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Abstract
In this paper, we consider the existence of multiple solutions for discrete boundary
value problems involving the mean curvature operator by means of Clark’s Theorem,
where the nonlinear terms do not need any asymptotic and superlinear conditions at
0 or at infinity. Further, the existence of a positive solution has been considered by the
strong comparison principle. As an application, some examples are given to illustrate
the obtained results.
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1 Introduction
Denote the sets of integers and real numbers by Z, R, respectively. For a, b ∈ Z, Z(a, b)
denotes the discrete interval {a, a + 1 . . . , b} if a ≤ b. Due to geometric and physical mo-
tivations, many authors [1–3] have studied the existence results for the prescribed mean
curvature equations with Dirichlet boundary conditions

⎧
⎨

⎩

–(φc(u′))′ = f (u), x ∈ (0, 1),

u(0) = u(1) = 0,
(1)

where f : [0,∞) → [0,∞) is a continuous function, φc is the mean curvature operator
defined by φc(ξ ) = ξ

√
1+κξ2 with κ > 0. For general background on the mean curvature op-

erator, we refer to [4, 5].
Because of the wide applications of difference equations in various research fields such

as computer science, economics, biology, and other fields [6–11], many authors have ob-
tained excellent results for difference equations, for example, positive solutions [12–15],
homoclinic solutions [16–21], and ground-state solutions [22, 23]. In particular, Guo and
Yu [24] first used the critical-point theory to study the existence of a periodic solution for
the following discrete problem

–�2u(t – 1) = f
(
t, u(t)

)
, t ∈ Z, (2)
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where � is the forward difference operator defined by �u(t) = u(t + 1) – u(t), �2u(t) =
�(�u(t)), f (t, ·) ∈ C(R, R) for each t ∈ Z. Also, the critical-point theory is an important tool
to deal with the existence of solutions for the discrete boundary value problems [25–27].
However, few works have been done concerning the discrete problems (1). In [15], Zhou
and Ling proved the existence results for the boundary value problem

⎧
⎨

⎩

–�(φc(�u(t – 1))) = f (t, u(t)), t ∈ Z(1, T),

u(0) = u(T + 1) = 0,
(3)

where T is a given positive integer, f (t, ·) ∈ C(R, R) for each t ∈ Z(1, T). Under some suit-
able oscillating assumption on the nonlinearity f at infinity, they investigated the existence
of infinitely many positive solutions.

The aim of this paper is to study the existence of multiple solutions for the following
nonlinear difference equations with mean curvature operator

⎧
⎨

⎩

–�(φc(�u(t – 1))) + q(t)u(t) = λf (t, u(t)), t ∈ Z(1, T),

u(0) = u(T + 1) = 0,
(4)

where q(t) ∈ R
+ for each t ∈ Z(1, T) and λ > 0 is a positive parameter. Based on a version

of Clark’s Theorem [28, 29], we investigate the existence of multiple solutions of (4).
Let f satisfy the following hypotheses:
(a1) f (t, ·) : R →R is a continuous function and f (t, 0) = 0 for each t ∈ Z(1, T);
(a2) lim infξ→+∞ f (t, ξ ) < 0 and there exists a positive constant α such that

0 < f (t, ξ ) for all (t, ξ ) ∈ Z(1, T) × (0,α);

(a3) f (t, ξ ) is odd in ξ for any t ∈ Z(1, T).

Example 1.1 It is easy to find some suitable functions satisfying assumptions (a1)–(a3).
Let

f (t, ξ ) = sin ξ for all (t, ξ ) ∈ Z(1, T) ×R.

We note that sin ξ is a continuous odd function on R. Thus, (a1) and (a3) hold. Lastly, if
we set α = π

4 , then

lim inf
ξ→+∞ sin ξ = –1 < 0 and 0 < sin ξ for all ξ ∈

(

0,
π

4

)

.

Therefore, (a2) holds.

Obviously, if u is a solution of (4), then –u is also a solution of (4) by (a3). We say that
±u is a pair of solutions.

2 Preliminaries
Consider the T-dimensional real space

E =
{

u : [0, T + 1] →R such that u(0) = u(T + 1) = 0
}

,



Wang and Xie Boundary Value Problems         (2022) 2022:55 Page 3 of 13

endowed with the norm

‖u‖ =

( T∑

t=0

∣
∣�u(t)

∣
∣2

) 1
2

.

From functional analysis theory, we know that E is a real Banach space. Moreover, we
define the following two equivalent norms on E,

‖u‖2 =

( T∑

t=1

∣
∣u(t)

∣
∣2

) 1
2

and ‖u‖∞ = max
t∈Z(1,T)

{∣
∣u(t)

∣
∣
}

.

Let J be a C1 functional on E. A sequence {un} ⊂ E is called a Palais–Smale sequence (P.S.
sequence for short) for J if {J(un)} is bounded and J ′(un) → 0 as n → ∞. We say J satisfies
the Palais–Smale condition (P.S. condition for short) if any P.S. sequence for J possesses a
convergent subsequence in E.

Let θ be the zero element of Banach space E. Let 
 denote the family of sets A ⊂ E\{θ}
such that A is closed in E and symmetric with respect to θ , i.e., u ∈ A implies –u ∈ A.

The following Clark’s Theorem will be used to prove our main result.

Lemma 2.1 ([28, 29]) Let E be a real Banach space, J ∈ C1(E,R) with J even, bounded from
below, and satisfying the P.S. condition. Suppose J(θ ) = 0, there is a set K ⊂ 
 such that K
is homeomorphic to Sj–1 by an odd map, and supK J < 0. Then, J possesses at least j distinct
pairs of critical points.

First, the following comparison principle is necessary for the positive solutions.

Lemma 2.2 Let u, v ∈ E. If

–�
(
φc

(
�u(t – 1)

))
+ q(t)u(t) ≥ –�

(
φc

(
�v(t – 1)

))
+ q(t)v(t) for all t ∈ Z(1, T), (5)

then u ≥ v in Z(1, T).

Proof Arguing indirectly, if not, there exist some j0 ∈ Z(1, T) such that u(j0) < v(j0). Set
that

j := max
{

j0|j0 ∈ Z(1, T) such that u(j0) < v(j0)
}

.

If u(j – 1) > v(j – 1), by φc(s) being increasing in s, we have

–�
(
φc

(
�u(j – 1)

))
+ q(j)u(j) < –�

(
φc

(
�v(j – 1)

))
+ q(j)v(j), (6)

which contradicts (5).
If u(j – 1) ≤ v(j – 1), we first consider the case for u(j) – u(j – 1) < v(j) – v(j – 1), which

implies (6). This contradicts (5), since it remains to consider that u(j – 1) ≤ v(j – 1) and
u(j) – u(j – 1) > v(j) – v(j – 1). First, we assume that u(j – 2) > v(j – 2) holds, then

–�
(
φc

(
�u(j – 2)

))
+ q(j – 1)u(j – 1) < –�

(
φc

(
�v(j – 2)

))
+ q(j – 1)v(j – 1). (7)
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If u(j–2) ≤ v(j–2) and u(j–1)–u(j–2) < v(j–1)–v(j–2), we obtain (7), again contradicting
(5). Then, u(j) < v(j) can happen only if u(j – 2) ≤ v(j – 2) and u(j – 1) – u(j – 2) > v(j – 1) –
v(j – 2).

By repeating the above process, u(j) < v(j) can happen only if u(2) ≤ v(2) and u(3)–u(2) >
v(3) – v(2). In this case, if u(1) > v(1), or u(1) ≤ v(1) and u(2) – u(1) < v(2) – v(1), we have

–�
(
φc

(
�u(1)

))
+ q(2)u(2) < –�

(
φc

(
�v(1)

))
+ q(2)v(2), (8)

which contradicts (5). If u(1) ≤ v(1) and u(2) – u(1) > v(2) – v(1), we have

–�
(
φc

(
�u(0)

))
+ q(1)u(1) < –�

(
φc

(
�v(0)

))
+ q(1)v(1), (9)

which contradicts (5). Hence, u(j) ≥ v(j) for all j ∈ Z(1, T). The proof is completed. �

Lemma 2.3 Let u ∈ E, if

–�
(
φc

(
�u(t – 1)

))
+ q(t)u(t) ≥ 0,

u(t) = 0, u(t ± 1) ≥ 0,

then u(t ± 1) = 0.

Proof By the above assumptions, we have

0 ≤ φc
(
�u(t)

) ≤ φc
(
�u(t – 1)

) ≤ 0,

�u(t) ≥ 0, �u(t – 1) ≤ 0.

Combining with the monotonicity of φc, we have u(t ± 1) = 0. The proof is completed. �

In particular, let v = 0 in Lemma 2.2, the strong comparison principle is given by the two
lemmas above.

Lemma 2.4 Let u ∈ E, if u 
= θ and

–�
(
φc

(
�u(t – 1)

))
+ q(t)u(t) ≥ 0 for all t ∈ Z(1, T),

then u > 0 in Z(1, T).

Lemma 2.5 Fix u ∈ E, if u(j) ≤ 0 for some j ∈ Z(1, T) and

–�
(
φc

(
�u(j – 1)

))
+ q(j)u(j) ≥ 0, (10)

then u > 0 in Z(1, T) or u = 0.

Proof Let u be a nontrivial function satisfying (10). We assume first that j = 1 and u(1) ≤ 0,
by (10), then we obtain

0 ≥ u(1)
√

1 + κu(1)2
+ q(1)u(1) ≥ u(2) – u(1)

√
1 + κ(�u(1))2

.
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Hence, u(2) ≤ u(1) ≤ 0. Again, we apply (10) with j = 2 to conclude that u(3) ≤ u(2) ≤ 0.
Hence, we have u(T) ≤ u(T – 1) ≤ · · · ≤ u(3) ≤ u(2) ≤ u(1) ≤ 0. If u(T) = 0, then u is a
trivial function, contradicting the definition of u. If u(T) < 0, by (10) with j = T , we obtain

0 ≥ u(T) – u(T – 1)
√

1 + κ(�u(T – 1))2
+ q(T)u(T) ≥ –u(T)

√
1 + κu(T)2

> 0. (11)

This is absurd, hence u(1) > 0. By a similar argument, if u(2) < 0, then u(T) < 0, but we
obtain u(T) = 0 from (11). Thus, we have u(2) ≥ 0. Repeating the above computation, we
have u(3) ≥ 0, u(4) ≥ 0, . . . , u(T – 1) ≥ 0. Now, we show u(T) ≥ 0. If u(T) < 0, since u(T) <
0 ≤ u(T – 1), again we obtain (11) from (10). This implies u(T) = 0, showing u(T) ≥ 0.
Hence, u(1) > 0 and u(j) ≥ 0 for all j ∈ Z(2, T). If u(2) = 0, we have

0 >
–u(1)

√
1 + κu(1)2

≥ u(3)
√

1 + κu(3)2
≥ 0,

contradicting u(1) > 0. By a similar argument, we obtain u(3) > 0, u(4) > 0, . . . , u(T – 1) > 0.
If u(T) = 0, we have 0 > –u(T–1)

√
1+κu(T–1)2 ≥ 0. Then, u(T – 1) = 0, which is absurd, hence u > 0. �

3 Main results
Now, we state our main results.

Theorem 3.1 Assume that (a1)–(a3) hold, then there exists a positive constant λ̄, when
λ > λ̄, and problem (4) admits at least T distinct pairs of nontrivial solutions. Furthermore,
there exists a positive constant M such that each solution u satisfies ‖u‖∞ ≤ M.

Proof Using the condition (a2), there exists a positive real sequence {dn} with limn→∞ dn =
+∞ such that

lim
n→+∞ f (t, dn) < 0 for all t ∈ Z(1, T).

We can find a positive integer n0 such that M = dn0 > α and f (t, M) < 0, where α comes
from (a2). First, we consider the following boundary value problem

⎧
⎨

⎩

–�(φc(�u(t – 1))) + q(t)u(t) = λf̂ (t, u(t)), t ∈ Z(1, T),

u(0) = u(T + 1) = 0,
(12)

where f̂ (t, ξ ) is a truncation function defined by

f̂ (t, ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t, M) if ξ > M,

f (t, ξ ) if |ξ | ≤ M,

f (t, –M) if ξ < –M.

We show that if u satisfies problem (12), then ‖u‖∞ ≤ M and u is a solution of problem
(4). Arguing indirectly, there exists a k0 ∈ Z(1, T) such that |u(k0)| > M and |u(t)| ≤ M for
t ∈ Z(1, k0 – 1). If u(k0) > M, then f̂ (t, u(k0)) = f (t, M) < 0. We have

–�
(
φc

(
�u(k0 – 1)

))
+ q(k0)u(k0) < 0,
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or

u(k0) – u(k0 + 1)
√

1 + κ(�u(k0))2
< –

u(k0) – u(k0 – 1)
√

1 + κ(�u(k0 – 1))2
– q(k0)u(k0) < 0,

which implies that u(k0 + 1) > u(k0) > M. By repeating the above process, we obtain

u(t) > u(t – 1) > M for all t ∈ Z(k0 + 1, T).

Further,

0 = u(T + 1) > u(T) > M,

which is a contradiction. If u(k0) < –M, we can similarly obtain a contradiction. Thus,
‖u‖∞ ≤ M holds.

Define the functional Ĵ on E as follows:

Ĵ(u) =
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2(t)

2

)

– λ

T∑

t=1

F̂
(
t, u(t)

)
, (13)

where F̂(t, ξ ) =
∫ ξ

0 f̂ (t, s) ds, (t, ξ ) ∈ Z(1, T) × R. It is easy to verify that Ĵ ∈ C1(E,R) and is
even. By using u(0) = u(T + 1) = 0, we can compute the Frećhet derivative,

〈
Ĵ ′(u), v

〉
=

T∑

t=1

(
–�

(
φc

(
�u(t – 1)

))
+ q(t)u(t) – λf̂

(
t, u(t)

))
v(t),

for all u, v ∈ E. It is clear that the critical points of Ĵ are the solutions of problem (12). In
what follows, we will prove that Ĵ has at least T distinct pairs of nonzero critical points by
Lemma 2.1.

For any sequence {un} ⊂ E, if {Ĵ(un)} is bounded and Ĵ ′(un) → 0 as n → +∞, we claim
that {un} is bounded. In fact, there exists a positive constant C ∈ R such that |Ĵ(un)| ≤ C.
Since E is a finite-dimensional real Banach space, there is ‖u‖2 ≤ ‖u‖ ≤ 2‖u‖2 for all u ∈ E
(see [30]). Assume that ‖un‖ → +∞ as n → +∞, then

C ≥ Ĵ(un)

=
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2

n(t)
2

)

– λ

T∑

t=1

F̂
(
t, un(t)

)

≥
T∑

t=1

q(t)un(t)2

2
– λ

∑

|un(t)|≤M

∣
∣F̂

(
t, un(t)

)∣
∣ – λ

∑

|un(t)|>M

∣
∣F̂

(
t, un(t)

)∣
∣

≥ q∗
2

‖un‖2
2 – λD

∑

|un(t)|≤M

∣
∣un(t)

∣
∣ – λ

T∑

t=0

∣
∣
∣
∣

∫ M

0
f̂ (t, s) ds

∣
∣
∣
∣ – λ

∑

|un(t)|>M

∣
∣
∣
∣

∫ un(t)

M
f̂ (t, s) ds

∣
∣
∣
∣

≥ q∗
2

‖un‖2
2 – λD

∑

|un(t)|≤M

∣
∣un(t)

∣
∣ – λD

∑

|un(t)|>M

∣
∣un(t)

∣
∣ – 2λTDM
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=
q∗
2

‖un‖2
2 – λD

T∑

t=1

∣
∣un(t)

∣
∣ – 2λTDM

≥ q∗
8

‖un‖2 – λDT
1
2 ‖un‖ – 2λTDM → +∞ as n → +∞,

where q∗ = mint∈Z(1,T) q(t) and D = max |f (t, u)| for (t, u) ∈ Z(1, T) × [–M, M]. This is im-
possible, since C is a fixed constant. Thus, {un} is bounded in E. This implies that {un} has
a convergent subsequence. Then, the functional Ĵ satisfies the P.S. condition.

Moreover, the coerciveness of Ĵ ,

Ĵ(u) ≥ q∗
8

‖u‖2 – λDT
1
2 ‖u‖ – 2λTDM → +∞ as ‖u‖ → +∞

implies that Ĵ is bounded from below.
Let {ei}T

i=1 be a base of E and ‖ei‖ = 1 for each i ∈ Z(1, T). We define

A(ρ) =

{ T∑

i=1

βiei|
T∑

i=1

|βi|2 = ρ2

}

, ρ > 0.

Obviously, θ /∈ A(ρ), A(ρ) is closed in E and symmetric with respect to θ . We note that
A(ρ) is homeomorphic to ST–1 for any ρ > 0. For u ∈ A(ρ), we see that

‖u‖2 =
T∑

t=0

∣
∣
∣
∣
∣

T∑

i=1

βi�ei(t)

∣
∣
∣
∣
∣

2

≤
T∑

t=0

( T∑

i=1

|βi|2
T∑

i=1

∣
∣�ei(t)

∣
∣2

)

= ρ2
T∑

i=1

‖ei‖2 ≤ ρ2(T + 1), ρ > 0.

Take ρ = α
T+1 , thus

‖u‖∞ ≤
T∑

t=0

∣
∣�u(t)

∣
∣ ≤ (T + 1)

1
2 ‖u‖ ≤ (T + 1)ρ < α < M.

For u ∈ A( α
T+1 ), we note that u 
= θ and f̂ (t, u(t)) = f (t, u(t)). By (a2) and (a3), then

T∑

t=1

F̂
(
t, u(t)

)
=

∑

{t∈Z(1,T)|u(t)>0}
F̂
(
t, u(t)

)
+

∑

{t∈Z(1,T)|u(t)<0}
F̂
(
t, u(t)

)

=
∑

{t∈Z(1,T)|u(t)>0}

∫ u(t)

0
f (t, s) ds +

∑

{t∈Z(1,T)|u(t)<0}

∫ –u(t)

0
f (t, –s)d(–s)

=
∑

{t∈Z(1,T)|u(t)>0}

∫ u(t)

0
f (t, s) ds +

∑

{t∈Z(1,T)|u(t)<0}

∫ –u(t)

0
f (t, s) ds

> 0.

Let τ = infu∈A( α
T+1 )

∑T
t=1 F̂(t, u(t)) and λ̄ = (2+q∗)α2

2Tτ
. By (a2), we know τ > 0. If λ > λ̄, then

Ĵ(u) =
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2(t)

2

)

– λ

T∑

t=1

F̂
(
t, u(t)

)
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≤
T∑

t=0

∣
∣�u(t)

∣
∣2 +

q∗

2
‖u‖2

2 – λ

T∑

t=1

F̂
(
t, u(t)

)

≤ 2 + q∗

2
‖u‖2 – λ

T∑

t=1

F̂
(
t, u(t)

)

≤ (2 + q∗)α2

2T
– λτ

< 0,

where q∗ = maxt∈Z(1,T) q(t). Since all conditions of Lemma 2.1 hold, problem (4) admits at
least T distinct pairs of nontrivial solutions. The proof is completed. �

At the end of this section, we try to prove a pair of constant-sign solutions of the original
problem. We first introduce the following assumptions:

(a′
1) f (t, ·) is a continuous functional on R\{0} for each t ∈ Z(1, T);

(a′
2) 0 < q∗ ≤ f (t, ξ ),∀(t, ξ ) ∈ Z(1, T) × (0,α) for some α > 0, where q∗ = maxt∈Z(1,T) q(t);

(a′
3) f (t, ξ ) = –f (t, –ξ ) in ξ 
= 0 for any t ∈ Z(1, T).

We note that the function f (t, ·) is locally bounded from below for each t ∈ Z(1, T) in the
right-hand side of 0 from (a′

2) and problem (4) has no trivial solution. When θ is not the
solution of the problem, many problems become more complicated [31, 32]. For example,
we put f (t, ξ ) = 1

3√ξ
, α = 1 and q∗ = 1

2 , then 0 < 1
2 < 1

3√ξ
,∀(t, ξ ) ∈ Z(1, T) × (0, 1), which

satisfies the conditions (a′
1)–(a′

3).
Let

μ1 = inf
u∈E\{θ}

∑T
t=0

(�u(t))2
√

1+κ(�u(t))2

‖u‖2
2

.

We observe that

∑T
t=0

(�u(t))2√

1+κ(�u(t))2

‖u‖2
2

is positive in E\{θ}. Thus, μ1 ≥ 0.

Theorem 3.2 Assume that (a′
1)–(a′

3) hold and

lim sup
|ξ |→∞

f (t, ξ )
ξ

< μ1 + q∗, t ∈ Z(1, T). (14)

Then, problem (4) has a positive solution and a negative solution for each λ ∈ (0, μ1+q∗
μ

),
where μ ∈ (0,μ1 + q∗).

Proof We consider the following problem

⎧
⎨

⎩

–�(φc(�u(t – 1))) + q(t)u(t) = λq∗, t ∈ Z(1, T),

u(0) = u(T + 1) = 0.
(15)

Define the variational framework of problem (15)

Jq∗ (u) =
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2(t)

2

)

– λq∗
T∑

t=1

u(t),
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then we have

Jq∗ (u) =
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2(t)

2

)

– λq∗
T∑

t=1

u(t)

=
T∑

t=0

(
(�u(t))2

√
1 + κ(�u(t))2 + 1

+
q(t)u2(t)

2

)

– λq∗
T∑

t=1

u(t)

≥
T∑

t=0

(�u(t))2

2
√

1 + κ(�u(t))2
+

q∗
2

‖u‖2
2 – λq∗√T‖u‖2

≥ μ1 + q∗
2

‖u‖2
2 – λq∗√T‖u‖2 → +∞ as ‖u‖2 → +∞.

Hence, Jq∗ is coercive on E and has a global minimum point u0 that is its critical point.
Combining with Lemma 2.4, u0 is a positive solution of problem (15). We take ε > 0 so
small that u1(t) = εu0(t) < α.

Define a continuous function as follows:

fu1 (t, ξ ) =

⎧
⎨

⎩

f (t, ξ ) if ξ ≥ u1(t),

f (t, u1(t)) if ξ < u1(t).

By (14), there exist a μ ∈ [0,μ1 + q∗) and M1 > u1(t) such that

f (t, ξ ) ≤ μξ , (t, ξ ) ∈ Z(1, T) × (M1,∞). (16)

Thus,

fu1 (t, ξ )

⎧
⎨

⎩

≤ f (t, u1(t)) + max(t,ξ )∈Z(1,T)×[u1(t),M1] f (t, ξ ) + μξ if ξ ≥ 0,

≥ q∗ if ξ < 0,
(17)

and

lim sup
|ξ |→∞

fu1 (t, ξ )
ξ

≤ μ, t ∈ Z(1, T). (18)

Next, we claim that the following problem

⎧
⎨

⎩

–�(φc(�u(t – 1))) + q(t)u(t) = λfu1 (t, u(t)), t ∈ Z(1, T),

u(0) = u(T + 1) = 0
(19)

admits a positive solution u and u > u1 > 0.
We define the following variational framework corresponding to problem (19)

Ĵ(u) =
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2(t)

2

)

– λ

T∑

t=1

Fu1

(
t, u(t)

)
,

where Fu1 (t, ξ ) =
∫ ξ

0 fu1 (t, s) ds, (t, ξ ) ∈ Z(1, T) ×R.
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Using (18), there is one positive constant M such that

Fu1 (t, ξ ) ≤ μ

2
|ξ |2 + M. (20)

Let η = μ1+q∗
μ

. For η > λ > 0, we have

Ĵ(u) =
T∑

t=0

((√
1 + κ(�u(t))2 – 1

κ

)

+
q(t)u2(t)

2

)

– λ

T∑

t=1

Fu1

(
t, u(t)

)

≥
T∑

t=0

(�u(t))2
√

1 + κ(�u(t))2 + 1
+

q∗
2

‖u‖2
2 –

λμ

2
‖u‖2

2 – λTM

≥
T∑

t=0

(�u(t))2

2
√

1 + κ(�u(t))2
+

q∗
2

‖u‖2
2 –

λμ

2
‖u‖2

2 – λTM

≥ μ

2
(η – λ)‖u‖2

2 – λTM → +∞ as ‖u‖2 → +∞.

This shows that Ĵ is also coercive. As the functional is coercive and continuous, it has
a global minimum point u ∈ E, which is a critical point. By (17) and Lemma 2.5, u is a
positive solution. Moreover, if we can show u > u1, then u must be one positive solution
of problem (4). First, we assume that u ≤ u1 for every t ∈ Z(1, T). Since

–�
(
φc

(
�u(t – 1)

))
+ q(t)u(t) = λf

(
t, u1(t)

) ≥ λq∗ = –�
(
φc

(
�u0(t – 1)

))
+ q(t)u0(t),

by Lemma 2.2, we obtain u ≥ u0 > u1, contradicting the assumption above. Secondly, we
consider that u and u1 are not ordered vectors. There exist some j0 ∈ Z(1, T) such that
u(j0) < u1(j0). Let

j := max
{

j0|j0 ∈ Z(1, T) such that u(j0) < u1(j0)
}

.

From the proof of Lemma 2.2, if u(j) < u1(j) holds, we have the following inequality

λf
(
i, u1(i)

)
= –�

(
φc

(
�u(i – 1)

))
+ q(i)u(i) < –�

(
φc

(
�u1(i – 1)

))
+ q(i)u1(i), (21)

where i = 1, 2, j. Since q∗ ≤ f (i, u1(i)) from the proof of Lemma 2.2 and (a′
2), this implies

λq∗ = –�
(
φc

(
�u0(i – 1)

))
+ q(i)u0(i) < –�

(
φc

(
�u1(i – 1)

))
+ q(i)u1(i). (22)

We see from (22) that

0 ≤ q(i)
(
u0(i) – u1(i)

)

< �
(
φc

(
�u0(i – 1)

))
– �

(
φc

(
�u1(i – 1)

))

=
(

ε�u0(i – 1)
√

1 + κ(ε�u0(i – 1))2
–

�u0(i – 1)
√

1 + κ(�u0(i – 1))2

)

+
(

�u0(i)
√

1 + κ(�u0(i))2
–

ε�u0(i)
√

1 + κ(ε�u0(i))2

)

.
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By the strict monotonicity of φc, we find that if �u0(i – 1) > 0, then �u0(i) > 0. That is, if
�u1(i – 1) > 0, then �u1(i) > 0.

Further, we estimate the inequality (22) from the following three cases. First, if �u1(i –
1) ≤ �u1(i), we have

λq∗ < –�
(
φc

(
�u1(i – 1)

))
+ q(i)u1(i) < εq(i)u0(i). (23)

For the second case, if �u1(i – 1) > �u1(i) > 0, then

λq∗ < –�
(
φc

(
�u1(i – 1)

))
+ q(i)u1(i)

=
�u1(i – 1)

√
1 + κ(�u1(i – 1))2

–
�u1(i)

√
1 + κ(�u1(i))2

+ q(i)u1(i)

≤ �u1(i – 1) + q(i)u1(i)

≤ ε
(
�u0(i – 1) + q(i)u0(i)

)
.

(24)

For the last case, if 0 > �u1(i – 1) > �u1(i), then

λq∗ < –�
(
φc

(
�u1(i – 1)

))
+ q(i)u1(i)

=
�u1(i – 1)

√
1 + κ(�u1(i – 1))2

–
�u1(i)

√
1 + κ(�u1(i))2

+ q(i)u1(i)

≤ –�u1(i) + q(i)u1(i)

≤ ε
(
–�u0(i) + q(i)u0(i)

)
.

(25)

We note that �u1(i – 1) = 0 or �u1(i) = 0 still satisfies the above cases. Obviously, when ε

is taken sufficiently small, (23), (24), and (25) cannot hold. These are contradictions. Thus,
u ≥ u1. u is one positive solution of problem (4). Moreover, we see that –u is a negative
solution of problem (4) because of (a′

3). This completes the proof. �

Example 3.1 Let λ = 1, we consider the problem

⎧
⎨

⎩

–�(φc(�u(t – 1))) + q(t)u(t) = sin(u(t)), t ∈ Z(1, T),

u(0) = u(T + 1) = 0,
(26)

we note that the conditions (a1)–(a3) hold from Example 1.1, and λ̄ can be less than 1 by
the definition, thus the problem (26) admits at least T distinct pairs of nontrivial solutions
by Theorem 3.1.

In fact, in [30], such a problem can be found when κ = 0 and q(t) = 0 for each t ∈ Z(1, T)
in Corollary 5.1. We see that the conditions of Theorem 3.1 are different from the condi-
tions of Corollary 5.1 of [30], and we find more solutions of problem (26).

Example 3.2 Let κ = 0 and T = 3. We consider the problem

⎧
⎨

⎩

–�2u(t – 1) + q(t)u(t) = λ 1
3√u(t)

, t ∈ Z(1, 3),

u(0) = u(4) = 0.
(27)
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Put α = 1, q∗ = 1
4 and q∗ = 1

2 . The conditions (a′
1)–(a′

3) hold from the previous example.
We have μ1 = 2 –

√
2 from [30]. Clearly,

lim sup
|ξ |→∞

f (t, ξ )
ξ

= lim sup
|ξ |→∞

1
ξ 4/3 = 0 <

9
4

–
√

2, t ∈ Z(1, T).

All conditions of Theorem 3.2 are verified. If we take μ > 0 sufficiently small, then the
problem (27) has a positive solution and a negative solution for each λ ∈ (0, +∞).
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