2.1, we obtain

∫

�c∩{|x|≤t+R}
φ0(x) dx ≤

∫ t+R

1
C2x dx ≤ C2

2
(t + R)2.
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Thus, we arrive at
∫

�c
|u|pφ0(x) dx ≥ C18(t + R)–2(p–1)∣∣F0(t)

∣
∣p. (4.10)

According to (3.5) and (4.10), we conclude

F0(t) ≥ C18m(0)
∫ t

0

∫ s

0
(r + R)–2(p–1)∣∣F0(r)

∣
∣p dr ds. (4.11)

Similar to the discussion in Theorem 1.1, we derive

F0(t) ≥ C6

2
εpt2.

Assume that

F0(t) > D̄j(t + R)–āj tb̄j , t ≥ 0, j ∈N
∗

with D̄1 = C6
2 εp, ā1 = 0, b̄1 = 2. Direct calculation gives rise to

J̄(t) ≥ log
(
D̄1t

2
p–1

)
– C19.

As a result, we come to the lifespan estimate

T(ε) ≤ Cε– p(p–1)
2 . (4.12)

On the other hand, similar to the proof of Theorem 1.2, we have

F0(t) ≥ C14ε(t + 1). (4.13)

Inserting (4.13) into (4.11), we deduce

F0(t) ≥ C20ε
p(t + R)–(p–4).

Assume that

F0(t) > D̄j(t + R)–āj tb̄j , t ≥ 0, j ∈N
∗ (4.14)

with D̄1 = C20ε
p, ā1 = p – 4, b̄1 = 0. A series of calculations show J(t) ≥ log(D1t

p(3–p)
p–1 ) – C21.

Consequently, we obtain the lifespan estimate

T(ε) ≤ Cε
– p–1

3–p . (4.15)

We deduce that (4.15) is stronger than (4.12) when 1 < p < 2, which is equivalent to

p – 1
3 – p

<
p(p – 1)

2
.

This finishes the proof of Theorem 1.3.
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5 Proof of Theorem 1.4
Replacing φ(x, t) by ψ1(x, t) in (2.2) with f (u, ut) = |ut|p and utilizing (2.1), we deduce

d
dt

∫

�c
utψ1 dx +

∫

�c

1
2

(ut – u)ψ1 dx +
∫

�c

μ

(1 + t)β
utψ1 dx =

∫

�c
|ut|pψ1 dx, (5.1)

which leads to

d
dt

∫

�c

(

ut +
1
2

u
)

ψ1 dx =
∫

�c
|ut|pψ1 dx –

∫

�c

μ

(1 + t)β
utψ1 dx.

It follows that

d
dt

(

m(t)
∫

�c

(

ut +
1
2

u
)

ψ1 dx
)

= m(t)
∫

�c
|ut|pψ1 dx +

1
2

μ

(1 + t)β
m(t)F1(t).

Making use of Lemma 3.1 yields

m(t)
∫

�c

(

ut +
1
2

u
)

ψ1 dx – m(0)
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx

≥
∫ t

0

∫

�c
m(t)|ut|pψ1 dx dt. (5.2)

On the other hand, multiplying (5.1) by m(t) leads to

d
dt

[

m(t)
∫

�c
utψ1 dx

]

+ m(t)
∫

�c

1
2

(ut – u)ψ1 dx = m(t)
∫

�c
|ut|pψ1 dx. (5.3)

From (5.2) and (5.3), we arrive at

d
dt

[

m(t)
∫

�c
utψ1 dx

]

+
3
2

m(t)
∫

�c
utψ1 dx

≥ m(0)
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx + m(t)
∫

�c
|ut|pψ1 dx

+
∫ t

0

∫

�c
m(t)|ut|pψ1 dx dt. (5.4)

Setting

G1(t) = m(t)
∫

�c
utψ1 dx –

2
3

m(0)
∫

�c
εu1(x)ϕ1(x) dx –

2
3

∫ t

0

∫

�c
m(t)|ut|pψ1 dx dt,

we have G1(0) = 1
3 m(0)

∫

�c εu1(x)ϕ1(x) dx > 0. It is deduced from (5.4) that

d
dt

G1(t) +
3
2

G1(t) ≥ 1
3

m(t)
∫

�c
|ut|pψ1 dx

+
1
2

m(0)ε
∫

�c
u0(x)ϕ1(x) dx

≥ 0.
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It follows that G1(t) ≥ e– 3
2 tG1(0) > 0. Thus, we achieve

m(t)
∫

�c
utψ1 dx ≥ 2

3
m(0)

∫

�c
εu1(x)ϕ1(x) dx

+
2
3

∫ t

0

∫

�c
m(t)|ut|pψ1 dx dt.

Taking H1(t) = 2
3 m(0)

∫

�c εu1(x)ϕ1(x) dx + 2
3
∫ t

0
∫

�c m(t)|ut|pψ1 dx dt, we have

m(t)F2(t) ≥ H1(t) (5.5)

and H1(0) = 2
3 m(0)

∫

�c εu1(x)ϕ1(x) dx. Utilizing the Holder inequality and Lemma 2.4 in-
dicates

∫

�c
|ut|pψ1 dx ≥ | ∫

�c utψ1 dx|p
(
∫

�c∩{|x|≤t+R} ψ1 dx)p–1

= C–(p–1)(t + R)– (n–1)(p–1)
2

∣
∣F2(t)

∣
∣p. (5.6)

Taking into account (2.4), (5.5), and (5.6), we achieve

H ′
1(t) =

2
3

m(t)
∫

�c
|ut|pψ1 dx

≥ 2
3

C–(p–1)(t + R)– (n–1)(p–1)
2 Hp

1 (t). (5.7)

By the property of the Riccati equation, we derive that the solution blows up for (n–1)(p–1)
2 ≤

1.
When (n–1)(p–1)

2 < 1 (namely, 1 < p < pG(n)), solving the ordinary differential inequality
(5.7), we come to

H(t) ≥
((

2
3

m(0)
∫

�c
εu1(x)ϕ1(x) dx

)–(p–1)

+ C(t + R)1–(n–1)(p–1)/2 – 1
)– 1

p–1
.

Therefore, we arrive at the lifespan estimate

T(ε) ≤ Cε
– 2(p–1)

2–(n–1)(p–1) .

When (n–1)(p–1)
2 = 1 (namely, p = pG(n)), direct computation gives rise to

H(t) ≥
((

2
3

m(0)
∫

�c
εu1(x)ϕ1(x) dx

)–(p–1)

+ C ln(t + R)
)– 1

p–1
.

As a consequence, we obtain the lifespan estimate

T(ε) ≤ exp
(
Cε–(p–1)).

The proof of Theorem 1.4 is completed.
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6 Proof of Theorem 1.5
We define a multiplier

m1(t) = (1 + t)μ. (6.1)

It follows that 1 = m1(0) ≤ m1(t), m′
1(t)

m1(t) = μ

1+t .

Lemma 6.1 Let n ≥ 1. Under the same conditions in Theorem 1.5, for all t ≥ 0, it holds
that

F1(t) ≥ 1
3m1(t)

ε

∫

�c
u0(x)ϕ1(x) dx ≥ 0.

Proof of Lemma 6.1 The proof of Lemma 6.1 is similar to the proof of Lemma 3.1. By
employing the multiplier m1(t), we acquire the desired result when f (u, ut) = |ut|p. We
omit the detailed proof. �

Proof of Theorem 1.5 Similar to the proof of Theorem 1.4, we have

d
dt

[

m1(t)
∫

�c
utψ1 dx

]

+
3
2

m1(t)
∫

�c
utψ1 dx

≥
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx + m1(t)
∫

�c
|ut|pψ1 dx

+
∫ t

0

∫

�c
m1(t)|ut|pψ1 dx dt.

We set

G2(t) = m1(t)
∫

�c
utψ1 dx –

2
3

∫

�c
εu1(x)ϕ1(x) dx –

2
3

∫ t

0

∫

�c
m1(t)|ut|pψ1 dx dt.

It turns out that

m1(t)
∫

�c
utψ1 dx ≥ 2

3

∫

�c
εu1(x)ϕ1(x) dx +

2
3

∫ t

0

∫

�c
m1(t)|ut|pψ1 dx dt.

Let

H2(t) =
2
3
ε

∫

�c
u1(x)ϕ1(x) dx +

2
3

∫ t

0

∫

�c
m1(t)|ut|pψ1 dx dt.

It follows that m1(t)F2(t) ≥ H2(t). We bear in mind

H2(0) =
2
3

∫

�c
εu1(x)ϕ1(x) dx > 0.

Applying the Holder inequality, (6.1) and Lemma 2.4, we obtain

H ′
2(t) =

2
3

∫

�c
m1(t)|ut|pψ1 dx

≥ 2C–(p–1)

3(t + R)(p–1)(n+2μ–1)/2 Hp
2 (t). (6.2)
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By solving the ordinary differential inequality (6.2), we derive the lifespan estimate (1.8)
in Theorem 1.5. The proof of Theorem 1.5 is finished. �

7 Proofs of Theorems 1.6 and 1.7
7.1 Proof of Theorem 1.6
First, we present a lemma that will be utilized in the proof.

Lemma 7.1 Let n ≥ 1. Under the same conditions in Theorem 1.6, for all t ≥ 0, it holds
that

F2(t) ≥ 2
3

m(0)
∫

�c
εu1(x)ϕ1(x) dx.

Proof of Lemma 7.1 When f (u, ut) = |ut|p + |u|q, similar to the proof of Theorem 1.4, we
deduce

d
dt

[

m(t)
∫

�c
utψ1 dx

]

+
3
2

m(t)
∫

�c
utψ1 dx

≥ m(0)
∫

�c
ε

(

u1(x) +
1
2

u0(x)
)

ϕ1(x) dx + m(t)
∫

�c

(|ut|p + |u|q)ψ1 dx

+
∫ t

0

∫

�c
m(s)

(|ut|p + |u|q)ψ1 dx ds.

We denote

G3(t) = m(t)
∫

�c
utψ1 dx –

2
3

m(0)
∫

�c
εu1(x)ϕ1(x) dx

–
2
3

∫ t

0

∫

�c
m(s)|ut|pψ1 dx ds.

It is worth noting that G3(0) = 1
3 m(0)

∫

�c εu1(x)ϕ1(x) dx > 0. An elementary calculation
generates

d
dt

G3(t) +
3
2

G3(t) ≥ 1
2

m(0)
∫

�c
εu0(x)ϕ1(x) dx

+ m(t)
∫

�c

(
1
3
|ut|p + |u|q

)

ψ1 dx +
∫ t

0

∫

�c
m(s)|u|qψ1 dx ds

≥ 0.

It follows that G3(t) ≥ e– 3
2 tG3(0) > 0, which leads to

m(t)
∫

�c
utψ1 ≥ 2

3
m(0)

∫

�c
εu1(x)ϕ1(x) dx dx

+
2
3

∫ t

0

∫

�c
m(s)|ut|pψ1 dx ds.

Thus, we have

F2(t) ≥ 2
3

m(0)
∫

�c
εu1(x)ϕ1(x) dx.
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This completes the proof of Lemma 7.1. �

Proof of Theorem 1.6 Taking φ(x, t) = φ0(x) in (2.2) with f (u, ut) = |ut|p + |u|q, we come to

F ′′
0 (t) +

μ

(1 + t)β
F ′

0(t) =
∫

�c

(|ut|p + |u|q)φ0(x) dx. (7.1)

Multiplying (7.1) by m(t) leads to

[
m(t)F ′

0(t)
]′ = m(t)

∫

�c

(|ut|p + |u|q)φ0(x) dx. (7.2)

Employing (2.4) gives rise to

F ′
0(t) ≥ m(0)

∫ t

0

∫

�c

(|ut|p + |u|q)φ0(x) dx dt. (7.3)

Utilizing the Holder inequality and Lemma 2.3, we obtain

∫

�c
|ut|pφ0(x) dx ≥ | ∫

�c utψ1 dx|p
(
∫

�c∩{|x|≤t+R}(φ0)– 1
p–1 (ψ1)

p
p–1 )p–1

≥ C–(p–1)(t + R)–(n–1)( p
2 –1)∣∣F2(t)

∣
∣p. (7.4)

It is deduced from (7.3), (7.4), and Lemma 7.1 that

F ′
0(t) ≥ m(0)

∫ t

0

∫

�c
|ut|pφ0(x) dx dt.

≥ C22m(0)εp
∫ t

0
(t + R)–(n–1)( p

2 –1) dt, (7.5)

where C22 = C–(p–1)( 2
3 m(0)

∫

�c u1(x)ϕ1(x) dx)p > 0. It follows that

F0(t) > C23ε
p(t + R)–(n–1) p

2 tn+1, (7.6)

where C23 = C22m(0)
n(n+1) .

In the case of n ≥ 3, applying the Holder inequality and Lemma 2.1 yields

∫

�c
|u|qφ0(x) dx ≥ | ∫

�c uφ0(x) dx|q
(
∫

�c∩{|x|≤t+R} 1 dx)q–1

≥ C24(t + R)–n(q–1)∣∣F0(t)
∣
∣q. (7.7)

From (7.3) and (7.7), we achieve

F ′
0(t) ≥ m(0)

∫ t

0

∫

�c
|u|qφ0(x) dx dt

≥ C24m(0)
∫ t

0
(t + R)–n(q–1)∣∣F0(t)

∣
∣q dt,



Ming et al. Boundary Value Problems         (2022) 2022:52 Page 19 of 22

which implies

F0(t) ≥ C24m(0)
∫ t

0

∫ s

0
(r + R)–n(q–1)∣∣F0(r)

∣
∣q dr ds. (7.8)

In the case of n = 2, we acquire

∫

�c
|u|qφ0(x) dx ≥ | ∫

�c uφ0(x) dx|q
(
∫

{|x|≤t+R}\B1(0) ln |x|dx)q–1

≥ C25(t + R)–2(q–1)∣∣F0(t)
∣
∣q,

where C25 = C–(q–1)(ln(T + R))–(q–1) > 0. In the case of n = 1, we derive

∫

�c
|u|qφ0(x) dx ≥ | ∫

�c uφ0(x) dx|q
(
∫ t+R

1 C2x dx)q–1

≥ C26(t + R)–2(q–1)∣∣F0(t)
∣
∣q.

It turns out that

F0(t) ≥ C27m(0)
∫ t

0

∫ s

0
(r + R)–2(q–1)∣∣F0(r)

∣
∣q dr ds. (7.9)

Suppose that

F0(t) ≥ Dj(t + R)–aj tbj , t ≥ 0, j ∈N
∗ (7.10)

with D1 = C23ε
p, a1 = (n – 1)p, b1 = n + 1.

When n ≥ 3, inserting (7.10) into (7.8), we come to

F0(t) ≥ Dj+1(t + R)–aj+1 tbj+1 ,

where Dj+1 ≥ C24m(0)Dq
j

(bjp+2)2 , aj+1 = ajq + n(q – 1), bj+1 = bjq + 2. Therefore, we conclude

aj = qj–1((n – 1)p/2 + n
)

– n,

bj = qj–1(n + 1 + 2/(q – 1)
)

– 2/(q – 1),

Dj ≥
C28Dq

j–1

q2(j–1) ,

where C28 = C24m(0)
(n+1+2/(q–1))2 . A straightforward calculation gives rise to

F0(t) ≥ (t + R)nt– 2
q–1 exp

(
qj–1J(t)

)
,

where J(t) ≥ log(t1+2/(q–1)–(n–1)p/2D1)–C29, t ≥ R. As a consequence, we deduce the lifespan
estimate

T(ε) ≤ Cε
– 2p(q–1)

2q+2–(n–1)p(q–1) .
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When n = 2, inserting (7.10) into (7.9) leads to

F0(t) ≥ C27m(0)Dq
j

(bjq + 2)2 (t + R)–2(q–1)–ajqtbjq+2.

Similar to the derivation in the case n ≥ 3, we have J(t) ≥ log(t1+2/(q–1)–p/2D1) – C30. Hence,
we arrive at the lifespan estimate

T(ε) ≤ Cε
– 2p(q–1)

2q+2–p(q–1) .

When n = 1, inserting (7.10) into (7.9), we acquire

F0(t) ≥ C27m(0)Dq
j

(bjq + 2)2 (t + R)–ajq–2(q–1)tbjq+2.

A simple computation indicates

aj = 2qj–1 – 2, bj =
(

2 +
2

q – 1

)

qj–1 –
2

q – 1
, Dj ≥

C31Dq
j–1

q2(j–1) .

It is deduced from (7.10) that F0(t) ≥ (t + R)2t– 2
q–1 exp(pj–1J(t)), where J(t) ≥ log(D1t

2
q–1 ) –

C32 (t ≥ R). Therefore, we derive the lifespan estimate

T(ε) ≤ Cε– p(q–1)
2 .

The proof of Theorem 1.6 is finished. �

7.2 Proof of Theorem 1.7
Similar to the derivation in the proof of Theorem 1.6, we achieve

F0(t) > C23ε
ptn+1–(n–1) p

2 .

It holds that n + 1 – (n – 1) p
2 < 1 when p > 2n

n–1 . Taking advantage of (2.4) and (7.2) leads to

F0(t) ≥ C33εt, (7.11)

where C33 = m(0)
∫

�c u1(x)φ0(x) dx > 0. Inserting (7.11) into (7.8) gives rise to

F0(t) ≥ C34ε
q(t + R)–n(q–1)tq+2,

where C34 = C24Cq
33m(0)

q(q+1) > 0. Assume that

F0(t) ≥ D̃j(t + R)–ãj tb̃j (7.12)

with D̃1 = C34ε
q, ã1 = n(q – 1), b̃1 = q + 2. Combining (7.8) and (7.12), we conclude

F0(t) ≥ C24m(0)D̃q
j

(qb̃j + 2)2
(t + R)–qãj–n(q–1)tqb̃j+2.
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It follows that

F0(t) ≥ (t + R)nt– 2
q–1 exp

(
qj–1 J̃(t)

)
,

where J̃(t) ≥ log(tq+2+2/(q–1)–nqD̃1) – C35, t ≥ R. Thus, we obtain the lifespan estimate

T(ε) ≤ Cε
– q–1

q+1–n(q–1) .

The proof of Theorem 1.7 is completed.
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