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Abstract
This paper studies some quasilinear elliptic nonlocal equations involving
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1 Introduction
This paper is concerned with the problem

⎧
⎨

⎩

–��u = h1(u)‖u‖α

L� + h2(u)‖u‖γ

L� , x ∈ �,

u = 0, x ∈ ∂�,
(1.1)

where α, γ are positive constants, ‖·‖L� (resp. ‖·‖L� ) is a norm in L� (�) (resp. L�(�)) and
the nonlinearities h1, h2: [0, +∞) → [0, +∞) are continuous functions, � ⊂R

N (N ≥ 3) is
bounded with ∂� ∈ C2, ��u = div(ρ(|∇u|)∇u), where

�(t) :=
∫ |t|

0
ρ(s)s ds. (1.2)

Here ρ ∈ C1 : [0, +∞) → [0, +∞) and it satisfies (see [10])
(ρ1) tρ(t) is differentiable for ∀t > 0,
(ρ2) limt→0+ tρ(t) = 0, limt→+∞ tρ(t) = +∞,

and that there exist κ , s ∈ (1, N) such that
(ρ3) κ – 1 ≤ (ρ(t)t)′

ρ(t) ≤ s – 1, ∀t > 0.
Note that (ρ3) implies that

(ρ3)′ κ ≤ ρ(t)t2

�(t) ≤ s, ∀t > 0.
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Problem (1.1) was proposed in [10] and generalizes some problems in [3, 5, 6, 8, 17–20].
As the authors of [10] pointed out, there are some difficulties to study problem (1.1):
(1) variational methods cannot be used directly because of the nonlocal terms; (2) the pres-
ence of the concave–convex nonlinearities leads to invalidness of the Galerkin method;
(3) there is no ready-made sub-supersolutions method as in [2] and [7] because of the
�-Laplacian operator. In [10], for the first time, using monotone iterative technique,
Figueiredo et al. obtained the sub-supersolution theorem for problem (1.1) in which they
needed an important condition that h1, h2: [0, +∞) → R are nondecreasing. As its appli-
cation, the authors discussed the following problem:

⎧
⎨

⎩

–��u = uβ‖u‖α

L� , x ∈ �,

u = 0, x ∈ ∂�.
(1.3)

with the assumption that α, β ≥ 0 with 0 < α +β < κ – 1, and got the existence of a positive
solution.

Another interesting work appeared in [9], in which Dos Santos et al. studied the problem
as follows:

⎧
⎨

⎩

–A(x,‖u‖Lr(x) )�p1(x)u = h1(u, x)‖u‖α1(x)
Lq(x) + h2(u, x)‖u‖γ1(x)

Ls(x) , x ∈ �,

u = 0, x ∈ ∂�.

Note that h1 and h2 are not nondecreasing in this paper.
Motivated by [10] and [9], we try to present the sub-supersolution approach for problem

(1.1) without the assumptions that h1 and h2 are nondecreasing.
Our paper is divided into four sections. In Sect. 2, some needed properties of Orlicz

spaces and the main results are listed. In Sect. 3, we prove a new sub-supersolution theo-
rem for problem (1.1) via the pseudomonotone operator theory and, using obtained theo-
rem, we present a new existence result on positive solutions of problem (1.3) when α ≥ 0,
–1 < β < 0, with 0 < α < κ – 1. Our work complements the conclusions in [10] and [9]:
(1) we obtain the existence of a nontrivial solution of problem (1.1) when h1 and h2 have
no monotonicity; (2) problem (1.3) is studied when β ∈ (–1, 0).

2 Preliminaries and main results
Now we shall list some main definitions, properties, and conclusions in the setting of
Orlicz–Sobolev spaces. For more information, please refer to the literature [1, 4, 13, 15,
16, 22].

In (1.1), because of the existence of assumption (ρ3)′, it is easily to see that the �2 con-
dition is true for �(t) (see [10]).

Lemma 2.1 The function � is nondecreasing on [0, +∞).

Proof Obviously, it is enough to prove that for any 0 < ω1 < ω2, we always have the result
�(ω1) ≤ �(ω2). Since � is convex from the definition of an N-function, we have

�(ω1) – �(0)
ω1 – 0

≤ �(ω2) – �(ω1)
ω2 – ω1

,
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that is,

�(ω1) – 0
ω1 – 0

≤ �(ω2) – �(ω1)
ω2 – ω1

.

Then we have �(ω2) – �(ω1) ≥ 0, that is, �(ω2) ≥ �(ω1). Therefore, the function � is
nondecreasing on [0, +∞). �

Definition 2.2 If a positive function w∗ with w∗ ∈ W 1,�(�) ∩ L∞(�) satisfies

⎧
⎨

⎩

–��w∗ ≥ h1(w∗)J1(w∗) + h2(w∗)J2(w∗), x ∈ �,

w∗ ≥ 0, x ∈ ∂�,

then w∗(x) is called a supersolution of problem (1.1).
If a positive function w∗ with w∗ ∈ W 1,�(�) ∩ L∞(�) satisfies

⎧
⎨

⎩

–��w∗ ≤ h1(w∗)J1(w∗) + h2(w∗)J2(w∗), x ∈ �,

w∗ ≤ 0, x ∈ ∂�,

then w∗(x) is called a subsolution of problem (1.1).

For more information on L�(�) and its norm, please refer to the literature [10]. Let

ζ (u, x) := max
{

w∗(x), min
{

u, w∗(x)
}}

,

ν ∈ (0, 1), γ (t, x) := –(w∗ – t)ν+ +
(
t – w∗)ν

+,

J1(u) :=
∥
∥ζ (u, x)

∥
∥α

L� = infα
{

ς > 0 :
∫

�

�

( |ζ (u, x)|
ς

)

≤ 1
}

,

J2(u) :=
∥
∥ζ (u, x)

∥
∥γ

L� = infγ
{

ς > 0 :
∫

�

�

( |ζ (u, x)|
ς

)

≤ 1
}

.

In addition, � and � are N-functions satisfying the �2 condition, and they are also non-
decreasing on [0, +∞).

For an N-function �, the corresponding Orlicz–Sobolev space is defined as the Banach
space

W 1,�(�) :=
{

v ∈ L�(�)
∣
∣
∣

∂v
∂xi

∈ L�(�) for i = 1, . . . , N
}

endowed with the norm

‖v‖1,� = ‖∇v‖L� + ‖v‖L� .

Specially,

W 1,�
0 (�) :=

{

v ∈ L�(�)
∣
∣
∣

∂v
∂xi

∈ L�(�) for i = 1, . . . , N and v = 0, x ∈ ∂�

}

.

For their properties, one can refer to the literature [10].



Qiu and Yan Boundary Value Problems         (2022) 2022:62 Page 4 of 17

Lemma 2.3 ([10]) Let � be an N-function defined in (1.2) and satisfying (ρ1), (ρ2), and
(ρ3). Denote

ξ0(t) = min
{

tκ , ts}

and

ξ1(t) = max
{

tκ , ts}, t ≥ 0,

then

ξ0(t)�(�) ≤ �(�t) ≤ ξ1(t)�(�), �, t > 0,

ξ0
(‖u‖L�

) ≤
∫

�

�(u) ≤ ξ1
(‖u‖L�

)
, u ∈ L�(�).

Lemma 2.4 ([10]) Let λ > 0, let � be given by (1.2), and suppose � ⊂ R
N is an admissible

domain. Consider the problem

⎧
⎨

⎩

–��zλ = λ, x ∈ �,

zλ = 0, x ∈ ∂�.
(2.1)

where zλ is the unique solution. Define

ρ0 =
1

2|�| 1
N C0

.

If λ ≥ ρ0, then

|zλ|L∞ ≤ C∗λ
1

κ–1 ,

and

|zλ|L∞ ≤ C∗λ
1

s–1

if λ < ρ0. Here C∗ > 0 and C∗ > 0 depend on n, s, N , and �.

For zλ which is defined in Lemma 2.4, it follows that zλ ∈ C1(�) with zλ > 0 in �.

Lemma 2.5 ([11]) There is a k0 > 0 satisfying

(
ρ
(|ζ |)ζ – ρ

(|ε|)ε) · (ζ – ε) ≥ k0
�(|ζ – ε|) κ+1

κ

(�(|ζ |) + �(|ε|)) 1
κ

for ζ , ε ∈R
N , ζ �= 0.

Theorem 2.6 If the functions h1, h2 : [0, +∞) →R are continuous and nonnegative, α,γ ≥
0, w∗ is a supersolution and w∗ is a subsolution with 0 < w∗ ≤ w∗, problem (1.1) possesses
a nontrivial solution u with w∗ ≤ u ≤ w∗.
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Theorem 2.7 Suppose that 0 < α < κ – 1 and –1 < β < 0, where κ is given in (ρ3). Then
equation (1.3) has a positive solution.

3 Proofs of the main results

Proof of Theorem 2.6 We consider

⎧
⎨

⎩

–��u = H(u, x, h1(ζ (u, x)), h2(ζ (u, x))), x ∈ �,

u = 0, x ∈ ∂�,
(3.1)

where

H(u, x, s, t) = J1(u)s + J2(u)t – γ (u, x).

We have the following claims:
Claim 1. Problem (3.1) has a solution in W 1,�

0 (�) ∩ L∞(�).
Define B : W 1,�

0 (�) :→ W –1,�(�) as

(
B(u), w

)
=

∫

�

–��uw –
∫

�

[
h1

(
ζ (u, x)

)
J1(u) + h2

(
ζ (u, x)

)
J2(u) – γ (u, x)

]
w

=
∫

�

ρ
(|∇u|)(∇u · ∇w) –

∫

�

[
h1

(
ζ (u, x)

)
J1(u) + h2

(
ζ (u, x)

)
J2(u)

– γ (u, x)
]
w, ∀u, w ∈ W 1,�

0 (�),

where ρ satisfies (ρ1), (ρ2), and (ρ3).
First, we want to show that B is continuous, bounded, and coercive.
It is easy to see that the conditions on ρ and the continuity of h1 and h2 guarantees that

B is bounded and continuous.
According to (ρ3)′, there exist κ , s ∈ (1, N) such that

κ ≤ ρ(t)t2

�(t)
≤ s, ∀t > 0,

which implies that

(B(u), u)
‖u‖1,�

=
∫

�
ρ(|∇u|)|∇u|2 –

∫

�
[h1(ζ (u, x))J1(u) + h2(ζ (u, x))J2(u) – γ (u, x)]u

‖u‖1,�

≥ κ
∫

�
�(|∇u|) –

∫

�
[h1(ζ (u, x))J1(u) + h2(ζ (u, x))J2(u) – γ (u, x)]u

‖u‖1,�
.

From the Lemma 2.3 and Lemma 2.1 in [12], we have

min
{‖∇u‖κ

L� ,‖∇u‖s
L�

}
= ξ0

(‖∇u‖L�

) ≤
∫

�

�
(|∇u|)

and
∫

�

�
(|∇u|) ≥

∫

�

�

( |u|
d

)

,
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then we deduce

(B(u), u)
‖u‖1,�

≥
κ
2 min{‖∇u‖κ

L� ,‖∇u‖s
L�} + κ

2 min{‖ u
d ‖κ

L� ,‖ u
d ‖s

L�}
‖u‖1,�

–
∫

�
[h1(ζ (u, x))J1(u) + h2(ζ (u, x))J2(u) – γ (u, x)]u

‖u‖1,�
.

It follows that

κ
∫

�
�(|∇u|)

‖u‖1,�
=

κ
∫

�
�(|∇u|)

|∇u|L� + |u|L�

≥
κ
2 min{‖∇u‖κ

L� ,‖∇u‖s
L�} + κ

2 min{‖ u
d ‖κ

L� ,‖ u
d ‖s

L�}
|∇u|L� + |u|L�

=
κ

2
min{‖∇u‖κ

L� ,‖∇u‖s
L�} + min{‖ u

d ‖κ

L� ,‖ u
d ‖s

L�}
|∇u|L� + |u|L�

→ ∞

if ‖u‖1,� → ∞. Then we have

(B(u), u)
‖u‖1,�

→ ∞ (‖u‖1,� → ∞)
.

Hence we can conclude that the operator B is coercive.
In the end, we will prove that operator B is pseudomonotone, i.e., if

un ⇀ u in W 1,�
0 (�) ∩ L∞(�)

and

lim
n→∞ sup

(
B(un), (un – u)

) ≤ 0,

then

lim
n→∞ inf

(
B(un), (un – w)

) ≥ (
B(u), (u – w)

)
, ∀w in W 1,�

0 (�) ∩ L∞(�). (3.2)

From

∫

�

[
h1

(
ζ (un, x)

)
J1(un) + g

(
ζ (un, x)

)
J2(un) – γ (un, x)

]
(un – u) → 0

and

lim sup
n→∞

(
B(un), (un – u)

) ≤ 0,

we obtain

lim sup
n→∞

∫

�

ρ
(|∇un|

)(∇un · ∇(un – u)
) ≤ 0. (3.3)
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From Lemma 3.1 in [12], we infer

∥
∥∇(un – u)

∥
∥

L� ≤
∫

�

�
(∣
∣∇(un – u)

∣
∣
)
. (3.4)

From Lemma 2.5, we can obtain a k0 > 0 such that

�
(∣
∣∇(un – u)

∣
∣
)

≤ [�(|∇un|) + �(|∇u|)] 1
κ+1

k
κ

κ+1
0

× [
ρ
(|∇un|

)(∇un · ∇(un – u)
)

– ρ
(|∇u|)(∇u · ∇(un – u)

)] κ
κ+1 ,

(3.5)

that is,
∫

�

�
(∣
∣∇(un – u)

∣
∣
)

≤
∫

�

{
[�(|∇un|) + �(|∇u|)] 1

κ+1

k
κ

κ+1
0

× [
ρ
(|∇un|

)(∇un · ∇(un – u)
)

– ρ
(|∇u|)(∇u · ∇(un – u)

)] κ
κ+1

}

≤
{∫

�

[
[�(|∇un|) + �(|∇u|)] 1

κ+1

k
κ

κ+1
0

]κ+1} 1
κ+1

×
{∫

�

[
ρ
(|∇un|

)(∇un · ∇(un – u)
)

– ρ
(|∇u|)(∇u · ∇(un – u)

)]
} κ

κ+1
.

(3.6)

Since un ⇀ u, we have
∫

�

ρ
(|∇u|)(∇u · ∇(un – u)

) → 0,

which, together with (3.3), guarantees that
∫

�

ρ
(|∇un|

)(∇un · ∇(un – u)
)

– ρ
(|∇u|)(∇u · ∇(un – u)

) → 0 as n → +∞. (3.7)

From (3.5), (3.6), and (3.7), we have
∫

�

�
(∣
∣∇(un – u)

∣
∣
) → 0,

that is,

∥
∥∇(un – u)

∥
∥

L� → 0.

Therefore,

‖un – u‖1,� = ‖un – u‖L� +
∥
∥∇(un – u)

∥
∥

L� → 0,

which implies that (3.2) is true.
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According to Lemma 2.2.2 in [21], there is a u ∈ W 1,�
0 (�) ∩ L∞(�) such that for ∀w ∈

W 1,�
0 (�),

(
B(u), w

)
= 0.

Therefore, we know that u is a (weak) solution of problem (3.1).
Claim 2. We show that the solution u of problem (3.1) obtained above is a solution of

(1.1).
We shall prove that

w∗ ≤ u ≤ w∗ in �. (3.8)

Choosing w = (u – w∗)+ as a test function, we have

∫

�

–��u
(
u – w∗)

+ =
∫

�

[
H

(
x, u, h1

(
ζ (u, x)

)
, h2

(
ζ (u, x)

))
– γ (u, x)

](
u – w∗)

+

=
∫

�

[
h1

(
ζ (u, x)

)
J1(u) + h2

(
ζ (u, x)

)
J2(u) – γ (u, x)

](
u – w∗)

+.
(3.9)

Define

�1 :=
{

x ∈ � | u > w∗}.

Then

∫

�

[
h1

(
ζ (u, x)

)
J1(u) + h2

(
ζ (u, x)

)
J2(u) – γ (u, x)

](
u – w∗)

+

=
∫

�1

+
∫

�–�1

[
h1

(
ζ (u, x)

)
J1(u) + h2

(
ζ (u, x)

)
J2(u) – γ (u, x)

](
u – w∗)

+

=
∫

�1

[
h1

(
ζ (u, x)

)
J1(u) + h2

(
ζ (u, x)

)
J2(u) – γ (u, x)

](
u – w∗)

+ + 0

=
∫

�1

[
h1

(
w∗)J1(u) + h2

(
w∗)J2(u) –

(
u – w∗)ν

+

](
u – w∗)

+.

(3.10)

Since � and � are increasing, from Lemma 2.1 and |ζ (u, x)| ≤ w∗, we have

{

ς > 0
∣
∣
∣

∫

�

�

( |ζ (u, x)|
ς

)

≤ 1
}

⊇
{

ς > 0
∣
∣
∣

∫

�

�

(
w∗

ς

)

≤ 1
}

and

{

ς > 0
∣
∣
∣

∫

�

�

( |ζ (u, x)|
ς

)

≤ 1
}

⊇
{

ς > 0
∣
∣
∣

∫

�

�

(
w∗

ς

)

≤ 1
}

,

which implies that

J1
(
ζ (u, x)

) ≤ J1
(
w∗), J2

(
ζ (u, x)

) ≤ J2
(
w∗). (3.11)
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From (3.9), (3.10), and (3.11), we have
∫

�

–��u
(
u – w∗)

+ ≤
∫

�

[
h1

(
w∗)J1

(
w∗) + h2

(
w∗)J2

(
w∗) –

(
u – w∗)ν

+

](
u – w∗)

+.

By Definition 2.2, we have

∫

�

–��u
(
u – w∗)

+ ≤
∫

�

[
–��w∗ –

(
u – w∗)ν

+

](
u – w∗)

+.

Hence
∫

�

–��u
(
u – w∗)

+ +
∫

�

��w∗(u – w∗)
+ ≤

∫

�

[
–
(
u – w∗)ν+1

+

] ≤ 0,

i.e.,
∫

�

(
ρ
(|∇u|)∇u – ρ

(∣
∣∇w∗∣∣)∇w∗) · ∇(

u – w∗)
+ ≤

∫

�

[
–
(
u – w∗)ν+1

+

] ≤ 0. (3.12)

From Lemma 2.5, there exists a k0 > 0 such that
∫

�

(
ρ
(|∇u|)∇u – ρ

(∣
∣∇w∗∣∣)∇w∗) · ∇(

u – w∗)
+

≥
∫

�

k0
�(|∇u – ∇w∗|) κ+1

κ

(�(|∇u|) + �(|∇w∗|)) 1
κ

∇(u – w∗)+

∇(u – w∗)
.

(3.13)

Since

∫

�

k0
�(|∇u – ∇w∗|) κ+1

κ

(�(|∇u|) + �(|∇w∗|)) 1
κ

∇(u – w∗)+

∇(u – w∗)
=

∫

�1

k0
�(|∇u – ∇w∗|) κ+1

κ

(�(|∇u|) + �(|∇w∗|)) 1
κ

and � is continuous, we obtain that there is an M1 > 0 such that

∫

�1

k0
�(|∇u – ∇w∗|) κ+1

κ

(�(|∇u|) + �(|∇w∗|)) 1
κ

=
k0

M1

∫

{u>w∗}
�

(∣
∣∇u – ∇w∗∣∣) κ+1

κ . (3.14)

From (3.12), (3.13), and (3.14), we have
∫

{u>w∗}
�

(∣
∣∇u – ∇w∗∣∣) κ+1

κ ≤ 0.

From Lemma 2.2 in [11] and [14], we obtain

∫

{u>w∗}
�

( |u – w∗|
d

) κ+1
κ

≤
∫

{u>w∗}
�

(∣
∣∇u – ∇w∗∣∣) κ+1

κ ≤ 0,

where d = diam(�). Therefore, we can conclude that

∣
∣
{

u > w∗}∣∣ = 0,

and then u ≤ w∗.
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A similar argument shows that u ≥ w∗.
Therefore, (3.8) is true and thus u is a solution of problem (1.1).
The proof is completed. �

Proof of Theorem 2.7 In order to get positive solutions of problem (1.3), we study the
following problem:

⎧
⎨

⎩

–��u = (u + 1
n )β‖u‖α

L� , x ∈ �,

u = 0, x ∈ ∂�,
(3.15)

for n ≥ 1. We will use Theorem 2.6 to discuss problem (3.15).
First, we will construct a supersolution u of problem (3.15).
From Lemma 2.4, problem (2.1) has a unique positive zλ ∈ W 1,�

0 (�) which satisfies

0 < zλ(x) ≤ Kλ
1

κ–1 , x ∈ � (3.16)

for λ > 0 big enough, where K is independent of λ.
Let M = Kλ

1
κ–1 . Then

Kλ
1

κ–1 < zλ(x) + M ≤ 2Kλ
1

κ–1 , x ∈ �.

The condition 0 < α < κ – 1 implies that there is a λ > 1 big enough such that

λ
α

κ–1 ‖2K‖α

L� ≤ λ, M = Kλ
1

κ–1 > 1

and (3.16) holds. Hence

(

zλ + M +
1
n

)β

‖zλ + M‖α

L� ≤ ‖zλ + M‖α

L� ≤ λ
α

κ–1 ‖2K‖α

L� ≤ λ

and

–��(zλ + M) = –��zλ = λ ≥
(

zλ + M +
1
n

)β

‖zλ + M‖α

L� .

Therefore, zλ + M is a supersolution of (3.15).
Second, we will construct a positive subsolution u∗ of problem (3.15).
Define d(x) := dist(x, ∂�), then by a direct calculation one can deduce that |∇d(x)| = 1.

Because ∂� is C2, we can get a constant τ > 0 such that d ∈ C2(�3τ ) with �3τ := {x ∈ � :
d(x) ≤ 3τ } (see [9, 10]). Let � ∈ (0, τ ). Define

η(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

eϑd(x) – 1, for d(x) < � ,

eϑ� – 1 +
∫ d(x)
�

ϑeϑd(x)( 2τ–t
2τ–�

) s
κ–1 dt, for � ≤ d(x) ≤ 2τ ,

eϑ� – 1 +
∫ 2τ

�
keϑd(x)( 2τ–t

2τ–�
) s

κ–1 dt, for 2τ < d(x),
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where ϑ > 0 is an arbitrary number. Direct computations imply that

–��(μη) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–ϑ�(x) d
dt (ρ(t)t)|t=�(x) – ρ(�(x))�(x)�d, for d(x) < � ,

�0( s
κ–1 )χ (x)

s
κ–1 –1

2τ–�
d
dt (ρ(t)t)|

t=�0χ (x)
s

κ–1

– ρ(�0χ (x) s
κ–1 )�0χ (x) s

κ–1 �d, for � ≤ d(x) ≤ 2τ ,

0, for 2τ < d(x),

with �(x) = μϑeϑd(x), �0 = μϑeϑ� , and χ (x) = 2τ–d(x)
2τ–�

for all μ > 0.
There are three cases: (1) d(x) < � ; (2) � < d(x) < 2τ ; and (3) d(x) > 2τ .
(1) We consider the case d(x) < � .
Since �d is a bounded function near ∂� and κ > 1, there is a ϑ large enough such that

–��(μη) = –μϑ2eϑd(x) d
dt

(
ρ(t)t

)
∣
∣
∣
∣
t=μϑeϑd(x)

– ρ
(
μϑeϑd(x))μϑeϑd(x)�d

≤ –ϑ2μeϑd(x)(κ – 1)ρ
(
μϑeμϑeϑd(x))

– ρ
(
μϑeϑd(x))μϑeϑd(x)�d

= μϑeϑd(x)ρ
(
μϑeϑd(x))(–ϑ(κ – 1) – �d

)

≤ 0,

which implies that

–��(μη) ≤ 0 ≤ (μη)β |μη|αL� ,

when d(x) < � and ϑ is large enough.
(2) We consider the case � < d(x) < 2δ.
From the condition (ρ3) and Lemma 2.3, we have

μϑeϑ�

(
s

κ – 1

)(
2τ – d(x)
2τ – �

) s
κ–1 –1( 1

2τ – �

)
d
dt

(
ρ(t)t

)
∣
∣
∣
∣
t=μϑeϑ� ( 2τ–d(x)

2τ–� )
s

κ–1

≤ μϑeϑ�

(
s

κ – 1

)(
2τ – d(x)
2τ – �

) s
κ–1 –1( s – 1

2τ – �

)

ρ

(

μϑeϑ�

(
2τ – d(x)
2τ – �

) s
κ–1

)

≤
(

s
κ – 1

)(
s – 1

2τ – �

) s�(μϑeϑ� ( 2τ–d(x)
2τ–�

) s
κ–1 )

μϑeϑ� ( 2δ–d(x)
2τ–�

) s
κ–1

1
2τ–d(x)
2τ–�

≤
(

s2

κ – 1

)(
s – 1

2τ – �

)

max

{
(
μϑeϑ�

)s–1
(

2τ – d(x)
2τ – �

)s( s
κ–1 )–( s

κ–1 +1)

,

(
μϑeϑ�

)κ–1
(

2τ – d(x)
2τ – �

)κ( s
κ–1 )–( s

κ–1 +1)}

�(1).

(3.17)

Now s,κ > 1 implies κ( s
κ–1 ) – s( s

κ–1 + 1), s( s
κ–1 ) – s( s

κ–1 + 1) > 0, which, together with 0 ≤
2τ–d(x)
2τ–�

≤ 1 and (3.17), guarantees that

μϑeϑ�

(
s

κ – 1

)(
2τ – d(x)
2τ – �

) s
κ–1 –1( 1

2τ – �

)
d
dt

(
ρ(t)t

)
∣
∣
∣
∣
t=μϑeϑ� ( 2δ–d(x)

2τ–� )
s

κ–1
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≤
(

s2

κ – 1

)(
s – 1

2τ – �

)

�(1) max
{(

μϑeϑ�
)s–1,

(
μϑeϑ�

)κ–1} (3.18)

= C1

(
1

2τ – �

)

max
{(

μϑeϑ�
)s–1,

(
μϑeϑ�

)κ–1},

where C1 = s2(s–1)�(1)
κ–1 is a constant independent of μ and ϑ . Similarly, one has

∣
∣
∣
∣ρ

(

μϑeϑ�

(
2τ – d(x)
2τ – �

) s
κ–1

)

μϑeϑ� (2τ – d(x)) s
κ–1

(2τ – � ) s
κ–1

�d
∣
∣
∣
∣

≤ ρ

(

μϑeϑ�

(
2τ – d(x)
2τ – �

) s
r–1

)

μϑeϑ�

(
2τ – d(x)
2τ – �

) s
κ–1

sup
�3τ

|�d|

≤ C
�(μϑeϑ� ( 2τ–d(x)

2τ–�
) s

κ–1 )
μϑeϑ� ( 2τ–d(x)

2τ–�
) s

κ–1

≤ C max

{
(
μϑeϑ�

)s–1
(

2τ – d(x)
2τ – �

)s( s
κ–1 )–( s

κ–1 +1)

,

(
μϑeϑ�

)κ–1
(

2τ – d(x)
2τ – �

)κ( s
κ–1 )–( s

κ–1 +1)}

≤ C2 max
{(

μϑeϑ�
)s–1,

(
μϑeϑ�

)κ–1},

(3.19)

where C2 is a constant independent of � , ϑ , and μ. Thus from (3.18) and (3.19) we have

–��u ≤ max

{
C1

2τ – �
, C2

}

max
{(

μϑeϑ�
)s–1,

(
μϑeϑ�

)κ–1},

when � < d(x) < 2τ .
Let � = ln2

ϑ
and μ = e–ϑ , then eϑ� = 2. Since

η(x) = eϑ� – 1 +
∫ d(x)

�

ϑeϑd(x)
(

2τ – t
2τ – �

) s
κ–1

dt

> 2 – 1 + 2ϑ

∫ d(x)

�

(
2τ – t

2τ – �

) s
κ–1

dt

= 1 + ϑC3

≥ 1,

where C3 > 0 is a constant, we have that when μ is small enough and n is large enough,

(

μη +
1
n

)β

|μη|αL� ≥ |μη|αL�

= infα
{

ς > 0 :
∫

�

�

( |μη|
ς

)

< 1
}

= infα
{

τμ > 0 :
∫

�

�

( |μη|
τμ

)

< 1
}

= μαinfα
{

τ > 0 :
∫

�

�

( |η|
τ

)

< 1
}
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≥ μαC4,

where C4 > 0 is a constant independent of ϑ > 0.
Since 0 < α < κ – 1, we have the result

lim
ϑ→+∞

ϑκ–1

eϑ(κ–1–α) = 0.

In view of

–��(μη) ≤ max

{
C1

2τ – �
, C2

}

max
{

2s–1, 2κ–1}
(

ϑ

eϑ

)κ–1

,

choose a ϑ0 > 0 large enough such that

C4 ≥ max

{
C1

2τ – ln 2
ϑ

, C2

}

max
{

2s–1, 2κ–1}
(

ϑκ–1

eϑ(κ–1–α)

)

for all ϑ ≥ ϑ0.
Thus,

–��(μη) ≤
(

μη +
1
n

)β

|μη|αL�

in the case � < d(x) < 2τ for ϑ > 0 large enough.
(3) We consider the case d(x) > 2τ .
Obviously,

–��(μη) = 0 ≤
(

μη +
1
n

)β

|μη|αL� .

It is obvious that w∗ ≤ w∗ if M is large enough and μ is small enough. And (w∗, w∗) is
a sub-supersolution pair of problem (3.15). Now Theorem 2.6 guarantees that problem
(3.15) has a solution un which satisfies 0 < μη ≤ un ≤ zλ + M.

Now we consider the set {un}.
From Lemma 2.2 in [12], one has that ‖u‖1,� and ‖|∇u‖|L� defined on W 1,�

0 are equiva-
lent. And from the proof of the coercivity of the operator B, we know that if ‖|∇u‖|L� > 1,
then

∫

�

�
(|∇u|) ≥ ‖|∇u‖|L� ,

that is,

∫

�

�
(|∇u|) ≥ ‖u‖1,�,

when ‖u‖1,� > 1.
If ‖un‖1,� ≤ 1, then un is bounded in W 1,�

0 (�) naturally.
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If ‖un‖1,� > 1, then

‖un‖1,� ≤
∫

�

�
(|∇un|

)
.

By the condition (ρ3)′ and due to

∫

�

–��unun =
∫

�

un

(

un +
1
n

)β

‖un‖α

L� ,

we have

κ

∫

�

�
(|∇un|

) ≤
∫

�

φ
(|∇un|

)|∇un|2 =
∫

�

un

(

un +
1
n

)β

‖un‖α

L� ,

which, together with α ≥ 0, –1 < β < 0, gives

∫

�

�
(|∇un|

) ≤ 1
κ

∫

�

w∗β+1∥∥w∗∥∥α

L� ,

that is,

‖un‖1,� ≤ 1
κ

∫

�

w∗β+1∥∥w∗∥∥α

L� .

Therefore, {un} is bounded in W 1,�
0 (�).

Since W 1,�
0 (�) is reflexive, {un} has weakly convergent subsequences in W 1,�

0 (�) ∩
L∞(�), and we still use un to denote its subsequence. From the analysis in [3], we have

un ⇀ u in W 1,�
0 (�) ∩ L∞(�)

and

un(x) a.e.→ u(x), x ∈ �.

Since

w∗ ≤ un ≤ w∗, x ∈ �,

Lebesgue theorem implies

un → u in Lq(�) ∀q ∈ [1, +∞). (3.20)

Since un is a (weak) solution of (3.15) for all n ∈N
+, we have

∫

�

–��unw =
∫

�

(

un +
1
n

)β

‖un‖α

L� w,

for all w ∈ W 1,�
0 (�).
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Denoting w = un – u, we have

∫

�

–��un(un – u) =
∫

�

(

un +
1
n

)β

‖un‖α

L� (un – u).

Since

(

un +
1
n

)β

≤ wβ
∗ , x ∈ �,

one has

∫

�

(

un +
1
n

)β

‖un‖α

L� |un – u| ≤
∫

�

wβ
∗ |un – u|‖un‖α

L�

≤
[∫

�

(
wβ

∗ ‖un‖α

L�

)p
] 1

p
[∫

�

|un – u|q
] 1

q
,

where p, q > 1, 1
p + 1

q = 1, and β ∈ (–1, 0). From (3.20), we have

[∫

�

(
wβ

∗‖un‖α

L�

)p
] 1

p
[∫

�

|un – u|q
] 1

q
→ 0,

and so

∫

�

(

un +
1
n

)β

‖un‖α

L� |un – u| → 0 as n → +∞,

which implies
∫

�

–��un(un – u) → 0.

Obviously,
∫

�

–��u(un – u) → 0. (3.21)

Similar to the previous proof, from (3.4), (3.6), and (3.21), we have

un → u in W 1,�
0 (�) ∩ L∞(�),

and so

‖un‖α

L� → ‖u‖α

L� .

Therefore, taking the limit as n → ∞ in (3.15), we have

–��u = uβ‖u‖α

L� .

The limit value u is just the solution which we are looking for, and it satisfies w∗ ≤ u ≤ w∗,
obviously. Therefore, the proof is finished. �
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