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Abstract
In this paper, the existence and multiplicity of solutions for a coupled system of
differential equations with instantaneous and noninstantaneous impulses are studied.
By the virtue of variational methods, some new existence theorems of solutions are
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1 Introduction
In this paper, we consider the following impulsive differential system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = DuFi(t, u(t), v(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , N ,

–v′′(t) = DvFi(t, u(t), v(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , N ,

�u′(ti) = Ii(u(ti)), i = 1, 2, . . . , N ,

�v′(ti) = Si(v(ti)), i = 1, 2, . . . , N ,

u′(t) = u′(t+
i ), t ∈ (ti, si], i = 1, 2, . . . , N ,

v′(t) = v′(t+
i ), t ∈ (ti, si], i = 1, 2, . . . , N ,

u′(s+
i ) = u′(s–

i ), i = 1, 2, . . . , N ,

v′(s+
i ) = v′(s–

i ), i = 1, 2, . . . , N ,

u(0) = u(T) = v(0) = v(T) = 0,

(1.1)

where 0 = s0 < t1 < s1 < t2 < s2 < · · · < tN < sN < tN+1 = T , DuFi, DvFi : (si, ti+1] × R
2 → R,

i = 0, 1, . . . , N , are continuous; Ii, Si : R → R, i = 1, 2, . . . , N are continuous; �u′(ti) =
u′(t+

i ) – u′(t–
i ), �v′(ti) = v′(t+

i ) – v′(t–
i ). The noninear functions DuFi(t, u, v), DvFi(t, u, v) are

the derivatives of Fi(t, u, v) at u and v, respectively. The instantaneous impulses occur at
the points ti and the noninstantaneous impulses continue on the intervals (ti, si].

In recent years, the study of existence and multiplicity of solutions for the differential
equations with impulsive effects via variational methods has attracted much attention.
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Impulsive differential equations describe the dynamics of processes whose states change
abruptly at certain moments of time. There are a number of classical tools to investigate
impulsive differential equations [1–6], such as fixed point theory, topological degree the-
ory, comparison method, and variational approach.

The pioneering work of boundary value problems for impulsive differential equations
via variational approach was initiated by Tian–Ge [7] and Nieto–O’Regan [8]. Since then,
a number of research results have emerged in this field, see, for instance, [9–14]. How-
ever, these studies merely focus on the differential equations with instantaneous impul-
sive effects. Due to the limitations of instantaneous impulses, which cannot describe all
the phenomena in real life, such as earthquakes and tsunamis, Hernández–O’Regan [15]
introduced the noninstantaneous impulsive differential equations. The existence of so-
lutions for noninstantaneous impulsive differential equations have been investigated via
some methods [15–21], such as the theory of analytic semigroups, fixed point theory, and
variational methods. Since the variational structure of general noninstantaneous impul-
sive differential equations is relatively difficult to establish, Bai–Nieto [21] first studied
the linear equation with noninstantaneous impulses via variational methods and contin-
ued until 2017. On the basis of [21], Tian–Zhang [22] took the instantaneous impulses
into the noninstantaneous impulsive differential equations and extended the linear terms
to the nonlinear terms. The second-order differential equation with instantaneous and
noninstantaneous impulses is considered below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , N ,

�u′(ti) = Ii(u(ti)), i = 1, 2, . . . , N ,

u′(t) = u′(t+
i ), t ∈ (ti, si], i = 1, 2, . . . N ,

u′(s+
i ) = u′(s–

i ), i = 1, 2, . . . , N ,

u(0) = u(T) = 0,

(1.2)

where 0 = s0 < t1 < s1 < t2 < s2 < · · · < sN < tN+1 = T , fi ∈ C((si, ti+1] × R,R), Ii ∈ C(R,R),
�u′(ti) = u′(t+

i ) – u′(t–
i ), the instantaneous impulses occur at the points ti, and the nonin-

stantaneous impulses continue on the intervals (ti, si]. The authors showed that the prob-
lem (1.2) has at least one classical solution by using Ekeland’s variational principle. Based
on [22], Zhang–Liu [23], Zhou–Deng–Wang [24], and Chen–Gu–Ma [25] also studied the
fractional differential equations with instantaneous and noninstantaneous impulses. They
extended the results of [22] and obtained the existence of solutions by using variational
methods.

On the other hand, the coupled systems of differential equations play a very important
role in various fields such as biology, chemistry, and physics. They present some new phe-
nomena, which are not appeared in the study of a single equation. From [26–29], we know
that many authors have done lots of works in this field. In recent years, the coupled sys-
tems involving differential equations with impulsive effects are also widely studied by the
variational approach. More precisely, in [30], Wu–Liu considered the following coupled
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system of instantaneous impulsive differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) + g(t)u(t) = fu(u(t), v(t)), a.e. t ∈ [0, T],

–v′′(t) + h(t)v(t) = fv(u(t), v(t)), a.e. t ∈ [0, T],

u(0) = u(T) = v(0) = v(T) = 0,

�u′(tk) = u′(t+
k ) – u′(t–

k ) = Ik(u(tk)),

�v′(tk) = v′(t+
k ) – v′(t–

k ) = Jk(v(tk)), k = 1, 2, . . . , n,

(1.3)

where 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T , g, h ∈ L∞[0, T], fu, fv : R2 → R are continuous,
and Ij, Jj : R →R, j = 1, 2, . . . , n are continuous. They obtained that the problem (1.3) has at
least one nontrivial solution via variational methods. For the recent works about instan-
taneous impulsive differential systems, the interested readers may refer to [31–34].

In [35], Nesmoui–Abdelkade–Nieto–Ouahab considered the following noninstanta-
neous impulsive system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = Dufi(t, u(t) – u(ti+1), v(t) – v(ti+1)), t ∈ (si, ti+1], i = 0, 1, . . . , m,

–v′′(t) = Dvfi(t, u(t) – u(ti+1), v(t) – v(ti+1)), t ∈ (si, ti+1], i = 0, 1, . . . , m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . , m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . , m,

u′(s+
i ) = u′(s–

i ), i = 1, 2, . . . , m,

v′(s+
i ) = v′(s–

i ), i = 1, 2, . . . , m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T) = v(0) = v(T),

(1.4)

where 0 = s0 < t1 < s1 < t2 < s2 < · · · < tm < sm < tm+1 = T , the impulses start abruptly
at points ti, i = 0, 1, 2, . . . , m, and keep the derivative constant on a finite time interval
(ti, si]. Here u′(s±

i ) = lims→s±i
u′(s), and αi, βi, i = 0, 1, 2, . . . , m, are given constants. For each

i = 0, 1, 2, . . . , m, the nonlinear functions Dufi, Dvfi (the derivatives of fi(t, u, v) at u and v
respectively) are Carathéodory functions on (si, ti+1]×R

2. They obtained that the problem
(1.4) has at least one solution.

Inspired by the above facts, in this paper, our aim is to study the variational structure
of problem (1.1) in an appropriate space of functions and the existence and multiplicity
of solutions for the problem (1.1) by using variational methods. Under the assumption
that the nonlinearities and the impulsive functions satisfy different growth conditions, we
obtain the existence of at least one classical solution and infinitely many classical solutions.
Our main results generalize the existing result in [22].

Throughout this paper, we need the following conditions:
(H1) There exist ai, bi > 0, and γ1,γ2 ∈ [0, 1), i = 0, 1, . . . , N , such that

∣
∣DxFi(t, x, y)

∣
∣ ≤ ai + bi|x|γ1 , for every (t, x, y) ∈ (si, ti+1] ×R

2,

and

∣
∣DyFi(t, x, y)

∣
∣ ≤ ai + bi|y|γ2 , for every (t, x, y) ∈ (si, ti+1] ×R

2.
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(H2) There exist ci, di > 0, and βi ∈ [0, 1), i = 1, 2, . . . , N , such that

∣
∣Ii(x)

∣
∣,

∣
∣Si(x)

∣
∣ ≤ ci + di|x|βi , for every x ∈ R,

(H3) (i) Ii, Si, i = 1, 2, . . . , N satisfy Ii(x)x, Si(x)x ≥ 0, for all x ∈R;
(ii) There exist θ > 2, δi > 0, i = 1, 2, . . . , N , such that

∫ x
0 Ii(s) ds,

∫ x
0 Si(s) ds ≤ δi|x|θ ,

for x ∈R\{0};
(iii) Ii(x)x ≤ θ

∫ x
0 Ii(s) ds, Si(x)x ≤ θ

∫ x
0 Si(s) ds for x ∈R\{0};

(H4) |DxFi(t, x, y)|, |DyFi(t, x, y)| = o(|x| + |y|), as |x| + |y| → 0.
(H5) There exist C > 0, M > 0, and 2 < θ < β such that

Fi(t, x, y) ≥ C
(|x|β + |y|β)

, |x| + |y| ≥ M,

and

θFi(t, x, y) ≤ xDxFi(t, x, y) + yDyFi(t, x, y).

The main results of this paper are as follows.

Theorem 1.1 Assume that (H1) and (H2) hold. Then, problem (1.1) has at least one clas-
sical solution.

Theorem 1.2 Assume that (H3)–(H5) hold, Then, problem (1.1) has at least one classical
solution.

Theorem 1.3 Assume that (H3)–(H5) and the following conditions hold:
(H6) DxFi(t, x, y), DyFi(t, x, y), i = 0, 1, . . . , N , are odd as functions of x, y, respectively;
(H7) Ii(x), Si(x), i = 1, 2, . . . , N are odd functions of x.

Then, problem (1.1) has infinitely many classical solutions.

Theorem 1.4 Assume that (H2), (H4)–(H7) hold. Moreover, suppose that Ii(x), Si(x), i =
1, 2, . . . , N , are nondecreasing. Then, problem (1.1) has infinitely many classical solutions.

The rest of this paper is organized as follows. In Sect. 2, we present some preliminaries.
In Sect. 3, we prove the Theorems 1.1–1.4 via the variational approach.

2 Preliminaries
In this section, we first introduce some definitions and theorems which will be needed in
our argument.

Definition 2.1 Let X be a Banach space and � : X → (–∞, +∞]. Functional � is said to
be weakly lower semicontinuous if lim infm→∞ �(xm) ≥ �(x) as xm ⇀ x in X.

Definition 2.2 ([36], (PS) condition) Let X be a real reflexive Banach space. For any se-
quence {um} ⊂ X, if {�(um)} is bounded and �′(um) → 0 as m → ∞ possesses a conver-
gent subsequence, then we say that � satisfies the Palais–Smale condition.
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Theorem 2.3 ([36]) Let X be a reflexive Banach space. If � : X → (–∞, +∞] is coercive,
then � has a bounded minimizing sequence.

Theorem 2.4 ([36]) Let X be a reflexive Banach space and let � : X → (–∞, +∞] be
weakly lower semicontinuous on X . If � has a bounded minimizing sequence, then � has
a minimum on X.

Theorem 2.5 ([37], Mountain Pass Theorem) Let X be a real Banach space and suppose
� ∈ C1(X,R) satisfies the (PS) condition with �(0) = 0. If � satisfies the following condi-
tions:

(i) there exist constants ρ,α > 0 such that �|∂Bρ ≥ α;
(ii) there exists an e ∈ X\Bρ such that �(e) ≤ 0,

then � possesses a critical value c ≥ α. Moreover, c is given by c = infg∈� maxs∈[0,1] �(g(s)),
where

� =
{

g ∈ C
(
[0, 1], X

) | g(0) = 0, g(1) = e
}

.

Theorem 2.6 ([37], Symmetric Mountain Pass Theorem) Let X be an infinite-dimensional
real Banach space. Let � ∈ C1(X,R) be an even functional which satisfies the (PS) condi-
tion, and �(0) = 0. Suppose that X = V ⊕ Y , where V is finite dimensional, and � satisfies:

(i) there exist α > 0 and ρ > 0 such that �|∂Bρ∩Y ≥ α;
(ii) for each finite-dimensional subspace W ⊂ X , there is R = R(W ) such that �(u) ≤ 0

on W\BR(W ),
then � possesses an unbounded sequence of critical values.

In the Sobolev space H1
0 (0, T), we consider the inner products

(u, v)1 =
∫ T

0
u′(t)v′(t) dt

and

(u, v)2 =
∫ T

0
u(t)v(t) dt +

∫ T

0
u′(t)v′(t) dt,

which induce the corresponding norms

‖u‖1 =
(∫ T

0

∣
∣u′(t)

∣
∣2 dt

) 1
2

and

‖u‖2 =
(∫ T

0

∣
∣u(t)

∣
∣2 dt +

∫ T

0

∣
∣u′(t)

∣
∣2 dt

) 1
2

.

We also define the norms in C[0, T], L2(0, T) as ‖u‖∞ = maxt∈[0,T] |u(t)| and ‖u‖L2 =
(
∫ T

0 |u(t)|2 dt) 1
2 , respectively.
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Obviously, H1
0 (0, T) is a Hilbert space. By Poincaré inequality,

∫ T

0

∣
∣u(t)

∣
∣2 dt ≤ 1

λ1

∫ T

0

∣
∣u′(t)

∣
∣2 dt,

where λ1 = π2

T2 is the first eigenvalue of the Dirichlet problem

⎧
⎨

⎩

–u′′(t) = λu(t), t ∈ [0, T],

u(0) = u(T) = 0.
(2.1)

It is easy to verify that the norms ‖u‖1 and ‖u‖2 are equivalent. Set X = H1
0 (0, T) ×

H1
0 (0, T). In the Hilbert space X, for any (u, v) ∈ X, we consider the norm

∥
∥(u, v)

∥
∥

X =
(‖u‖2

1 + ‖v‖2
1
) 1

2 .

Taking (x, y) ∈ X and multiplying the two sides of the equalities

–u′′(t) = DuFi
(
t, u(t), v(t)

)

and

–v′′(t) = DvFi
(
t, u(t), v(t)

)

by x and y, respectively, then integrating from si to ti+1, we have

–
∫ ti+1

si

u′′(t)x(t) dt =
∫ ti+1

si

DuFi
(
t, u(t), v(t)

)
x(t) dt (2.2)

and

–
∫ ti+1

si

v′′(t)y(t) dt =
∫ ti+1

si

DvFi
(
t, u(t), v(t)

)
y(t) dt. (2.3)

The first term of (2.2) is

–
∫ ti+1

si

u′′(t)x(t) dt = –u′(t–
i+1

)
x
(
t–
i+1

)
+ u′(s+

i
)
x
(
s+

i
)

+
∫ ti+1

si

u′(t)x′(t) dt.

Hence,

N∑

i=0

–u′(t–
i+1

)
x
(
t–
i+1

)
+

N∑

i=0

u′(s+
i
)
x
(
s+

i
)

+
N∑

i=0

∫ ti+1

si

u′(t)x′(t) dt

–
N∑

i=0

∫ ti+1

si

DuFi
(
t, u(t), v(t)

)
x(t) dt = 0.

(2.4)

Since u′(t) = u′(t+
i ), t ∈ (ti, si], i = 1, 2, . . . , N ,

∫ si

ti

u′(t)x′(t) dt = u′(t+
i
)
x
(
s–

i
)

– u′(t+
i
)
x
(
t+
i
)
.
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Therefore,

N∑

i=1

∫ si

ti

u′(t)x′(t) dt –
N∑

i=1

u′(t+
i
)
x
(
s–

i
)

+
N∑

i=1

u′(t+
i
)
x
(
t+
i
)

= 0. (2.5)

Combining (2.4) and (2.5), one has

∫ T

0
u′(t)x′(t) dt –

N∑

i=0

∫ ti+1

si

DuFi
(
t, u(t), v(t)

)
x(t) dt

+
N∑

i=1

(
u′(t+

i
)

– u′(t–
i
))

x(ti) = 0,

i.e.,

∫ T

0
u′(t)x′(t) dt –

N∑

i=0

∫ ti+1

si

DuFi
(
t, u(t), v(t)

)
x(t) dt +

N∑

i=1

Ii
(
u(ti)

)
x(ti) = 0. (2.6)

On the other hand, similarly we obtain

∫ T

0
v′(t)y′(t) dt –

N∑

i=0

∫ ti+1

si

DvFi
(
t, u(t), v(t)

)
y(t) dt +

N∑

i=1

Si
(
v(ti)

)
y(ti) = 0. (2.7)

It follows from (2.6) and (2.7) that

∫ T

0
u′(t)x′(t) dt +

∫ T

0
v′(t)y′(t) dt +

N∑

i=1

Ii
(
u(ti)

)
x(ti) +

N∑

i=1

Si
(
v(ti)

)
y(ti)

=
N∑

i=0

∫ ti+1

si

DuFi
(
t, u(t), v(t)

)
x(t) dt +

N∑

i=0

∫ ti+1

si

DvFi
(
t, u(t), v(t)

)
y(t) dt.

(2.8)

Now, we introduce the concept of a weak solution for problem (1.1).

Definition 2.7 We say that a pair of functions (u, v) ∈ X is a weak solution for problem
(1.1) if identity (2.8) holds for any (x, y) ∈ X.

For any (u, v) ∈ X, we define the following functional on X:

�(u, v) =
1
2

∫ T

0

∣
∣u′(t)

∣
∣2 dt +

1
2

∫ T

0

∣
∣v′(t)

∣
∣2 dt +

N∑

i=1

∫ u(ti)

0
Ii(s) ds

+
N∑

i=1

∫ v(ti)

0
Si(s) ds –

N∑

i=0

∫ ti+1

si

Fi
(
t, u(t), v(t)

)
dt

=
1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

∫ u(ti)

0
Ii(s) ds +

N∑

i=1

∫ v(ti)

0
Si(s) ds

–
N∑

i=0

∫ ti+1

si

Fi
(
t, u(t), v(t)

)
dt.

(2.9)
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Using the continuity of DuFi, DvFi, i = 0, 1, . . . , N , and Ii, Si, i = 1, 2, . . . , N , we can show
that the functional � ∈ C1(X,R). For any (x, y) ∈ X, we have

�′(u, v)(x, y) =
∫ T

0
u′(t)x′(t) dt +

∫ T

0
v′(t)y′(t) dt +

N∑

i=1

Ii
(
u(ti)

)
x(ti)

+
N∑

i=1

Si
(
v(ti)

)
y(ti) –

N∑

i=0

∫ ti+1

si

DuFi
(
t, u(t), v(t)

)
x(t) dt

–
N∑

i=0

∫ ti+1

si

DvFi
(
t, u(t), v(t)

)
y(t) dt.

(2.10)

Thus, the weak solutions of problem (1.1) are the corresponding critical points of �.

Lemma 2.8 If (u, v) ∈ X is a weak solution of problem (1.1), then (u, v) ∈ X is a classical
solution of problem (1.1).

Proof Proceeding as in the proof of Lemma 2.2 in [22], we can prove that Lemma 2.8 holds.
Thus, the proof is omitted here. �

Lemma 2.9 For any (u, v) ∈ X, there exists a constant c > 0 such that ‖u‖∞,‖v‖∞ ≤
c‖(u, v)‖X .

Proof For any (u, v) ∈ X, it follows from the mean value theorem that

u(τ ) =
1
T

∫ T

0
u(s) ds

for some τ ∈ [0, T]. Furthermore, using Hölder and Poincaré inequality, we have

∣
∣u(t)

∣
∣ =

∣
∣
∣
∣u(τ ) +

∫ T

τ

u′(s) ds
∣
∣
∣
∣

≤ 1
T

∫ T

0

∣
∣u(s)

∣
∣ds +

∫ T

0

∣
∣u′(s)

∣
∣ds

≤ T– 1
2 ‖u‖L2 + T

1
2
∥
∥u′∥∥

L2

≤ (
(λ1T)– 1

2 + T
1
2
)∥
∥u′∥∥

L2

≤ (
(λ1T)– 1

2 + T
1
2
)∥
∥(u, v)

∥
∥

X .

Hence, there exists a constant c = (λ1T)– 1
2 + T 1

2 > 0 such that

‖u‖∞ ≤ c
∥
∥(u, v)

∥
∥

X .

Similarly, we can obtain

‖v‖∞ ≤ c
∥
∥(u, v)

∥
∥

X . �
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3 Main results
In this section, we give the proofs of our main results.

Lemma 3.1 The functional � : X →R is weakly lower semicontinuous.

Proof Let {(um, vm)} ⊂ X with (um, vm) ⇀ (u, v), then we obtain that {um} and {vm} con-
verge uniformly to u and v on [0, T], respectively (see [36, Proposition 1.2]). In connection
with the fact that ‖(u, v)‖X ≤ lim infm→∞ ‖(um, vm)‖X , one has

lim inf
m→∞ �(um, vm) = lim inf

m→∞

{
1
2
∥
∥(um, vm)

∥
∥2

X +
N∑

i=1

∫ um(ti)

0
Ii(s) ds

+
N∑

i=1

∫ vm(ti)

0
Si(s) ds –

N∑

i=0

∫ ti+1

si

Fi
(
t, um(t), vm(t)

)
dt

}

≥ 1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

∫ u(ti)

0
Ii(s) ds

+
N∑

i=1

∫ v(ti)

0
Si(s) ds –

N∑

i=0

∫ ti+1

si

Fi
(
t, u(t), v(t)

)
dt

= �(u, v).

This implies that � is a weakly lower semicontinuous functional. �

Proof of Theorem 1.1 For any (u, v) ∈ X, by (H1), (H2), and Lemma 2.9, we have

�(u, v) =
1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

∫ u(ti)

0
Ii(s) ds +

N∑

i=1

∫ v(ti)

0
Si(s) ds

–
N∑

i=0

∫ ti+1

si

Fi
(
t, u(t), v(t)

)
dt

≥ 1
2
∥
∥(u, v)

∥
∥2

X –
N∑

i=1

∫ u(ti)

0

(
ci + di|s|βi

)
ds –

N∑

i=1

∫ v(ti)

0

(
ci + di|s|βi

)
ds

–
N∑

i=0

∫ ti+1

si

(
ai|u| + bi|u|γ1+1 + ai|v| + bi|v|γ2+1)dt

≥ 1
2
∥
∥(u, v)

∥
∥2

X – NC‖u‖∞ – D
N∑

i=1

‖u‖βi+1
∞ – NC‖v‖∞

– D
N∑

i=1

‖v‖βi+1
∞ – (N + 1)AT‖u‖∞ – (N + 1)BT‖u‖γ1+1

∞

– (N + 1)AT‖v‖∞ – (N + 1)BT‖v‖γ2+1
∞

≥ 1
2
∥
∥(u, v)

∥
∥2

X – 2NCc
∥
∥(u, v)

∥
∥

X – 2D
N∑

i=1

cβi+1∥∥(u, v)
∥
∥βi+1

X

– 2(N + 1)ATc
∥
∥(u, v)

∥
∥

X – (N + 1)BTcγ1+1∥∥(u, v)
∥
∥γ1+1

X
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– (N + 1)BTcγ2+1∥∥(u, v)
∥
∥γ2+1

X ,

where A = max{a0, a1, . . . , aN }, B = max{b0, b1, . . . , bN }, C = max{c1, c2, . . . , cN }, and D =
max{d1, d2, . . . , dN }. Since γ1,γ2 ∈ [0, 1), i = 0, 1, . . . , N , βi ∈ [0, 1), i = 1, 2, . . . , N , the above
equation implies lim‖(u,v)‖X→∞ �(u, v) = +∞, i.e., � is coercive. By Lemma 3.1 and The-
orem 2.3, we obtain that functional � satisfies all the conditions of Theorem 2.4. So �

has a minimum on X, which is a critical point of �. Hence, problem (1.1) has at least one
classical solution. �

Corollary 3.2 Assume that DuFi, DvFi, i = 0, 1, . . . , N , Ii, Si, i = 1, 2, . . . , N , are bounded.
Then, problem (1.1) has at least one classical solution.

Proof of Theorem 1.2 Obviously, � ∈ C1(X,R) and �(0, 0) = 0. We divide the proof into
three parts.

First, we will show that � satisfies the (PS) condition. Let {(um, vm)} ⊂ X be a sequence
such that {�(um, vm)} is bounded and �′(um, vm) → 0. By (2.9), (2.10), (H3), and (H5), we
have

θ�(um, vm) – �′(um, vm)(um, vm)

=
θ

2
∥
∥(um, vm)

∥
∥2

X + θ

N∑

i=1

∫ um(ti)

0
Ii(s) ds + θ

N∑

i=1

∫ vm(ti)

0
Si(s) ds

– θ

N∑

i=0

∫ ti+1

si

Fi(t, um, vm) dt –
∫ T

0

∣
∣u′

m(t)
∣
∣2 dt –

∫ T

0

∣
∣v′

m(t)
∣
∣2 dt

–
N∑

i=1

Ii
(
um(ti)

)
um(ti) –

N∑

i=1

Si
(
vm(ti)

)
vm(ti)

+
N∑

i=0

∫ ti+1

si

DuFi(t, um, vm)um dt +
N∑

i=0

∫ ti+1

si

DvFi(t, um, vm)vm dt

=
(

θ

2
– 1

)
∥
∥(um, vm)

∥
∥2

X +

(

θ

N∑

i=1

∫ um(ti)

0
Ii(s) ds –

N∑

i=1

Ii
(
um(ti)

)
um(ti)

)

+

(

θ

N∑

i=1

∫ vm(ti)

0
Si(s) ds –

N∑

i=1

Si
(
vm(ti)

)
vm(ti)

)

+

( N∑

i=0

∫ ti+1

si

DuFi(t, um, vm)um dt +
N∑

i=0

∫ ti+1

si

DvFi(t, um, vm)vm dt

– θ

N∑

i=0

∫ ti+1

si

Fi(t, um, vm) dt

)

≥
(

θ

2
– 1

)
∥
∥(um, vm)

∥
∥2

X .

Since θ > 2, it follows that {(um, vm)} is bounded in X. Passing, if necessary, to a subse-
quence, we can assume that there exist {(um, vm)} ∈ X such that

(um, vm) ⇀ (u, v) in X,
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um → u, vm → v uniformly in C
(
[0, T]

)
,

as m → +∞. Hence

N∑

i=1

(Ii(um(ti) – Ii
(
u(ti)

)(
um(ti) – u(ti)

) → 0,

N∑

i=1

(Si(vm(ti) – Si
(
v(ti)

)(
vm(ti) – v(ti)

) → 0,

N∑

i=0

∫ ti+1

si

(
DuFi(t, um, vm) – DuFi(t, u, v)

)
(um – u) dt → 0,

N∑

i=0

∫ ti+1

si

(
DvFi(t, um, vm) – DvFi(t, u, v)

)
(vm – v) dt → 0,

(3.1)

as m → +∞. Moreover, by (2.10), we have

(
�′(um, vm) – �′(u, v)

)
(um – u, vm – v)

=
∥
∥(um – u, vm – v)

∥
∥2 +

N∑

i=1

(Ii
(
um(ti) – Ii

(
u(ti)

))(
um(ti) – u(ti)

)

+
N∑

i=1

(Si
(
vm(ti) – Si

(
v(ti)

))(
vm(ti) – v(ti)

)

–
N∑

i=0

∫ ti+1

si

(
DuFi(t, um, vm) – DuFi(t, u, v)

)
(um – u) dt

–
N∑

i=0

∫ ti+1

si

(
DvFi(t, um, vm) – DvFi(t, u, v)

)
(vm – v) dt.

(3.2)

Since �′(um, vm) → 0 and (um, vm) ⇀ (u, v), we have

(
�′(um, vm) – �′(u, v)

)
(um – u, vm – v) → 0, as m → +∞. (3.3)

Therefore, (3.1), (3.2), and (3.3) yield ‖(um – u, vm – v)‖ → 0 as m → +∞. That is,
(um, vm) → (u, v) in X, which means that the (PS) condition holds for �.

Second, we verify that � satisfies assumption (i) of Theorem 2.5. By the Sobolev embed-
ding theorem, there exists γ > 0 such that

‖u‖2
L2 + ‖v‖2

L2 ≤ γ
∥
∥(u, v)

∥
∥2

X . (3.4)

By (H4), we have

Fi(t, u, v) = o
(|u|2 + |v|2), as |u| + |v| → 0.

Let ε = 1
4(N+1)γ , then there exists δ > 0 such that |u| + |v| < δ implies

Fi(t, u, v) ≤ 1
4(N + 1)γ

(|u|2 + |v|2), ∀(u, v) ∈ X. (3.5)
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In addition, it follows from (i) of (H3) that

∫ u(ti)

0
Ii(s) ds ≥ 0 and

∫ v(ti)

0
Si(s) ds ≥ 0. (3.6)

It is clear that ‖(u, v)‖X ≤ δ
c , where c is defined in Lemma 2.9, implies that ‖u‖∞,‖v‖∞ <

δ. By (2.9), (3.4), (3.5), and (3.6), we have

�(u, v) =
1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

∫ u(ti)

0
Ii(s) ds +

N∑

i=1

∫ v(ti)

0
Si(s) ds

–
N∑

i=0

∫ ti+1

si

Fi(t, u, v) dt

≥ 1
2
∥
∥(u, v)

∥
∥2

X –
N∑

i=0

∫ ti+1

si

1
4(N + 1)γ

(|u|2 + |v|2)dt

≥ 1
2
∥
∥(u, v)

∥
∥2

X –
1

4γ

∫ T

0

(|u|2 + |v|2)dt

≥ 1
2
∥
∥(u, v)

∥
∥2

X –
1

4γ

(‖u‖2
L2 + ‖v‖2

L2
)

=
1
4
∥
∥(u, v)

∥
∥2

X .

Choose α = δ2

4c2 , ρ = δ
c , then �(u, v) ≥ α > 0 for any (u, v) ∈ ∂Bρ .

Finally, we prove that assumption (ii) of Theorem 2.5 is satisfied. According to (H3),
(H5), and Lemma 2.9, we have

�(u, v) =
1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

∫ u(ti)

0
Ii(s) ds +

N∑

i=1

∫ v(ti)

0
Si(s) ds

–
N∑

i=0

∫ ti+1

si

Fi(t, u, v) dt

≤ 1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

δi
∣
∣u(ti)

∣
∣θ +

N∑

i=1

δi
∣
∣v(ti)

∣
∣θ –

N∑

i=0

∫ ti+1

si

C
(|u|β + |v|β)

dt

≤ 1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

δi‖u‖θ
∞ +

N∑

i=1

δi‖v‖θ
∞ – C

N∑

i=0

∫ ti+1

si

(|u|β + |v|β)
dt

≤ 1
2
∥
∥(u, v)

∥
∥2

X +
N∑

i=1

δicθ
∥
∥(u, v)

∥
∥θ

X +
N∑

i=1

δicθ
∥
∥(u, v)

∥
∥θ

X

– C
N∑

i=0

∫ ti+1

si

(|u|β + |v|β)
dt

(3.7)

Now, for any given (u, v) ∈ X with ‖u‖1 = ‖v‖1 = 1, by (3.7), we have

�(ξu, ξv) ≤ 1
2
∥
∥(ξu, ξv)

∥
∥2

X +
N∑

i=1

δicθ
∥
∥(ξu, ξv)

∥
∥θ

X +
N∑

i=1

δicθ
∥
∥(ξu, ξv)

∥
∥θ

X
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– C
N∑

i=0

∫ ti+1

si

(|ξu|β + |ξv|β)
dt

= ξ 2 + 2(
√

2c)θ ξ θ

N∑

i=1

δi – Cξβ

N∑

i=0

∫ ti+1

si

(|u|β + |v|β)
dt.

Since 2 < θ < β , the above inequality implies that �(ξu, ξv) → –∞ as ξ → +∞. Therefore,
there exists ξ0 ∈ R\{0} with ξ0 > ρ such that �(ξ0u, ξ0v) ≤ 0. By Theorem 2.5, problem
(1.1) has at least one classical solution. �

Proof of Theorem 1.3 We apply Theorem 2.6 to show this result. In view of the proof of
Theorem 1.2, we obtain that � ∈ C1(X,R) with �(0, 0) = 0 satisfies the (PS) condition.
Conditions (H6) and (H7) imply that � is even.

The set of all eigenvalues of (2.1) is given by the sequence of positive numbers λn =
( nπ

T )2 (n = 1, 2, . . . ). Let En denote the feature space corresponding to λn, then we ob-
tain H1

0 (0, T) =
⊕

i∈N Ei and X =
⊕

i∈N Ei × Ei. Assume that V =
⊕2

i=1 Ei × Ei and Y =
⊕+∞

i=3 Ei × Ei, then X = V + Y , where V is finite dimensional. As in the proof of Theo-
rem 1.2, there exist ρ,α > 0 such that �(u, v) ≥ α for any (u, v) ∈ ∂Bρ ∩Y . In addition, in the
same way as in the proof of Theorem 1.2, we can obtain that �(ξu, ξv) → –∞ as ξ → ∞
for any (u, v) ∈ W . Hence, there exists R = R(W ) such that �(ξu, ξv) ≤ 0 on W\BR(W ). By
Theorem 2.6, problem (1.1) has infinitely many classical solutions. �

Proof of Theorem 1.4 Obviously, � ∈ C1(X,R) with �(0, 0) = 0 is even. First, we prove that
� satisfies the (PS) condition. As in the proof of Theorem 1.2, by (2.9), (2.10), (H2), (H5),
and Lemma 2.9, we have

θ�(um, vm) – �′(um, vm)(um, vm)

=
(

θ

2
– 1

)
∥
∥(um, vm)

∥
∥2

X + θ

N∑

i=1

∫ um(ti)

0
Ii(s) ds –

N∑

i=1

Ii
(
um(ti)

)
um(ti)

+ θ

N∑

i=1

∫ vm(ti)

0
Si(s) ds –

N∑

i=1

Si
(
vm(ti)

)
vm(ti)

+

( N∑

i=0

∫ ti+1

si

DuFi(t, um, vm)um dt +
N∑

i=0

∫ ti+1

si

DvFi(t, um, vm)vm dt

– θ

N∑

i=0

∫ ti+1

si

Fi(t, um, vm) dt

)

≥
(

θ

2
– 1

)
∥
∥(um, vm)

∥
∥2

X – θ

N∑

i=1

(
ci‖um‖∞ + di‖um‖βi+1

∞
)

–
N∑

i=1

(
ci‖um‖∞ + di‖um‖βi+1

∞
)

– θ

N∑

i=1

(
ci‖vm‖∞ + di‖vm‖βi+1

∞
)

–
N∑

i=1

(
ci‖vm‖∞ + di‖vm‖βi+1

∞
)
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≥
(

θ

2
– 1

)
∥
∥(um, vm)

∥
∥2

X – 2(θ + 1)

( N∑

i=1

cic
∥
∥(um, vm)

∥
∥

X

+
N∑

i=1

dicβi+1∥∥(um, vm)
∥
∥βi+1

X

)

.

It follows that {(um, vm)} is bounded in X. The rest of the proof showing that the (PS)
condition holds is similar to that in Theorem 1.2. Secondly, since Ii, Si, i = 1, 2, . . . , N , are
odd and nondecreasing, we obtain

∫ u(ti)
0 Ii(s) ds ≥ 0 and

∫ v(ti)
0 Si(s) ds ≥ 0. As in the proofs

of Theorems 1.2 and 1.3, we can easily verify that condition (i) of Theorem 2.6 is satisfied.
Finally, the proof of condition (ii) of Theorem 2.6 is also the same as that in Theorem 1.3.
Hence, by Theorem 2.6, problem (1.1) has infinitely many classical solutions. �

4 Examples
In this section, we give two examples to illustrate our main results.

Example 4.1 Let T = 1, consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = DuFi(t, u(t), v(t)), t ∈ (si, ti+1], i = 0, 1,

–v′′(t) = DvFi(t, u(t), v(t)), t ∈ (si, ti+1], i = 0, 1,

�u′(t1) = I1(u(t1)),

�v′(t1) = S1(v(t1)),

u′(t) = u′(t+
1 ), t ∈ (t1, s1],

v′(t) = v′(t+
1 ), t ∈ (t1, s1],

u′(s+
1 ) = u′(s–

1 ),

v′(s+
1 ) = v′(s–

1 ),

u(0) = u(1) = v(0) = v(1) = 0.

(4.1)

where DuFi(t, u, v) = t + u 1
2 , DvFi(t, u, v) = t2 + v 1

4 , I1(u) = sin u + u 1
2 , S1(v) = 2 cos v + v 1

3 .
Let ai = 1, bi = 1, γ1 = 1

2 , γ2 = 1
4 , ci = 2, di = 1, βi = 1

2 , then conditions (H1) and (H2) hold.
Therefore, problem (4.1) has at least one classical solution by Theorem 1.1.

Example 4.2 Let T = 1, consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = DuFi(t, u(t), v(t)), t ∈ (si, ti+1], i = 0, 1,

–v′′(t) = DvFi(t, u(t), v(t)), t ∈ (si, ti+1], i = 0, 1,

�u′(t1) = I1(u(t1)),

�v′(t1) = S1(v(t1)),

u′(t) = u′(t+
1 ), t ∈ (t1, s1],

v′(t) = v′(t+
1 ), t ∈ (t1, s1],

u′(s+
1 ) = u′(s–

1 ),

v′(s+
1 ) = v′(s–

1 ),

u(0) = u(1) = v(0) = v(1) = 0.

(4.2)
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where DuFi(t, u, v) = u7, DvFi(t, u, v) = v9, I1(u) = u4, S1(v) = v6. Let β = 8, θ = 4, C = 1
2 .

By simple calculations, we show that condition (H3)–(H5) are satisfied. So problem (4.2)
has at least one classical solution by Theorem 1.2. Furthermore, if we take I1(u) = u5 and
S1(v) = v5, conditions (H6) and (H7) are also satisfied. Applying Theorem 1.3, problem
(4.2) has infinitely many classical solutions.
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