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Abstract
In this paper, we obtain necessary and sufficient conditions for the oscillation of
solutions to a second-order neutral differential equation with impulses. Two examples
are provided to show the effectiveness and feasibility of the main results. Our main
tool is Lebesgue’s dominated convergence theorem.
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1 Introduction
Nowadays impulsive differential equations are attracting a lot of attention. They appear
in the study of several real world problems (see, for instance, [1, 2, 15]). In general, it is
well known that several natural phenomena are driven by differential equations, but the
description of some real world problems subjected to sudden changes in their stated be-
came very interesting from the mathematical point of view because they should be de-
scribed considering systems of differential equations with impulses. Examples of the afore-
mentioned phenomena are related to mechanical systems, biological systems, population
dynamics, pharmacokinetics, theoretical physics, biotechnology processes, chemistry, en-
gineering, and control theory.

We also stress that the modeling of these phenomena is suitably formulated by evolutive
partial differential equations; moreover, moment problem approaches appear also as a
natural instrument in control theory of neutral type systems; see [16, 20, 34] and [13],
respectively.

The literature related to impulsive differential equations is very wide. Here we mention
some recent developments in this field.

In [28], Shen and Wang considered impulsive differential equations of the following
form:

⎧
⎨

⎩

u′(ι) + r(ι)u(ι – ν) = 0, ι �= φk , ι ≥ ι0,

u(φ+
k ) – u(φ–

k ) = Ik(u(φk)), k ∈N,
(1.1)
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where r ∈ C(R,R) and Ik ∈ C(R,R) for k ∈ N, and obtained sufficient conditions that en-
sure the oscillation and asymptotic behavior of the solutions of problem (1.1).

In [12], Graef et al. considered the problem

⎧
⎨

⎩

(u(ι) – q(ι)u(ι – ζ ))′ + r(ι)|u(ι – ν)|λ sgn u(ι – ν) = 0, ι ≥ ι0,

u(φ+
k ) = bku(φk), k ∈N

(1.2)

assuming that q(ι) ∈ PC([ι0,∞),R+) (that is, q(ι) is piecewise continuous in [ι0,∞)), ob-
tained sufficient conditions for the oscillation of the solutions of problem (1.2).

In [27], Shen and Zou obtained oscillation criteria for first-order impulsive neutral delay
differential equations of the form

⎧
⎨

⎩

(u(ι) – q(ι)u(ι – ζ ))′ + r(ι)u(ι – ν1) – v(ι)u(ι – ν2) = 0, ν1 ≥ ν2 > 0,

u(φ+
k ) = Ik(u(φk)), k ∈N

(1.3)

obtaining sufficient conditions that ensure the oscillation of the solutions of (1.3) under
the assumptions that q(ι) ∈ PC([ι0,∞),R+) and bk ≤ Ik (u)

u ≤ 1.
Karpuz et al. in [14] extended the results contained in [27] by taking the nonhomoge-

neous counterpart of system (1.3) with variable delays.
Oscillation and nonoscillation properties for a class of second-order neutral impulsive

differential equations with constant coefficients and constant delays were studied by Tri-
pathy and Santra in [30], where the authors considered the problem

⎧
⎨

⎩

(u(ι) – qu(ι – ζ ))′′ + ru(ι – ν) = 0, ι �= φk , k ∈ N,

�(u(φk) – qu(φk – ζ ))′ + r̃u(φk – ν) = 0, k ∈N.
(1.4)

Other necessary and sufficient conditions for the oscillation of a class of second-order
neutral impulsive systems were established in [32], where Tripathy and Santra studied
systems of the form

⎧
⎨

⎩

(p(ι)(u(ι) + q(ι)u(ι – ζ ))′)′ + r(ι)g(u(ι – ν)), ι �= φk , k ∈N,

�(p(φk)(u(φk) + q(φk)u(φk – ζ ))′) + r(φk)g(u(φk – ν)) = 0, k ∈ N.
(1.5)

In [32], in particular, the authors are interested in oscillating systems that, after a pertur-
bation by instantaneous change of state, remain oscillating.

In [26], Santra and Tripathy investigated the oscillatory behavior of the solutions for
first-order impulsive neutral delay differential equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

(u(ι) – q(ι)u(ι – ζ ))′ + r(ι)g(u(ι – ν)) = 0, ι �= φk , ι ≥ ι0,

u(φ+
k ) = Ik(u(φk)), k ∈N,

u(φ+
k – τ ) = Ik(u(φk – τ )), k ∈N

(1.6)

for different values of the neutral coefficient q.
We also mention the paper [24] in which Santra and Dix, using Lebesgue’s dominated

convergence theorem, obtained necessary and sufficient conditions for the oscillation of
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the solutions of the following second-order neutral differential equation with impulses:

⎧
⎨

⎩

(p(ι)(w′(ι))γ )′ +
∑m

j=1 rj(ι)gj(u(νj(ι))) = 0, ι ≥ ι0, ι �= φk , k ∈N,

�(p(φk)(w′(φk))γ ) +
∑m

j=1 r̃j(φk)gj(u(νj(φk))) = 0,
(1.7)

where

w(ι) = u(ι) + q(ι)u
(
ζ (ι)

)
, �u(a) = lim

s→a+
u(s) – lim

s→a– u(s).

In line with the contents of [24], Tripathy and Santra in [31] examined oscillation and
nonoscillation properties for the solutions of the following class of forced impulsive non-
linear neutral differential systems:

⎧
⎨

⎩

(p(ι)(u(ι) + q(ι)u(ι – ζ ))′)′ + r(ι)g(u(ι – ν)) = f (ι), ι �= φk , k ∈ N,

�(p(φk)(u(φk) + q(φk)u(φk – ζ ))′) + r̃(φk)g(u(φk – ν)) = f̃ (φk), k ∈N

(1.8)

for different values of q(ι) and obtained sufficient conditions for the existence of positive
bounded solutions of system (1.8).

Finally, we mention the recent work [33] in which Tripathy and Santra obtained some
characterizations for the oscillation of solutions of the following second-order neutral im-
pulsive differential system:

⎧
⎨

⎩

(p(ι)(w′(ι))γ )′ +
∑m

j=1 rj(ι)xαj (νj(ι)) = 0, ι ≥ ι0, t �= φk ,

�(p(φk)(w′(φk))γ ) +
∑m

j=1 hj(φk)xαj (νj(φk)) = 0, k ∈N,
(1.9)

where w(ι) = u(ι) + q(ι)u(ζ (ι)) and –1 < q(ι) ≤ 0.
For further details on neutral impulsive differential equations and for recent results re-

lated to the oscillation theory for ordinary differential equations, we refer the reader to
the papers [3–6, 8, 9, 11, 21–23, 25, 29, 35] and to the references therein. In particular,
the study of oscillation of half-linear/Emden–Fowler (neutral) differential equations with
deviating arguments (delayed or advanced arguments or mixed arguments) has numerous
applications in physics and engineering (e.g., half-linear/Emden–Fowler differential equa-
tions arise in a variety of real world problems such as in the study of p-Laplace equations,
non-Newtonian fluid theory, the turbulent flow of a polytropic gas in a porous medium,
and so forth); see, e.g., the papers [7, 10, 16–20] for more details.

Motivated by the aforementioned findings, in this paper we prove necessary and suf-
ficient conditions for the oscillation of solutions to a second-order nonlinear impulsive
differential system of the form

(
p(ι)

(
w′(ι)

)α)′ + r(ι)g
(
u
(
ν(ι)

))
= 0, ι ≥ ι0, ι �= φk , k ∈N, (1.10)

�
(
p(φk)

(
w′(φk)

)α)
+ r̃(φk)g

(
u
(
ν(φk)

))
= 0, (1.11)

where

w(ι) = u(ι) + q(ι)u
(
ζ (ι)

)
, �u(a) = lim

s→a+
u(s) – lim

s→a– u(s),
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the functions g , r, r̃, p, q, ν , ζ are continuous and satisfy the conditions stated below; the
sequence {φk} satisfies 0 < φ1 < φ2 < · · · < φk <→ ∞ as k → ∞; and α is the quotient of
two positive odd integers.

In this paper we use the following assumptions:
(a) ν ∈ C([0,∞),R), ζ ∈ C2([0,∞),R), ν(ι) < ι, ζ (ι) < ι, limι→∞ ν(ι) = ∞,

limι→∞ ζ (ι) = ∞.
(b) ν ∈ C([0,∞),R), ζ ∈ C2([0,∞),R), ν(ι) > ι, ζ (ι) < ι, limι→∞ ζ (ι) = ∞.
(c) p ∈ C1([0,∞),R), r, r̃ ∈ C([0,∞),R); 0 < p(ι), 0 ≤ r(ι), 0 ≤ r̃(ι) for all ι ≥ 0;

∑
r(ι) is

not identically zero in any interval [b,∞).
(d) q ∈ C2([0,∞),R+) with 0 ≤ q(ι) ≤ a < 1;
(e) g ∈ C(R,R) is nondecreasing and g(ι)ι > 0 for ι �= 0.
(f ) limι→∞ P(ι) = ∞, where P(ι) =

∫ ι

0 p–1/α(s) ds.

2 Preliminary results
For the sake of simplicity, we set

R1(ι) = r(ι)g
(
(1 – a)w

(
ν(ι)

))
;

R(1,k) = r̃(φk)g
(
(1 – a)w

(
ν(φk)

))
.

Lemma 2.1 Suppose that (a)–(f ) hold for ι ≥ ι0, and let u be an eventually positive solution
of (1.10)–(1.11). Then w satisfies

0 < w(ι), w′(ι) > 0, and
(
p(ι)

(
w′(ι)

)α)′ ≤ 0 for ι ≥ ι1. (2.1)

Proof Let u be an eventually positive solution. Then w(ι) > 0 and there exists ι0 ≥ 0 such
that u(ι) > 0, u(ν(ι)) > 0, u(ζ (ι)) > 0 for all ι ≥ ι0. Then (1.10)–(1.11) gives that

(
p(ι)

(
w′(ι)

)α)′ = –r(ι)g
(
u
(
ν(ι)

)) ≤ 0 for ι �= φk ,

�
(
p(φk)

(
w′(φk)

)α)
= –r̃(φk)g

(
u
(
ν(φk)

)) ≤ 0 for k ∈N,
(2.2)

which shows that p(ι)(w′(ι))α is nonincreasing for ι ≥ ι0, including jumps of disconti-
nuity. Next we claim that for w > 0, p(ι)(w′(ι))α is positive for ι ≥ ι1 > ι0. If not, letting
p(ι)(w′(ι))α ≤ 0 for ι ≥ ι1, we can choose c > 0 such that

p(ι)
(
w′(ι)

)α ≤ –c,

that is,

w′(ι) ≤ (–c)1/αp–1/α(ι).

Integrating both sides from ι1 to ι, we get

w(ι) – w(ι1) –
∞∑

k=1

w′(φk) ≤ (–c)1/α(
P(ι) – P(ι1)

)
.
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Taking limit on both sides as ι → ∞, we have limι→∞ w(ι) ≤ –∞, which leads to a con-
tradiction to w(ι) > 0. Hence, p(ι)(w′(ι))α > 0 for ι ≥ ι1, that is, w′(ι) > 0 for ι ≥ ι1. This
completes the proof. �

Lemma 2.2 Suppose that (a)–(f ) hold for ι ≥ ι0, and let u be an eventually positive solution
of (1.10)–(1.11). Then w satisfies

u(ι) ≥ (1 – a)w(ι) for ι ≥ ι1. (2.3)

Proof Assume that u is an eventually positive solution of (1.10)–(1.11). Then w(ι) > 0 and
there exists ι ≥ ι1 > ι0 such that

u(ι) = w(ι) – q(ι)u
(
ζ (ι)

)

≥ w(ι) – q(ι)w
(
ζ (ι)

)

≥ w(ι) – q(ι)w(ι)

=
(
1 – q(ι)

)
w(ι)

≥ (1 – a)w(ι).

Hence w satisfies (2.3) for ι ≥ ι1. �

3 Main results
In Theorem 3.1 we use a constant β , the quotient of two odd positive integers with β > α,
for which

g(ι)
ιβ

is nondecreasing for 0 < ι. (3.1)

The existence of such a constant can be established by taking g(ι) = |ι|δ sgn(ι) with β < δ.

Theorem 3.1 Let (b)–(f ) and (3.1) hold for ι ≥ ι0. Then every solution of (1.10)–(1.11) is
oscillatory if and only if

∫ ∞

0
p–1/α(s)

[∫ ∞

s
r(ψ) dψ +

∑

φk≥s

r̃(φk)
]1/α

ds = ∞. (3.2)

Proof Let u be an eventually positive solution of (1.10)–(1.11). Then w(ι) > 0 and there
exists ι0 ≥ 0 such that u(ι) > 0, u(ν(ι)) > 0, u(ζ (ι)) > 0 for all ι ≥ ι0. Thus, Lemmas 2.1 and
2.2 hold for ι ≥ ι1. By Lemma 2.1, there exists ι2 > ι1 such that w′(ι) > 0 for all ι ≥ ι2. Then
there exist ι3 > ι2 and c > 0 such that w(ι) ≥ c for all ι ≥ ι3. Next, using Lemma 2.2, we get
u(ι) ≥ (1 – a)w(ι) for all ι ≥ ι3 and (1.10)–(1.11) become

(
p(ι)

(
w′(ι)

)α)′ + R1(ι) ≤ 0 for ι �= φk ,

�
(
p(φk)

(
w′(φk)

)α)
+ R(1,k) ≤ 0 for k = 1, 2, . . . .

(3.3)

Integrating (3.3) from ι to ∞, we get

[
p(s)

(
w′(s)

)α]∞
ι

+
∫ ∞

ι

R1(s) ds +
∑

φk≥ι

R(1,k) ≤ 0.
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Since p(ι)(w′(ι))α is positive and nondecreasing, limι→∞ p(ι)(w′(ι))α exists, and it is finite
and positive. Then

p(ι)
(
w′(ι)

)α ≥
∫ ∞

ι

R1(s) ds +
∑

φk≥ι

R(1,k),

that is,

w′(ι) ≥ p–1/α(ι)
[∫ ∞

ι

R1(s) ds +
∑

φk≥ι

R(1,k)

]1/α

. (3.4)

Since

g
[
(1 – a)w

(
ν(ι)

)]
=

g[(1 – a)w(ν(ι))]
(1 – a)βwβ (ν(ι))

(1 – a)βwβ
(
ν(ι)

)

≥ g[c(1 – a)]
cβ (1 – a)β

(1 – a)βwβ
(
ν(ι)

)

=
g[c(1 – a)]

cβ
wβ

(
ν(ι)

)
,

(3.5)

then we use (3.5) in (3.4) to get

w′(ι) ≥ p–1/α(ι)
[∫ ∞

ι

r(s)
g[c(1 – a)]

cβ
wβ

(
ν(s)

)
ds

+
∑

φk≥ι

r̃(φk)
g[c(1 – a)]

cβ
wβ

(
ν(φk)

)
]1/α

.

Next, if we set K = g0[c(1–a)]
cβ , where g0[c(1 – a)] = min{g[c(1 – a)]}, the above inequality

becomes

w′(ι) ≥ K1/αp–1/α(ι)
[∫ ∞

ι

r(s)wβ
(
ν(s)

)
ds +

∑

φk≥ι

r̃(φk)wβ
(
ν(φk)

)
]1/α

.

Using (b) and the fact that w(ι) is nondecreasing, we have

w′(ι) ≥ K1/αp–1/α(ι)
[∫ ∞

ι

r(s) ds +
∑

φk≥ι

r̃(φk)
]1/α

wβ/α(ι),

i.e.,

w′(ι)
wβ/α(ι)

≥ K1/αp–1/α(ι)
[∫ ∞

ι

r(s) ds +
∑

φk≥ι

r̃(φk)
]1/α

.

Integrating both sides from ι3 to ∞, we get

K1/α
∫ ∞

ι3

p–1/α(s)
[∫ ∞

s
r(ψ) dψ +

∑

φk≥ι

r̃(φk)
]1/α

ds ≤
∫ ∞

ι3

w′(s)
wβ/α(s)

ds < ∞
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due to β > α, which is a contradiction to (3.2) and hence the sufficiency part of the theorem
is proved.

Next we prove the necessary part by a contrapositive argument. If (3.2) does not hold,
then for every ε > 0 there exists ι ≥ ι0, for which

∫ ∞

ι

p–1/α(s)
[∫ ∞

s
r(ψ) dψ +

∑

φk≥s

r̃(φk)
]1/α

ds < ε for ι ≥ Y ,

where 2ε = [max{g( 1
1–a )}]–1/α > 0.

Let us define the set

V =
{

u ∈ C
(
[0,∞)

)
:

1
2

≤ u(ι) ≤ 1
1 – a

for all ι ≥ Y
}

and � : V → V as

(�u)(ι) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if ι ≤ Y ,
1+a

2(1–a) – q(ι)u(ζ (ι))

+
∫ ι

ι
p–1/α(s)[

∫ ∞
s r(ψ)g(u(ν(ψ))) dψ

+
∑

φk≥s r̃(φk)g(u(ν(φk)))]1/α ds if ι > Y .

Now we prove that (�u)(ι) ∈ V . For u(ι) ∈ V ,

(�u)(ι) ≤ 1 + a
2(1 – a)

+
∫ ι

T
p–1/α(s)

[∫ ∞

s
r(ψ)g

(
1

1 – a

)

dψ

+
∑

φk≥s

r̃(φk)g
(

1
1 – a

)]1/α

ds

≤ 1 + a
2(1 – a)

+
[

max

{

g
(

1
1 – a

)}]1/α

.ε

=
1 + a

2(1 – a)
+

1
2

=
1

1 – a
,

and further, for u(ι) ∈ V ,

(�u)(ι) ≥ 1 + a
2(1 – a)

– q(ι).
1

1 – a
+ 0 ≥ 1 + a

2(1 – a)
–

a
1 – a

=
1
2

.

Hence � maps from V to V .
Now we are going to find a fixed point for � in V , which will give an eventually positive

solution of (1.10)–(1.11).
First we define a sequence of functions in V by

u0(ι) = 0 for ι ≥0,

u1(ι) = (�u0)(ι) =

⎧
⎨

⎩

0 if ι < Y ,
1
2 if ι ≥ Y ,
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un+1(ι) = (�un)(ι) for n ≥ 1, ι ≥ Y .

Here we see u1(ι) ≥ u0(ι) for each fixed ι and 1
2 ≤ un–1(ι) ≤ un(ι) ≤ 1

1–a for ι ≥ Y for all
n ≥ 1. Thus un converges point-wise to a function u. By Lebesgue’s dominated conver-
gence theorem u is a fixed point of � in V , which shows that it has a nonoscillatory solu-
tion. This completes the proof of the theorem. �

In Theorem 3.2 we take a constant β , the quotient of two odd positive integers with
β < α, for which

g(ι)
ιβ

is nonincreasing for 0 < ι. (3.6)

The existence of such a constant can be established by taking g(ι) = |ι|δ sgn(ι) with β > δ.
The assumption upon β can be withdrawn by taking |u|β sgn(u) instead of uβ .

Theorem 3.2 Let (a), (c)–(f ), and (3.6) hold for ι ≥ ι0. Then every solution of (1.10)–(1.11)
is oscillatory if

1
(2c)β

[∫ ∞

0
r(ψ)g

[
c(1 – a)P

(
ν(ψ)

)]
dψ

+
∞∑

k=1

r̃(φk)g
[
c(1 – a)P

(
ν(φk)

)]
]

= ∞ ∀c �= 0.

(3.7)

Proof Let u(ι) be an eventually positive solution of (1.10)–(1.11). Then, proceeding as in
the proof of Theorem 3.1, we have ι2 > ι1 > ι0 such that inequality (3.4) holds for all ι ≥ ι2.
Using (e), there exists ι3 > ι2 for which P(ι) – P(ι3) ≥ 1

2 P(ι) for ι ≥ ι3. Integrating (3.4) from
ι3 to ι, we have

w(ι) – w(ι3) ≥
∫ ι

ι3

p–1/α(s)
[∫ ∞

s
R1(κ) dκ +

∑

φk≥s

R(1,k)

]1/α

ds

≥
∫ ι

ι3

p–1/α(s)
[∫ ∞

ι

R1(κ) dκ +
∑

φk≥ι

R(1,k)

]1/α

ds,

that is,

w(ι) ≥ (
P(ι) – P(ι3)

)
[∫ ∞

ι

R1(κ) dκ +
∑

φk≥ι

R(1,k)

]1/α

≥ 1
2

P(ι)
[∫ ∞

ι

R1(κ) dκ +
∑

φk≥ι

R(1,k)

]1/α

. (3.8)

Since p(ι)(w′(ι))α is nonincreasing and positive, then there exist c > 0 and ι4 > ι3 such that
p(ι)(w′(ι))α ≤ cα for ι ≥ ι4. Integrating the relation w′(ι) ≤ cp–1/α(ι) from ι4 to ι, we have

w(ι) – w(ι4) ≤ c
(
P(ι) – P(ι4)

)
,
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that is,

w(ι) ≤ cP(ι) for ι ≥ ι4. (3.9)

Using (3.6) and (3.9), we obtain

g
[
(1 – a)w

(
ν(ι)

)]
=

g[(1 – a)w(ν(ι))]
(1 – a)βwβ (ν(ι))

(1 – a)βwβ
(
ν(ι)

)

≥ g[c(1 – a)P(ν(ι))]
cβ (1 – a)βPβ (ν(ι))

(1 – a)βwβ
(
ν(ι)

)

=
g[c(1 – a)P(ν(ι))]

cβPβ (ν(ι))
wβ

(
ν(ι)

) ∀ι ≥ ι4. (3.10)

Using (3.10) in (3.8), we obtain

w(ι) ≥ 1
2

P(ι)
[∫ ∞

ι

r(κ)
g[c(1 – a)P(ν(κ))]

cβPβ (ν(κ))
wβ

(
ν(κ)

)
dκ

+
∑

φk≥ι

r̃(φk)
g[c(1 – a)P(ν(φk))]

cβPβ (ν(φk))
wβ

(
ν(φk)

)
]1/α

.

Hence,

w(ι) ≥ 1
2

P(ι)U1/α(ι) for ι ≥ ι4,

where

U(ι) =
1
cβ

[∫ ∞

ι

r(κ)g
[
c(1 – a)P

(
ν(κ)

)]wβ (ν(κ))
Pβ (ν(κ))

dκ

+
∑

φk≥ι

r̃(φk)g
[
c(1 – a)P

(
ν(φk)

)]wβ (ν(φk))
Pβ (ν(φk))

]

.

Now,

U ′(ι) = –
1
cβ

r(ι)g
[
c(1 – a)P

(
ν(ι)

)]wβ (ν(ι))
Pβ (ν(ι))

≤ –
1

(2c)β
r(ι)g

[
c(1 – a)P

(
ν(ι)

)]
Uβ/α(

ν(ι)
) ≤ 0 (3.11)

and

�U(φk) = –
1

(2c)β
r(φk)g

[
c(1 – a)P

(
ν(φk)

)]
Uβ/α(

ν(φk)
) ≤ 0, (3.12)

which shows that U(ι) is nonincreasing on [ι4,∞) and limι→∞ U(ι) exists. Using (3.11) and
(a), we find

[
U1–β/α(ι)

]′ = (1 – β/α)U–β/α(ι)U ′(ι)
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≤ –
1 – β/α

(2c)β
r(ι)g

[
c(1 – a)P

(
ν(ι)

)]
Uβ/α(

ν(ι)
)
U–β/α(ι)

≤ –
1 – β/α

(2c)β
r(ι)g

[
c(1 – a)P

(
ν(ι)

)]
. (3.13)

To estimate the discontinuity of U1–β/α , we use a Taylor polynomial of order 1 from the
function h(u) = u1–β/α , with 0 < β < α, about u = a:

b1–β/α – a1–β/α ≤ (1 – β/α)a–β/α(b – a).

Then

�U1–β/α(φk) ≤ (1 – β/α)U–β/α(φk)�U(φk)

≤ –
1 – β/α

(2c)β
r(φk)g

[
c(1 – a)P

(
ν(φk)

)]
.

Now, integrating (3.13) from ι4 to ι, we have

[
U1–β/α(s)

]ι

ι4
–

∑

φk≥ι

�
[
U1–β/α(φk)

]

≤ –
1 – β/α

(2c)β

∫ ι

ι4

r(s)g
[
c(1 – a)P

(
ν(s)

)]
ds,

that is,

1 – β/α
(2c)β

[∫ ∞

0
r(s)g

[
c(1 – a)P

(
ν(s)

)]
ds +

∞∑

k=1

r̃(φk)g
[
c(1 – a)P

(
ν(φk)

)]
]

≤ –
[
U1–β/α(s)

]ι

ι4
< U1–β/α(ι4) < ∞,

which contradicts (3.7). This completes the proof. �

Example 3.1 Consider the neutral differential equations

(((
u(ι) + e–ιu

(
ζ (ι)

))′)1/3)′ + ι
(
u(ι – 2)

)7/3 = 0, (3.14)
(((

u
(
3k) – e–3k

x
(
ζ
(
3k)))′)1/3)′ + (ι + 2)

(
u
(
3k – 2

))7/3 = 0. (3.15)

Here α = 1/3, p(ι) = 1, 0 < q(ι) = e–ι < 1 ν(ι) = ι – 2, φk = 3k for k ∈N, g(ι) = ι7/3. For β = 5/3,
we have δ = 7/3 > β = 5/3 > α = 1/3 and g(ι)/ιβ = ι2/3, which are increasing functions. Now
we check (3.2). We have

∫ ∞

ι0

[
1

p(s)

[∫ ∞

s
r(ψ) dψ +

∑

φk≥s

r̃(φk)
]]1/α

ds

≥
∫ ∞

ι0

[
1

p(s)

[∫ ∞

s
r(ψ) dψ

]]1/α

ds

=
∫ ∞

2

[∫ ∞

s
ψ dψ

]3

ds = ∞.
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So, all the conditions of Theorem 3.1 hold. Thus, each solution of (3.14)–(3.15) is oscilla-
tory.

Example 3.2 Consider the neutral differential equations

(
e–ι

((
u(ι) + e–ιu

(
ζ (ι)

))′)11/3)′ +
1

ι + 1
(
u(ι – 2)

)1/3 = 0, (3.16)

(
e–k((u(k) + e–ku

(
ζ (k)

))′)11/3)′ +
1

ι + 4
(
u(k – 2)

)1/3 = 0. (3.17)

Here α = 11/3, p(ι) = e–ι, 0 < q(ι) = e–ι < 1, ν(ι) = ι – 2, φk = k for k ∈ N, P(ι) =
∫ ι

0 e3s/11 ds =
11
3 (e3ι/11 – 1), g(ι) = ι1/3. For β = 7/3, we have δ = 1/3 < β = 7/3 < α = 11/3 and g(ι)/ιβ = ι–2,

which are decreasing functions. Now we check (3.7). We have

1
(2c)β

[∫ ∞

0
r(ψ)gc(1 – a)P

(
ν(ψ)

)
]

dψ +
∞∑

k=1

r̃(φk)g
[
c(1 – a)P

(
ν(φk)

)]
]

≥ 1
(2c)7/3

∫ ∞

0
r(ψ)g

[
c(1 – a)P

(
ν(ψ)

)]
dψ

=
1

(2c)7/3

∫ ∞

0

1
ψ + 1

[

c(1 – a)
11
3

(
e3(ψ–2)/11 – 1

)
]1/3

dψ = ∞ ∀c > 0.

So, all the conditions of Theorem 3.2 hold, and therefore each solution of (3.16)–(3.17) is
oscillatory.

4 Conclusions
In this work, we have undertaken the problem by taking a second-order highly nonlinear
neutral impulsive differential system and established necessary and sufficient conditions
for the oscillation of (1.10)–(1.11) when the neutral coefficient lies in [0, 1). It would be
of interest to investigate the oscillation of (1.10)–(1.11) with different neutral coefficients;
see, e.g., the papers [17–19] for more details. Furthermore, it is also interesting to analyze
the oscillation of (1.10)–(1.11) with a nonlinear neutral term; see, e.g., the paper [10] for
more details.
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