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1 Introduction
Investigation of the fractional boundary value problems has received a great deal of atten-
tion due to the various applications and real-world problems [1-10].

The existence of the solutions for high-order fractional integrodifferential equations in-
volving CFD and DCF have been studied in [11]. For the fractional differential inclusions
and some existence results see [2] and [12].

Dhage and Lakshmikantham [13] introduced and initiated studying a new category of
nonlinear differential equation called an ordinary hybrid differential equation.

Baleanu et al. [1] applied a generalization of the hybrid Dhage’s fixed-point result for the
sum of three fractional operators, with the aim of proving the existence of solutions for a
fractional hybrid integrodifferential equation with mixed hybrid integral boundary value
conditions [1].

An extension for the second-order differential equation of a thermostat model to the
fractional hybrid equation and inclusion versions has been provided [14]. Also, hybrid
boundary value conditions of this problem have been considered [14]. The complication
of mumps-induced hearing loss in children has been modeled and studied in [15] by us-
ing the Caputo—Fabrizio fractional-order derivative that preserves the system’s historical
memory.
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A new version for the mathematical model of HIV by using the fractional Caputo—
Fabrizio derivative has been given [2]. The existence and uniqueness of the solution for
that model by using fixed-point theory and by a combination of the Laplace transform and
homotopy analysis method have been considered [2].

In 1997, [16] two new models involving delay-differential equations with hysteresis were
developed to describe the dynamic behavior of an automotive thermostat and the solvabil-
ity of those two models was obtained. A new mathematical model again for the dynamic
behavior of a thermostat located in an engine’s cooling system was published, along with
an algorithm for numerical solutions [17].

In 2005, Webb [18] created the first mathematical model for thermostat control, which
had the following structure.

W (@€) + f(OVH (L, u(t) =0,
w'(0) =0,bu'(t) + u(z) =0,

for ¢ € [0,1] and b > 0. Shen, Zhou, and Yang analyzed the thermostat differential equation
in noninteger format and with the identical boundary conditions as in [19].

D% () + AH(¢, u(2)) = 0,
w'(0) = 0,bD* u(t) + pu(z) = 0,

fort € [0,1], b,1 >0, and « € (1,2], T € (0,1), and H : [0,1] x [0,00) — [0,00) is contin-
uous. Many researchers looked at other structures of the fractional model of a thermo-
stat [10] and [14]. In 2010, Dhage and Lakshmikantham [13] proposed hybrid differential
equations.

Baleanu et al. established the hybrid fractional model of thermostat control for the first

time, in [14], using Dhage’s approach, which accepts such a structure

e ﬂ i
b (h(t,ﬂ(t))> + M (¢, u(2)) =0,

by means of hybrid boundary conditions

m(t) _
D(m)'tﬂ) - Or

—1¢_u(®) u(t) _
beD*™ Gy le=1 + Gty e=e = 0

in whicha € (1,2], 7 €(0,1),56>0,D = %, ¢D1 represent the Caputo derivative for given
order g € {o,a — 1} and H, h € C([0,1] x R, R) with / # 0. Various thermostat models have
been studied by a number of researchers. They have given some thermostat system models
(see, for example, [7, 15, 19-24]).

Motivated by these results, we investigate some existence results for the nonlocal prob-

lem of the Chandrasekhar hybrid second-order functional integrodifferential inclusion

d? x(t) Lot bos _
_E<g(t,x(t))>e \ m@(s,/o S+Tl/f(f,x(‘t))dl')ds, tel0,1]=1 (1.1)
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with the nonlocal hybrid boundary value conditions

x(t) -
D(gaan) -0 = 0, (1.2)
2 DU o + (5 iy =0, 0 €(0,1],0 € (0,1],n € (0,1],

where D = %, A is a positive real parameter, D¢ is the Caputo derivative of order o, @ :
I x R — P(R) is a multivalued map, ¥ : I x R — R is continuous and g € C(I x R, R\{0}).

The integral equations of Chandrasekhar’s type have been studied in some papers and
monographs (see [25, 26] for instance). It has received a lot of attention in recent years,
because of its applicability in several different fields of science and engineering, such as
radiative-transfer theory, kinetic theory of gases, neutron-transport theory, and traffic
theory. Some authors have studied different kinds of quadratic Chandrasekhar integral
equations in different classes (see [27-29]).

Here, we prove the existence of at least one solution x € C(I) of the problem (1.1)—(1.2).

As an application, the nonlocal problem of the Chandrasekhar hybrid second-order
functional integrodifferential equation

d? x(t) (e Lo
_ﬁ<g(t,x(t))>_/o t—+sk1(s)¢1<s,/0 H—Tkz(t)x(t)dt>ds, tel (1.3)

with the nonlocal hybrid boundary condition (1.2) will be considered.

The uniqueness of the solution x € C(I) of (1.3) and (1.2) and the continuous dependence
of this solution on the two functions k;, (i = 1,2) and the set of selections S¢, ¢ € @ will
be proved.

The remaining part of the paper is set as follows: In Sect. 2 some concepts are presented
and we demonstrate the corresponding integral equation for the Thermostat Model
(1.1)—(1.2). Section 3 establishes the main results, including the existence and continu-
ous dependence of the solution. Finally, in Sect. 4 two examples are provided to highlight
that our results are actually valid. The conclusions are given in Sect. 5.

2 Main result
Consider the nonlocal problem (1.1)—(1.2) with the following assumptions:
(H;) Let ®:1 x R — 2% be a nonempty, closed, and convex subset for all (£,u) € I x R
such that
(i) ®(¢,-)is upper semicontinuous in u# € R for each t € I.
(i) ®(-,u)is measurable in ¢ € I for each u € xR.
(i) There are two integrable functions m1, k; : I — I such that

‘Cb(t, u)| = sup{|¢| 1 € Dt u)} <m(t) +ki(t)|lu|, tel
with
1 1
/ |Wl(7,')| dt=m and / |k1(t)|dr =k.
0 0

Remark 1 We may derive from assumption (#;) that the set of selections S¢ of the set
valued function ¢ is nonempty and that there exists a Carathéodory function ¢ € ® (see
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[30] and [31]) that is measurable in ¢ € I, Vx € R and continuous in x € R, V¢ € I,
bt u)| <m(t) + ki (O)|ul, tel

and satisfies the nonlocal problem of the Chandrasekhar hybrid second-order functional

integrodifferential equation

dz x(t) 1 S 1 s
_E<g(t,x(t))> :/0 m¢’(s’/0 H—Tlﬂ(f,x(r)) dr) ds, tel (2.1)

with the conditions (1.2).
Hence, any solution of the problem (1.2) and (2.1) is a solution of the problem (1.1)—(1.2).

(H>) ¥ € C x R,R) and there exists a continuous function k3 : I x I — R and a con-

tinuous nondecreasing map y : [0, 00) — (0, 00), such that
[v (& )] < k@ x (Iell),
forallt € I and for all T € R and
1
/ ‘kz(l’)| dr = kg.
0
(Hs) g € CU x R,R\{0}) and there is a positive constant , such that

lg(t, 111) — g(t, 12)| < |11 () = 12(8)],

forall uy,ur e Randtel.

(Ha) There is a positive root r of the equation
(m + klkzx(r))(ra) +G)A=r,
where G = sup,; |g(£,0)[, A = A + 2.
Remark 2 From assumptions (3), we have
lg(t, )] - ¢(£,0)| < |g(t, 1) - g(2,0)] < w|p -0,
then,

|g(t,u)| < a)|u(t)| +G, withG= su?|g(t,0)|.
te

Here, the existence of the solution x € C(I) for the nonlocal problem (1.2) and (2.1) is

discussed. We begin by presenting a key lemma.
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Lemma 1 A function x € C[0,1] is a solution for the hybrid differential equation

d? ( x(¢)

22\ 3o (t))> +o(t,x(0)=0, tel (2.2)

with the nonlocal hybrid condition (1.2) if and only if x € C(I) is a solution for the integral

equation

x(t) = g(t,x(t)) |:— /(; (t - S)(p(s,x(s)) ds (2.3)

(7( _ )1—9 n
)L/o g(zis_g)go(s,x(s)) ds+/0 (n—s)w(s,x(S)) ds].

Proof Let x be a solution for the hybrid fractional equation (2.2), then,

d x(£) _d x(t)
dt (g(r,x<t>)> dt (g(m(t)))

Integrating both sides of (2.4), we obtain

—/ go(s,y(s)) ds = —f (p(s,y(s)) ds. (2.4)
0 0

t=0

x(t)

.7
26x0) =c, —I*¢(t,y), (2.5)

here, ¢, is a random constant. Then, at ¢ = 7,

x(t)
g(t,x(t)) - =Co _12¢(t7y)|t:n,
c x(t) e i x(t)
H (g(t,x(t))) o M <g(t,x(t))> i (2.6)
and
A DO (g(f(;()t))) ) =)\12‘Q<p(t,y(t))|t=g. (2.7)

Using (2.5) and (2.7) in condition (1.2), we can obtain
AP2(8,9(8))li=o + (co = IP@(t,)]e=y) = O,
then,
Co = =AP0(t,5(1)) 1o + P 9(,) 1=
Substituting the value ¢, in (2.5), we obtain

x(t) = g(6:x(0) [-A* 20 (6, 5(0)) li=o + IP0(&, )] ecy — P (£, 5(8)) ]
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Hence,
x(t) = g(t,%(t)) |:—/0 (t - )¢ (s,%(s)) ds
7 (o —s)l 7
)\/o mq)(s,x(s)) ds + /0 (n- s)w(s,x(s)) ds].

This proves that x is a solution of (2.3).

Conversely, from (2.3) we have

x(t)

_ 72 _ )
Lo = e 630) =490, x() + Po(n,am), 2.8)
d x(2)
dt (g(t,x(t») =~lp(6:3(0)
and
d x(2)
dt <g(t,x(t))) Lo (2.9)

Also, for t = 1 in (2.8), we have

x(t)
g6x0) |,

= )J‘%p(a,x(a)). (2.10)

Operating by A ¢D? to (2.8) with ¢ = o and to (2.10), we obtain (1.2). d

Corollary 1 Ifthe solution x € C(I) of the nonlocal problem (1.2) and (2.1) exists then it is
given by the integral equation

*() = g(tx(t)[ f £—s) / —¢>( / —w(g,x(g))dg>drds (2.11)

1-o0 1
/(G ” /0S+1'¢(T’/O Tigw(g’x(g))dg)dtds
/(n—s)/ S+T ( /iw(&x(g))ds‘)drds}

Proof From Lemma 1, with

1 1
—(p(t,x(t))zfo m¢< /0 H%tﬁ(t,x(r))dr)ds, tel,

we obtain the result. O

For the existence of solutions x € C(I) of (1.2) and (2.1), we have the following theorem.

Theorem 1 Assume that the assumptions (H1)—(Ha) are satisfied, if o(m+ kik, x (r)) A < 1.
Then, there is at least one solution to the nonlocal problems (1.2), (2.1).
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Proof Allow the operator A to be defined as follows:
¢ 1o 1o
o =gleso) - [(¢-9 [ o [ w(entc)ds ) avas
0 0 S+7T o T+¢
o _ l-o 1 1
+A -9 u ¢<r,f i ¥ (s, %()) dg) dr ds
o I'2-0) Jo s+t 0o T+S

/(n s)/ —¢( /—w(g,xm)dg)drds},

and consider the ball V, = {x € C(I) : ||x]| = ||x|lcay < r}-
Clearly V, is a closed, convex, and bounded subset of the Banach space C(I) = C[0, 1].
Letx €V, and ¢ € I, hence,

[Ax(0)

= |g(&,x(0))|

/(t S)/O ( / %glﬁ(g,x(g))dg) dr ds
”/0" (l(z(;—)lg)g o s+f¢<f’/olt—w(§ x(;))dg>drds
+/0n(n—8) 01 ﬁqb(r,/ol tigIﬁ(g,x(g))dg) dr ds
< lg(tx()] ( / t— s)/ ( / Lw(g x(g))dg)
+A/0U (l(f(;—)lg)g Ols+f ¢(I’/01—‘/’(§: (§))dg>
+/On(n—8)/01 ﬁ ¢<r,/01 Tiglﬁ(gw(g))d;) drds)
)
< |g(tx(0))] (/ (t- s)/ |:W1(T)+k1(‘[)/0 L\‘ﬁ(5’x(§))|d§:|drds

7 (o - 50
+x/0 oo | Sfr[m(f +kl(r>f —|w(g,x(g))|dg]d,ds

n 1 1
+/O(n—s)/0 ﬁ[m(r)ﬂq( /Ot+§W(gx )|dg]drds)

< [a)‘x(t)’ + G]

A 1
x (fo w9 [ L[|m(r)|+|kl(r>|f
o [(eS [|m<r>| ol [
o AR e R
[o0]x( t)|+G(/ f[ ()] + |k1(r)|/ |k2(g)|x(||x||)dg]drds

o 1-
+A/0 (0-9)° [|m(r)| |k1(r)|/ |ka( §)|x(||x||)dg:|dfds

dr ds

dt ds

|/‘2(§)|X(|lxll)dg} dr ds

|/<2(§)|X(||x||)dg] de ds

’kz |X ||x||) dg] dt ds)

r'2-o)
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n ol )
+/0 /0 [’m(r)‘+‘k1(r)|/0 ‘kz(g)|x(||x||)dg]drds)

t 1
< [w]x(®)] + 6] </0 /0 [[m()] + ka0t (11)] d ds

o _q¢)l-o 1
. / % / [m(@)]+ [k ()| ko (1) ] d ds

// [lm)] + |k |k2X(||x||)]drds>

< [a)‘x(t)’ + G]

s)l-e

X (m+k1k2)((||x|| +)\/ (ﬁ(m+k1|kzx(||x||))ds+m+k1kzx(||x||)>.

Now, taking the supremum over ¢ € I, we have

I Ax|| < [ro + G] ((m + klkg)((}”)) + (m + klkzx(r)) + (m + klkgx(r)))

r'3-o)
< (m + klkgx(r))(ra) +G)A=r. (2.12)

Then, || Ax| <r.
Hence, A:V, — V,, and the class {Ax} is uniformly bounded on V,.
Let {x,} be a sequence that converges to a point x € V,, then from our assumptions and

the Lebesgue Dominated Convergence Theorem [32], we can obtain
Jim (Ax)(0)
s L -
lim g t X (L [— lim f (t-s / —¢(r,/ w(g,x,,(g)) dg) dtds
n— 00 n—00 S+T 0o T+¢
o ( —S)l 0 s 1 T
+n1£§ok/0 re-o) Jo s+r¢<f’/0 Ew(g,xn(g))dg>dtds
n _ o1 1 1
o tim [ =) / i ¢(T,/ Y (c,m() dg) dr ds}
n=00 Jo I'(o) 0o S+7T 0o T+¢
(tx(t))[— t(t_s)g_lfl s lim q)(r /1 ! lﬁ( % ))d )drds
£ o T Jo strne™\ ")y T4 SronisI) s
o (J _S)l—g 1 s ) 1 T
/\/0 re-o ) Ht)ggﬁ(n/ﬂ Ew(g,xn(s))a&) drds
n _¢)e-1 1 1
+f (n =) f °_ lim ¢<r,/ Ll/f(g,xn(g))dg)dde]
0 I'(e) 0 S+Tn>oo 0o T+¢
_ (tx(t))[— t(t_s)g_lfl s ¢<r /1 ' lim V(s () d )drds
v o Tl Jo s+t Jo THg o Sronis i) 45
o (O’ _S)l—g 1 s 1 T )
+A/O ro-o ), S_H_(b(r,/o — nli)rgolp(g,xn(g))dg) dr ds

Tm-st o 1 .
+/(; (o) /()‘S+r¢<r’/0 T+§nhmW(g,xn(g))dg)dtds]
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t(t_s)g—l 1 s 1 -
_g(t,x(t))[—fo ) /Osﬂqb(r,/o ng(g,x(g))dg)drds
U(U—S)I_Q 1 s 1 -
o[ ata [ ae(e [ owemenas)aras

T-9)t s 1oz
e oo [ venenas acas

= (Ax)(®).

Thus, Ax, — Ax and A is continuous. Now, for x € V,, define the set

0(8) = sup{|g(ta,x) —g(t1,%)| s t1, tr € Lty < ta, |t — 1] < &, |x] < €},

therefore, based on the uniform continuity of the function ¢ : I x V, — R using the as-
sumptions (H1) and (#3), we can conclude that 6,(8) — 0,as § — 0 independent of x € V,,

Let t1,t €1, |ty — t1| < 8. Then,

|(Ax)(22) — (Ax)(t1)|
- ‘g(tz,x(tz))fotz( tr —5) lﬁqs(r,/ol tigW(g,x(g))dg) drt ds
_g(tl’x(tl)/o tl—s)/ ( /—lﬁ(g,x(g))dg)drds
=‘ (t205(12) / (t,-5) / —¢>( / —w(g,x(g))dg>drds

-g(ta, x(tz))/ (t1 —5)

0 OS+'L'

a’g) dt ds
t+g

g(t2,x(t2)) / (f1—S ¢’

ol
ol
— g(tr (1) /0 @ -9 [ ¢>(T,
ol
(=]

I+
,/ gxg) dc |dtds
=

0

t1 1
relne) [@-9 [ —o(x, / ) ds
0o S+7T 0 T+§

0
—g(th tl) tl—S)/ —¢
0

v (s,x())ds

1
g,x(g dg> dr ds

< |g(t2,%(12)) |

ty 1
x/o ((tz—s)—(tl—s))/o "

1
¢><r,/o Tiglﬁ(g,x(g))dg)
ty 1
+ le ()| / (ti—9) /0 —

1
¢(r,/0 - I " ¥ (s,%()) d§>
+ ’g(tz x tz)) _g(tl x(tl))’

x] tl—s)/ — (f Lw(gx@))dg)

< [|x®]|w + G]

dr ds

dt ds

drt ds

Page 9 of 21
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ts 1 1
X./o ((tz—S)—(tl—S))/O ﬁ[m(r)+k1(r)/o ih//(g,x(g)ﬂdg]drds

+ [|x(t)|a) + G]

x/ tl—s)/ [m(f)+k1(r)/ —|1//(§ x g))|d§] drds

1
+ 0, ( / tl—s)/ |:m(t +hki(z )/0 T+§|1/f(§, ))’dg]dtds

< [lxllw +G]

ty 1 1
X]o ((tz—s)—(tl—s))fo [|m(r)|+|k1(t)yf0 |k2(g)|x(||x||)dg}drds
ty 1 1
+ [Ixllw + G] / (b —s) /0 [|m(r)|+|k1<r>| /O |k2(g>|x(||x||)dg}drds
ty 1 1
0,(8 - k k dcldtd
+ 0, )/ﬁ (t S)/o [ym<r>y+| m\/o ko) x (11 g] v ds

< [lxllw +G]

ty 1
X / ((tz -s)—(t —s))/ [|m(r)| + |k1(1:)|k2x(||x||)]dt ds
0 0

ty 1
+ [||x||a)+ G]/ (t1 —s)/ [|Wl(7,')| + |k1(r)|kzx(||x||)]dr ds

+ 04 / tl—s)f |m ‘kl |k2)((||x||)]drds
5[rw+G][m+k1k2x(r)]|:/2((t2—s)—(t1—S))ds+/2(t1—s)d5:|
0 2]

0
+ Gg(é)[m + klkzx(r)] / (t1 —s)ds.

t

Hence, the class {Ax} is equicontinuous. Then, from the Arzela—Ascoli Theorem [32], the
operator A is compact.

As aresult, (see [33]), A has at least one fixed point x € V,, then the problem (1.1)—(1.2)
has a solution x € C(I). O

3 Continuous dependency

3.1 Uniqueness of the solution

To prove the uniqueness of the solution of (1.1)—(1.2) consider the following assumptions
(H1)* Let ® : I x R — 2F be a Lipschitzian set-valued map with a nonempty compact

convex subset of 2% such that

| @ 1) - 2@ V)| <k@ln -l

From this assumption we see that the assumption () is valid. Moreover, the set of Lips-
chitzian selections Sg is nonempty ([30]) and ¢ € Sy satisfies

bt ) = p(t,v)| < ke (&) = vl,
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from which we have
ot )| < k@)l +m, m= Su?|¢(t, 0)|.
te

(H2)* ¥ (8, 1u(2)) = ko (£)u(2).

Theorem 2 Assume that the assumptions of Theorem 1 are satisfied by replacing assump-
tion (Hy) by (Hy)* with (Alow(m + kikor) + (wr + G)ki1ky]) < 1. Then, the hybrid problem
(1.1)-(1.2) has a unique solution.

Proof From our assumptions and Theorem 1, the solution of (2.11) exists. If x;, x, are two
solutions of the integral equation (2.11), then

|1 () — x2(8) |
:g(t,x1(t))|:—/ot(t—5) i S+T¢( /Til/f(g,xl(g))dg)drds
x/; (?(;S_);Q 0 Sjtqs(,,/or Tigw(g,xl(g))dg)drds
/(n—S)/ —¢>( /—w(s‘,m(s‘))dg)drds]
L‘xz(t)|: /(t 9 m (‘E,/Oril//(g,xz(g))dg)drds
A/OU (?(;S-)IQ_)Q 0 sjr¢)(r,‘/oril//(g,x2(g))dg>d‘tds

/ _S)f —¢< /—w(s‘xz(g))dg)drds}

< lg(t:%1(0) - g(£,22(2)) |

X /t(t—s)/s— ¢(T,/Ii1/f(§:x1(§))d§)
+ |g(6x2(2)) |/(t s/ ?[¢<r,/oréw(g,x1(g))d§>

—¢(r, fo rjgw(g,a@(g))dg)]alrds

+ Mg (6:2%1(2) — g(£,%2(2))|
(o -8 [* s LI 4
) o I'2-0) Jo s+7 ¢<T’/o T+§I//(g,x1(g))dg)
+A|g(t,%2(2)) |
“(o-s)l¢ s | L
X/o re-o Jo S+T_¢(T,/o Ew(g”“(g))dg)
o= [ iw(g,xxg))dg)]dtds
+ |g(t,x1(t)) —g(t,xz(t))|

drtds

drt ds

Page 11 of 21
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dt ds

n s g T
X/o (n—S)/O - ¢><f,/0 Hgl/f(g,xl(g))dg)
+|g(t, %))

/(n ) [ s+r_¢<”f0 Tigw(g,xl(g))dg)

—¢( /O Tigw(m(;))dg)]drds
< lg(t:#1(0)) - g(t:%2()) |

/(t s>/ [ r)+k1(r)/ —— s x1<g))|dg)}drds
+ |g(6:x0)]

t S s T T
x/(;(t—s)/o mkl(r)/(; —
+ Mg (t:x1(8) — g(t,%2(2))|

U(O,_S)l—g s g T T
X/o r2-o Jo s+r[m(”+kl(”/o The
+A|g(t,%2(0))|

o (O’ _S)l—g

o TI'2-o0) Os+rk
+ |g(tx1(0)) — g (£ %2(0))|

n s g T ¢
X/o (n—S)/O H—t[m(mkl(r)fo E|w(g,x1(g>)|dg)}drds

+ |g(6.%:0))]

X/On(n—S)fossz

< a)‘xl(t — X2 t)’

Jooa ] et [

+[a)|x2(t)|+G]/0 (t—s)/o S+Tk1(1')/0 s
o (o —s)l@

+)»C()’xl(t)—x2(t)|
“J Te-0 SH[}M(M |k1(r)|f

+ )L[wfxg(t)| + G]

(o =s)! s
X/o r@- Q) | el )|/

+ w|x1(t) - xz(t)|

X/On(n—S)/Olsjt[m(fﬂ |k1(f)|/

(6)) = ¥ (s,%2()) | ds dr ds

k()| ¥ (s,x1(5))| ds)] dr ds

\(x) /0 —— ¥ (6m(9) ~ ¥ (s (<)) de d ds

k() /0 —— ¥ (6m(©) ~ (s (s))| de d ds

liats)] 1 (s) dg] de ds

ka($)|x1(5) = %2(5)| dg dr ds

{/(2(§)| l%1(5)| d§i| dr ds

|kz(g) |%1(5) = %2(5)| ds dr ds

kg(g |x1 g)| d§j| dtds
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n 1 T
+ [0l + 6] /0 (n-s) fo k@ fo T ko()|a(s) - xa(s) | d dr di

T+¢

t 1
<ol () -x0) /O fo [[m(D)] + |k (o) ol ] d s

t s
+ [a)|x2(t)| + G]/ / |k1(r)|k2||x1 —xo||dt ds
o Jo

1

UWI('()’ + ’kl(r)‘kgﬂxl ||] dr ds

(o0 —s)'@

+)»a)|x1(t)_x2(t)’/0 re-o) Jo

(o

o _ 1o s
eafoln] + 6] [ Co [ okl - sl e ds
n 1
+a)|x1(t)—x2(t)|/0 /0 [|m(r)|+ |k1(t)|k2||x1||]drds
n 1
+ [a)|x2(t)| +G]/0 /(; |l<1(t)|k2||x1—x2||dtds

< olx - xoll[m + kika %1 ]|] + [@ll%2 ]l + Glkikallx1 — 22

wllxy —xoll[m + kykollx|l] + [@|%:(8)| + Glkika [lx1 — %2 |

L _ >
r'3-o) r'3-o)

+ wllxy —xa || [m + kika 1] + [@ll%2]l + Glkika [y — 2.
Taking the supremum over ¢ € I, we have

ller — 22l < [2+ Alwllxy — x2|[[m + kikor] + [2 + Al[wr + Glkika ||l — %2 ||

< Allx1 =% ||[w(m + kikor) + (o1 + G)kikz ],
and
[1- (Alw(m + kikor) + (or + G)kiky]) ] Il¥1 — %21 <0,
which implies
x1(2) = %2(2). O
3.1.1 Continuous dependence on the set of selection S

Definition 1 The solutions of the hybrid problem (1.1)—(1.2) are continuously dependent
on the set Sg, if Ye > 0, 36 > 0, such that

|¢(t,u)—¢*(t,u)|<8, implies ||,u—u*||<e, tel,

with two solutions p and p* of (1.1)—(1.2), which corresponds to the two selections ¢, ¢* €
So.

Theorem 3 Assume that the conditions of Theorems 2 hold. Then, the solutions of the
problem (1.1)—(1.2) depend continuously on the set S¢ of all Lipschitzian selections of ®.

Page 13 of 21
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Proof For the inclusion problem (1.1)—(1.2) we have two solutions x(¢) and x*(¢) related
to the two selections ¢, ¢* € Sp, and we obtain

|x(2) — x*(2) |

sl fo-of ol
+A/OU (l‘f(zs_)lg)g 0 S+T¢)(‘L’,/(;T—l/f(§ x(g))dg)drds

/(n s)/ . ( /—I/f(s‘x(g))dg)drds]

- gl (t))[ /0 (t-s) Osiw(r, /0 rtigw(g,x*(g))dg)drds
+A/OU (I‘f(gs_);_; Ossjrqs*(r,for tigw(g,x*(g))dg)dtds
+/On(n—s) Osﬁqb*(r,/or Tigl/f(;,x*(g))dg) dtds]

< la(6x(0) ~g(ex'0)]| [ (-9 / . ¢(r, / T ) dg)
+lg(6a"(®)]

t S s T T
YRy Sy .
_¢*<f,/0 - i gl/f(g,x*(g)) dg)]dtds

+1|g(t,x(8) - g(6,x° ()|

o9 [* s o
<[ T os”"’("fo Hg‘”(g'x(d)dg)

+ Mg (t,x*(2))|
U(O._S)I—Q s g r T -
X . Te-o ) s+r_¢<r’f0 El/f(s‘,x(g))dg)

_¢*<f,/0 Tiglﬂ(g,ﬁc*(g))d;)]drds
+|g(6,x(2)) - g(6,5*(0))|

/(n s)f P ¢<f,/01i1ﬁ(§,x(g))d§>

+|g(t,x*(®))]

_ L
f(n s) i s+r_¢<r’f0 Et/f(g,x(g))ck)

—¢< fo riglﬂ(gx*(g))d§>]alrds

|g(txt) tx(t |/(t s/

e (5,%()) dg> drtds

dt ds

drt ds

dt ds

dr ds

<r,fo it/f(g,x(g)) dg)
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T
g(t,x"(0)) I/ (t- s)/ H[(b( /0 Hgl/f(s,x(g))dg)
—¢(r,/0 r—w(g,x ())d )'
¢(r,/0 ;w(g,x*(g)) d;) —¢*(r,f0 Tigl/f(gyx*(g)) d;)ﬂ dr ds

+1|g(t,x(t) - g(6,2° ()|

T(o—-s)t 5 s Tt
x o T'-0) Jo s+1 ¢(T',/0 r+g1ﬁ(g,x(g))dg>

+ Mg (6x*(®))|
To-)te s T LI 4
o I'2-0) Jo S+r_¢<r’/0 a‘/’(g:x(g))dg)
e ererors)
¢<f,/0 iw(g,x*m)dg)—(p*(f,fo Tigw(g’x*(g))d§)udrds
+g(L.x(0) - g (62" ©)]

/(n S)/S+'L’ (/ —w(gx(g))dg)

+le(ba"®)]
x Uon(n—s)/osﬁ ¢<r,/or iw(gyx(g))dg)
—¢*<T,/OT - i gl/f(g,x*(g)) d;)
< le(6x(0) - g (64" ®))]
<[ [ 2 oo [ o) de v ds
+le(ba"®)]
></0t(t—s)/osﬁkl(r)/r Hg[\w(; (<)) - ¥ (c,a%(<))| + 8] dg dr ds

+ 1 |g(tx(8) - g(t.2* (1)) |

T(o-9)C [ s LA
X/o \ s+r|:m(r)+k1(r)/0 E|tﬂ(g,x(g))|d;]drd5

+

drt ds

+

dr ds

dr dsj|

I'2-o0)
+A|g(t,x* ()]

U(O__S)l—g s g
X/O r'2-o0 Jo s+rk1(r)

X/O Hg[W(g’C?)) ¥ (5,%*(c))| +8]ds dr ds

+ |g(t,x(t)) —g(t,x*(t))|
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n S os L
x/o (n—S)/O H—f[m(mklm/o mw(g,x(g))wg]drds
+ |g(t x*(t))|

< o-

sw|x(t)—x*(t>|/ / [|m<r>|+|k1(r>|/ (|kz(g>||x1(g)|dg}drds
‘x +G//|k1 |/ |k2 Hx |+8]d§drds
+kw|x1(t —xz(t)|

o (U—S)I_Q 1 1
| s [|m(r)|+|k1<r)|/ (|kz(g)||x1<g>|dg]drds

(6)) =¥ (s,4%(5))| + 8] ds dr ds

+)L[a)|x(t)|+G]/(; ?QS) /|k1(‘[)|/ |k2 g)||x(g) x* g)|+8]d§dtds

+a)‘x(t t)’/ / |:|m ‘kl(l’ ’/ ‘kg(g)Hx ’dg]dtds

+[a)|x*(t)}+G]/o /0 |k1(r)|/0 [|k2(g)||x(g)—x*(g)|+6]d§drds
t pl
<ol () -x0) /0 /0 [[m(0)] + |k (0) ol ] d s

+ [} )] +G]/OI/OS

o -0 1
+kw|x1(t)—x2(t)’/0 (?(2?9) /0 [|m(r)| + |ki(z) | Ko ll1 || de dis

ki(0)|[Kallxy = %]l + 8] dt ds

o Y S
+A[a)|x2(t)|+G]/0 % \ ‘kl(r)|[k2||x1—x2||+8]drds

n 1
+a)|x1(t)—x2(t)’/0 /0 [|m(r)|+|k1(t)’k2||x1||]drds

n 1
+ [w|x2(t)| + G]./o /(; |k1(r)|k2||x1 — x| +8)dt ds

< olx - xoll[m + kika %1 ][] + [@llxa | + Glki[ka [l%1 — %2 ]| + 8]

. F(%_Q)wuxl nyll[m + Kikall ]
+ F(;L_ 2 [a)’xg(t)‘ + G]kl [k2||x1 — x| + 8]

+ ollxy —xa || [m + kika 1 [|] + [@llx2 | + Glki[Kallxy — x21| + 8]
Taking the supremum over ¢ € I, we have

ll1 — %2 ]| < [2 + Mollxy — x| [ + kikor] + [2 + M[or + Glky [ko[l%1 — %2 + 8]

< Allx1 = %)l [w(m + kikor) + (or + G)kika | + Awr + G)ki .
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Hence,

Alwr + G)ki 8

=1 = R ko) + wr s Ok -

As a result of the previous inequality, we obtain
Je-s] e,
This proves the continuous dependence of the solution on the set S¢. O
We can establish the following theorem in the same way.

Theorem 4 Let the assumptions of Theorems 2 be satisfied. Then, the solutions for the
problem (1.1)—(1.2) depend continuously on the function (¢, x(t)).

4 Discussions and examples
+ As an application, we consider the nonlocal problem of the Chandrasekhar hybrid
second-order functional integrodifferential equation (1.3)

d? x(2)
_E<g(t,x(t)))=fo T 1<S’/ el W)d& telo,1]

with the nonlocal hybrid boundary condition (1.2).

Theorem 5 Let the hypotheses of Theorem 2 hold. Then, the problem (1.3) and (1.2) has a
unique solution, which is given by
1
T
k1(7)¢1 <T, /
o T+

x(t) = g(rx(t)[ / t=s) /
/ (a—S)lgf0 s-tl’ (-L—)qjl(‘l:, Olti
+/o (n—s)/o ijkl(f)¢l(r’/olri

gkz(s‘)x(g‘)dg> drvds (4.1)

kz(g)x(g)d§> dt ds

gkz(g)x(g)d§> dt ds].
Proof Set

¢(6,x(2)) = ki(t) - ¢1(6,x()) and ¥ (¢,%(0)) = k() - x(2),

in (2.1), then we see that all the assumptions of Theorems 1 and 2 are satisfied. Conse-
quently, there exists a unique solution x € C[0, 1] of the problem (1.3) and (1.2) and by
using Lemma 1, this solution is given by (4.1). 0

Remark 3 Also, from Theorems 3 and 4, the continuous dependence on the two functions
ki and k; can be proved.

« Asa particular case, letting 0 — 1, then we have the nonlocal problem of the
Chandrasekhar hybrid second-order functional integrodifferential inclusion

d* ([ x(t) Loy 1o
_ﬁ<g(t,x(t))>e A m¢<s,/0 H—Tw(T,x(r))dr)ds, te[0,1]
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with the nonlocal hybrid boundary value conditions

(®) —
D(g(f,x(t)) ) |t:0 = 0;
(®) ®) _
)LD(g(f,x(t)))“:” + (g(;x(t)))h:'? = 0; o€ (0: 1]: n € (0» 1]

+ Letting 0 — 1 and g(¢,%) = 1, then we have the nonlocal problem of the

Chandrasekhar hybrid second-order functional integrodifferential inclusion

1

1
() e Lq><s, /0 ﬁlp(r,x(f))dr)ds, te(0,1]

o t+s

with the nonlocal hybrid boundary value conditions

x'(0) =0,
M (o) +x(n)=0, o€(0,1],n€(0,1].

« Letting 0 — 1, for all ¢ € ®(¢,x(2)) with ¢ (£, x) = ¥ (£, %) = x and g(t,x) = 1, then we

have the nonlocal problem of the Chandrasekhar hybrid second-order functional

integrodifferential inclusion
1
-x"(t) € / Kt t)x(t)dr, tel0,1]
0
with the nonlocal hybrid boundary value conditions

x'(0) =0,
A (o) +x(n)=0, o€(0,1],n€(0,1],

where K(t,7) = ;_iln(%)Jr ft_ftln(%)'

Now, we provide the following examples to illustrate our results.

Example 1 In the first example, we proceed to investigate the existence of a solution for
the Chandrasekhar hybrid second-order integrodifferential inclusion

d? x(t)
- E( O 4> (4.2)

L+|x(2)

1 1 2
t 1 2
. / ot L+_ s Ttcos*(2mwt)cos(x(t)) dr)ds,0|, te[o,1]
o t+s\100 10 Jy s+ 200

with the hybrid boundary value conditions

(ﬁ?é})h:o =0,
1+L\Lx(t)\2 * (43)
1D3( ﬂxz;tz) Me=1 + ( ﬂxz;tz) )e=0.76 = 0.

T+|x(0)2 T+[x(0)2

Page 18 of 21
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4
§’
by g(¢,x(t)) = O 4, and the set-valued map ®: [0,1] x R — P(R) by

T L)

Puto=3,0=1,1n=0.76,and A = % Consider the continuous map g: [0,1] x R — R\{0}

¢(t,x<t>)=[t L [! & scos’(2mws)cos(x(s)

— 4+ — ds,0 |,
100 10 Jy t+s 200

for all ¢ € ®(¢,x(2)), set ¢ : [0,1] x R — R* by

Blex(0) = 1= + o300,

and

L ¢ scos?(2ms) cos(x(s))
— ds.

v (6a(0) = o [+s 200

It is evident that w = 1, m(t) = Wto’ ky(t) = %. Also, we have k;(t) = ﬁ and x(]l«x|]) = 1.
In this case, we obtain A = 3.4, we can choose € > 0.061081, and consequently, we have
wl[m + kk* x (||x])]A = 0.0357 < 1.

Now, by using Theorem 1, the fractional hybrid equation (4.2) with the three-point hy-

brid conditions (4.3) has at least one solution.

Example 2 Our second example specifies the Chandrasekhar hybrid second-order inte-
grodifferential equation for the model

& (ﬂ) (4.4)

dr? arctan(t)
1+ 1))

1 1
=/ t i+c0s Le”sin M dr ) )ds, te]0,1],
o t+s\20 0 S+T 1+ |x(7)]

with the three-point hybrid boundary value conditions

D( arzcl(afl)(t) )|f:0 =0,
1
H; ) x(t) (1) (4.5)
LD (G )e=1 + (Gcangg ) |e=0.89 = 0.
Ll Ll
Put o = 751’ 0=1,17=0.89,and A = %. Consider the continuous map g : [0,1] x R — R\{0}

by g(t,x(¢)) = acan® a1 d we have

1
1+ ||

arctan(¢)  arctan(z)

lg(tx1(8)) - g(t,x2(0)) | < 1+ ta| 1Lyl

< X x|
=5 X1 —X2|.
Hence, assumption (#3) holds with w = 75, we also have G = sup,, |g(¢,0)| = 7. On the
other hand, we formulate two continuous functions ¢, ¢ : [0,1] x R — R*, from which
follows
't ()]

#(6.4(0) = o +cosx(0), and (6:x(0) = ¢*sin

o t+s 1+ |x(s)|
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%, ky = 0.02, and m = 0.05. In this instance, the provided data

yields A = 3.8. Hence, we can find € > 22.595746, and consequently, we have (A[w(m +
kikor) + (wr + G)k1ky]) >~ 0.0341 < 1.

In this case, we have k; =

Now, by using Theorem 2, the fractional hybrid equation (4.4) with the three-point hy-

brid conditions (4.5) has a unique solution.

5 Conclusions

Most natural phenomena are modeled by different kinds of differential equations that have
been established by many authors from different viewpoints, for example [1, 2, 11, 12, 14,
16, 20].

Various kinds of fractional differential equations are used to model the majority of nat-
ural occurrences. This variety in approaches to studying difficult fractional differential
equations improves the capacity for precise modeling of different phenomena.

In particular, our theory includes a discussion of a second-order functional integrodif-
ferential inclusion with nonlocal boundary conditions of fractional order.

In this work, we investigate a hybrid integrodifferential inclusion via nonlocal three-
point boundary value conditions. In this way, we use some fixed-point theorems to prove
the existence and uniqueness of the solution for the nonlocal problem (1.1)—(1.2). Also,
the continuous dependency of the solution of (1.1)—(1.2) on the set of selection S¢ and
on the function W. Finally, some applications and examples are presented to illustrate our
main result. The results described in the present paper are innovative, and they will mainly
contribute to the literature already existing on boundary value problems.
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