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Abstract
Combining the interpolation reproducing kernel particle method (IRKPM) with the
integral weak form of elastodynamics, we present a high-order smooth interpolated
reproducing kernel particle method for an elastodynamics plane problem. The shape
function of IRKPM not only has the interpolation property at any point but also has a
high-order smoothness not lower than that of the kernel function. This new method
overcomes the difficulties of most meshless methods in dealing with essential
boundary conditions and ensures high numerical accuracy. For time domain
integration, we use the classical Newmark average acceleration method. By numerical
examples we demonstrate that the proposed method has the advantages of higher
accuracy, smaller scale of solving problem, and direct application of boundary
conditions.

Keywords: Meshless method; Interpolated reproducing kernel particle method;
Elastodynamics; High-order smooth algorithm

1 Introduction
The beams, plates and shells, widely used in engineering, are often affected by vibration
and impact. The finite element method depends on the mesh division to deal with such
problems [1, 2]. When the mesh is distorted, the accuracy of the results obtained by the fi-
nite element method decreases. The meshless method adopts point-based approximation
and can ignore the influence of mesh distortion when dealing with numerical problems
[3]. The meshless method has the advantages of saving analysis time and ensuring calcu-
lation accuracy, which at present is the hot spot and development direction of scientific
and engineering calculation methods [4].

In the calculation process, only node information is needed, which overcomes the limita-
tion of connecting nodes to elements between nodes [5]. The meshless method can easily
deal with the problems of large deformation [6], crack-growth processes [7], convection
heat transfer [8], fluid-structure interaction [9], and elastodynamics [10, 11].

With the rapid development of computer technology and calculation method, various
numerical methods have become important means to solve scientific and engineering
problems [12–17]. As an important scientific problem, structural dynamic analysis has

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-022-01654-6
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-022-01654-6&domain=pdf
mailto:1983015@tyust.edu.cn
http://creativecommons.org/licenses/by/4.0/


Gu et al. Boundary Value Problems         (2022) 2022:74 Page 2 of 17

been paid more attention in various fields [18–21]. In this case, the finite element method
(FEM), as the most general numerical method, becomes the main method for dynamic
analysis and nonlinear analysis [22, 23]. The FEM for solving structural dynamic prob-
lems depends on the division and refinement of elements [24]. In the case of complex ge-
ometry, stress singularities and concentration occur unless a high-quality finite element
mesh is generated at a very time consuming and tedious cost [25]. The output result of
the quadratic approximation will be distorted when the discontinuity stress related to the
elements is in the area of the stress concentration [26]. The meshless methods were first
used to simulate celestial phenomena without boundaries [27, 28]. The meshless method
uses the approximation of the point, and the displacement trial function of the calculation
point is only associated with the shape function of the discrete point in the influence do-
main. Without the dependence of the grids, the output displacement, strain, and stress are
continuous in the whole analysis domain, and the error of the quadratic approximation is
avoided [29, 30]. Two mainstream meshless methods are the element-free Galerkin meth-
ods [31–35] and the reproducing kernel particle methods [36–39]. However, the meshless
method based on the Galerkin discretization scheme is not easy to apply the boundary
conditions.

Dynamic analysis is an important step in the evaluation of elastic structures. Meshless
methods take particles as basic computing units, and there is no need to establish fixed
topological relations between particles, so they are suitable for solving elastic dynamic
problems [40, 41]. Several authors have attempted to apply meshless methods to elastody-
namics problems. Selecting an appropriate form function can reduce the computational
cost [42]. A meshless local integral method for two-dimensional elastodynamic fracture
problems by the Laplace transform technique is proposed [43]. The Newmark method is
generally selected as an approximation scheme to deal with time-dependent cases [44–46].

In this paper, combining the IRKPM with the integral weak form governing equation of
elastodynamics, we establish a high-order smooth interpolated reproducing kernel parti-
cle method for two-dimensional elastodynamics problems. We derive the corresponding
discrete equations and adopt the time domain integration the Newmark constant average
acceleration method. This method adopts point-based approximation, which can ignore
the influence of grid distortion in the dynamic analysis, save the analysis time, and en-
sure the calculation accuracy. This method can easily apply boundary conditions like the
finite element method and can avoid the difficulties in dealing with the boundary condi-
tion. Compared with other meshless methods, this method has the character of directly
applying boundary conditions, a small amount of calculation, and high accuracy. The cor-
rectness and effectiveness of this method are proved by some numerical examples.

2 The basic equation of elastic mechanics
Let Ω be the domain of problem with boundary Γ . For linear elastic problem, b is the body
force, t̄ is the known surface force on the natural boundary, ū is the known displacement
on essential boundary, and n is the directional cosine matrix at the point x on the natural
boundary. The basic equations of two-dimensional elastic mechanics are

LTσ + b – ρü – μu̇ = 0 in Ω , (1)

ε = Lu in Ω , (2)
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σ = Dε in Ω , (3)

σ n = t̄ on Γu, (4)

u = ū on Γt , (5)

u(x, t0) = u0(x), x ∈ Ω , (6)

u̇(x, t0) = v0(x), x ∈ Ω , (7)

where L is the differential operator matrix

L =

⎡
⎣

∂
∂x1

0 ∂
∂x2

0 ∂
∂x2

∂
∂x1

⎤
⎦

T

, (8)

ρ is the density, μ is the damping coefficient, –μu̇ is the damping force, –ρü is the inertia
force;

σ =
[
σ11(t) σ22(t) σ12(t)

]T
, (9)

b =
[
b1(t) b2(t)

]T
, (10)

ε =
[
ε11(t) ε22(t) ε12(t)

]T
, (11)

u =
[
u(t) v(t)

]T
, (12)

where σ , b, ε, and u are the stress vector, body force vector, strain matrix, and displace-
ment matrix at any point on the domain, respectively;

u̇T =
(
u̇(t), v̇(t)

)
, (13)

üT =
(
ü(t), v̈(t)

)
, (14)

where u̇ and ü are the first and second derivatives of the displacement matrix u, respec-
tively.

Let D be the elasticity matrix. The plane stress matrix can be expressed as

D =
E

1 – μ2

⎡
⎢⎣

1 μ 0
μ 1 0
0 0 1–μ

2

⎤
⎥⎦ , (15)

where E is Young’s modulus, and μ is Poisson’s ratio.

3 Interpolated reproducing kernel particle method for elastodynamics
problems

3.1 Shape function of the interpolated reproducing kernel particle method
When the number of nodes in the compact support domain is greater than the number
of the basis function monomials, we construct the interpolating shape function of the
improved reproducing kernel particle method.
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The cubic spline function is adopted as a weight function, that ism

Φ̂âI (x – xI) = Φ(d) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 – 4d2 + 4d3, d ≤ 1

2 ,
4
3 – 4d + 4d2 – 4

3 d3, 1
2 < d ≤ 1,

0, d > 1.

(16)

Let the improved interpolating nuclear particle of u(x) be approximately

ua(x) =
NP∑
I=1

ΨI(x)uI , (17)

where the shape function of the improved interpolating kernel particle is

ΨI(x) = Ψ̂I(x) + Ψ̄I(x), (18)

with a function Ψ̂I(x) that possesses the Kronecker delta property and an enhanced func-
tion Ψ̄I(x) in the form of IRKPM. Therefore the constructed shape function has the prop-
erty of interpolating on any point and a higher-order smoothness not less than that of the
kernel function.

The improved second-order interpolating condition of the interpolating kernel particle
shape function ΨI(x) can be given as

NP∑
I=1

[
Ψ̂I(x) + Ψ̄I(x)

]
xα

I = xα , |α| ≤ 2. (19)

If the simple function Ψ̂I(x) satisfies the Kronecker delta property, that is, Ψ̂I(xJ ) = δIJ ,
and Eq. (19) holds, then the enhancement function vector is as follows:

Ψ̄ (x) =
{
Ψ̄1(x), Ψ̄2(x), . . . , Ψ̄NP(x)

}
. (20)

The basis vectors made up of moving monomials, which are orthogonal, can be written
as

hi(x) =
{

hi(x – x1), hi(x – x2), . . . , hi(x – xNP)
}

, (21)

H(x – xI) =
[
1, x1 – xI1, . . . , xd – xId, (x1 – xI1)2, . . . , (xd – xId)n]T, (22)

where the ith element of H(x – xI), for example, for all discrete points {xJ}NP
J=1, is

Ψ̄ (xJ )Thi(xJ ) = 0 ∀J . (23)

In view of Eq. (19), Eq. (23) can be rewritten as

NP∑
I=1

[
Ψ̂I(x) + Ψ̄I(x)

]
H(x – xI) = H(0). (24)
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For xJ , we have

NP∑
I=1

[
Ψ̂I(xJ ) + Ψ̄I(xJ )

]
H(xJ – xI) = H(0). (25)

If Ψ̂I(xJ ) = δIJ and any J point satisfies
∑NP

I=1 δIJ H(xJ – xI) = H(0), then based on the last
equation, we have

NP∑
I=1

Ψ̄I(xJ )H(xJ – xI) = 0. (26)

We can obtain the equivalent equation

NP∑
I=1

Ψ̄I(xJ )hi(xJ – xI) = 0. (27)

Thus we obtained Eq. (23).
Let

Ψ̄I(x) = GT(x – xI)b(x), (28)

where G(x – xI) is the vector of basis functions that has the same dimension as H(xJ – xI),
and b(x) is the corresponding coefficient vector. Substituting Eq. (28) into Eq. (26) we have

Q(xJ )b(xJ ) = 0, (29)

where

Q(x) =
∑

I

H(x – xI)GT(x – xI). (30)

If Q(xJ ) is nonsingular, then from Eq. (29) we obtain b(xJ ) = 0. Since Ψ̄I(xJ ) = 0 by
Eq. (28), we get

ΨI(xJ ) = Ψ̄I(xJ )+
�

Ψ I (xJ ) = δIJ . (31)

To make Q(x) nonsingular, an obvious choice for G(x – xI) is

G(x – xI) = H(x – xI)Φ̄āI (x – xI), (32)

where Φ̄āI (x – xI) ≥ 0 is a weight function with compact support. So

Ψ̄I(x) = HT(x – xI)b(x)Φ̄āI (x – xI). (33)

As we can see from the above, if the enhancement function is of the form (28) and the
simple function has the Kronecker delta property, then the interpolation function ΨI(x)
will be generated if Eq. (19) is satisfied.
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The coefficient b(x) of Ψ̄I(x) can be obtained by the condition of reproducing, and Ψ̂I(x)
can be expressed as

Ψ̂I(x) =
Φ̂âI (x – xI)

Φ̂âI (0)
, âI < min

{‖xI – xJ‖ ∀J �= I
}

, (34)

where Ψ̂I(x) satisfies the Kronecker delta condition.
Substituting Eqs. (33) and (34) into Eq. (18) yields

NP∑
I=1

[
Ψ̂I(x) + HT(x – xI)b(x)Φ̂âI (x – xI)

]
xα

I = xα , |α| ≤ n. (35)

From Eq. (35) we have

NP∑
I=1

H(x – xI)
[
Ψ̂I(x) + HT(x – xI)b(x)Φ̂âI (x – xI)

]
= H(0). (36)

The coefficient vector b(x) can be obtained as

b(x) = Q–1(x)
[

H(0) – Ĥ(x)
]
, (37)

where

Ĥ(x) =
NP∑
I=1

H(x – xI)Ψ̂I(x). (38)

Finally, we obtain the interpolation shape function of the improved reproducing kernel
particle as follows:

ΨI(x) = Ψ̂I(x) + HT(x – xI)Q–1(x)
[

H(0) – Ĥ(x)
]
Φ̄āI (x – xI). (39)

As Fig. 1 shows, 121 particles are nonuniformly put on the 2D domain (x, y) ∈ [0, 10] ×
[0, 10], the cubic spline functions are taken as the weight functions of Φ̂âI (x – xI) and
Φ̄āI (x – xI), â1 = 0.48dc, ā = 3.0dc, and Ψ̂I(x) is the minimum particle spacing. Then the
shape functions of the asterisk particle are shown in Fig. 1.

Figure 1 illustrates that the shape function has an excellent characteristic of node in-
terpolation. The displacement, stress, and strain obtained by this method have smooth
continuity on the whole domain and avoid the calculation error from the finite element
method.

We analyze the reproducing kernel shape function and its interpolation properties in
particular cases and study the construction process of the interpolation shape function of
the improved reproducing kernel particle. We can see from these figures that the improved
reproducing kernel shape function has good interpolation characteristics. Theoretically,
the smoothness of the shape function of the improved reproducing kernel particle is guar-
anteed to be no less than that of the weight function.

The interpolation form function of the improved reproducing kernel particle is based
on the coupling of a simple function with the Kronecker delta property and an enhanced
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Figure 1 Shape functions of 2D IRKPM with
nonuniform particles
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function of IRKPM shape function format. When the original simple function is used to
introduce the discrete Kronecker delta property and the enhancement function is used to
construct the reproducing condition, if the enhancement function vector of the discrete
point and the basis function vector of the moving monomial satisfy the orthogonality con-
dition, then the shape function of the improved reproducing kernel particle with the Kro-
necker delta property is obtained. This makes it convenient to directly apply displacement
boundary conditions.

3.2 Numerical equations of elastodynamics problems
In the domain Ω the displacement u = [u v]T of any point x at any time t can be written
as

u = ψun, (40)

where n = NP ≤ m, m is the total number of discrete notes in elasticity domain Ω , and

ψ =
[
ψ1 ψ2 · · · ψn

]
, (41)

un =
[

uT
1 uT

2 · · · uT
n

]T
, (42)

where ψ is the shape function, and un is the displacement vector of n discrete points on
compact support domain of the point x.

Setting I = 1, 2, . . . , n, Ψ I is the shape function submatrix of any particle xI , uI is the
displacement vector of any particle xI , and we have

ψ I =

[
ΨI 0
0 ΨI

]
, (43)

uI =
[
uI vI

]T
. (44)

3.3 High-order smooth elastodynamic algorithm
Based on the meshless shape function of any discrete point with smooth interpolation
property, a higher-order smooth displacement function can be constructed as follows.

The speed and acceleration at any time t at any point x on the domain can be written as

u̇ =
n∑
I

ψ I u̇I , (45)

ü =
n∑
I

ψ I üI , (46)

where u̇I and üI are the speed and acceleration of the point x at time t, respectively, and
they can be written as

u̇I =
[
u̇I v̇I

]T
, (47)

üI =
[
üI v̈I

]T
. (48)
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The strain of a point x can be obtained from Eqs. (2) and (40):

ε = Lu = Bun, (49)

B =
[

B1 B2 · · · Bn

]
, (50)

where B is the strain matrix, and the submatrix BI of the strain matrix at a particle xI is

BI =

⎡
⎢⎢⎢⎣

∂ΨI
∂x1

0

0 ∂ΨI
∂x2

∂ΨI
∂x2

∂ΨI
∂x1

⎤
⎥⎥⎥⎦ . (51)

By the virtual work principle of elastic mechanics we have

δΠ = –
∫

Ω

(σ – ρü – μu̇ + b)δu dΩ +
∫

Γt

(σ n – t̄)δu dΓ = 0, (52)

i.e.,

∫
Ω

(Dεδε + ρüδu – μu̇δu) dΩ –
(∫

Ω

bδu dΩ –
∫

Γt

t̄δu dΓ

)
= 0. (53)

By Eqs. (40), (45), (46), and (49) we can obtain the following equation:

∫
Ω

δ

( n∑
I

ψ I uI

)T

ρ

( n∑
J

ψ J üJ

)
dΩ +

∫
Ω

δ

( n∑
I

ψ I uI

)T

μ

( n∑
J

ψ J u̇J

)
dΩ

+
∫

Ω

δ

( n∑
I

BI uI

)T

D

( n∑
J

BJ uJ

)
dΩ –

∫
Ω

δ

( n∑
I

ψ I uI

)T

b dΩ

–
∫

Γt

δ

( n∑
I

ψ I uI

)T

t̄ dΓ = 0.

(54)

Because of the arbitrariness of δu, we can write the discrete system equation

Mü + Cu̇ + Ku = f . (55)

If the damping is ignored, Eq. (55) can be simplified as

Mü + Ku = f . (56)

If the right-hand item is zero, then this formula is a free vibration equation of the sys-
tem. u, u̇, and ü are the displacement, speed, and acceleration vectors of the particle, re-
spectively. M, C, K , and f are the quality, damping, stiffness, and particle load matrices,
respectively. They can be written as

u =
[

uT
1 uT

2 · · · uT
m

]T
, (57)
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u̇ =
[

u̇T
1 u̇T

2 · · · u̇T
m

]T
, (58)

ü =
[

üT
1 üT

2 · · · üT
m

]T
, (59)

MIJ =
∫

Ω

ψT
I ρψT

J dΩ (I, J = 1, . . . , m), (60)

CIJ =
∫

Ω

ψT
I μψT

J dΩ , (61)

K IJ =
∫

Ω

BT
I DBJ dΩ , (62)

f I =
∫

Ω

ψT
I b dΩ +

∫
Γt

ψT
I t̄ dΓ , (63)

where I, J = 1, 2, . . . , m, and K IJ , CIJ , and f I are the elements of K , C, and f .
The shape functions of the interpolated reproducing kernel particle all have the charac-

teristics of the Kronecker delta function in a discrete particle, so that the essential bound-
ary can be directly applied.

3.4 Implicit time integration
The time domain is discretized by n time increments. The Newmark method is adopted
for the time discretization of the equations of motion. The relationship between the dis-
placement and speed from time tn to time tn+1 can be written as

un+1 = un + �tu̇n +
1
2

(1 – β2)�t2ün +
1
2
β2�t2ün+1, (64)

u̇n+1 = u̇n + (1 – β1)�tün + β1�tün+1, (65)

where β1 and β2 affect the stability and accuracy of the calculation result. Different pa-
rameter selections correspond to different integration methods:

(i) β1 =
1
2

, β2 =
1
3

(linear acceleration method);

(ii) β1 =
1
2

, β2 =
1
2

(average acceleration method);

(iii) β1 =
1
2

, β2 = 0 (uniform acceleration method);

(iv) β1 =
3
2

, β2 =
8
5

(Galerkin method);

(v) β1 =
3
2

, β2 = 4 (backward difference method).

From Eq. (64) we have

ün+1 =
2

β2�t2 (un+1 – un) –
2

β2�t
u̇n –

(
1
β2

– 1
)

ün. (66)

Let

α1 =
2

β2�t2 , (67)
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α2 =
2

β2�t
, (68)

α3 =
1
β2

– 1. (69)

Considering Eqs. (67), (68), and (69), Eq. (66) can be written as

ün+1 = α1(un+1 – un) – α2u̇n – α3ün. (70)

Substituting Eq. (70) into Eq. (65), we obtain

u̇n+1 = β1α2(un+1 – un) +
(

1 –
2β1

β2

)
u̇n +

(
1 –

β1

β2

)
�tün. (71)

In the Newmark method the displacement solution un+1 is obtained by Eq. (56). Then

Mün+1 + Kun+1 = f n+1. (72)

Substituting Eqs. (70) and (71) into Eq. (72), we obtain

(Kn+1 + α1Mn+1)un+1 = f n+1 + Mn+1(α1un + α2u̇n + α3ün). (73)

When un+1 is calculated, u̇n+1 and ün+1 are determined by Eqs. (70) and (71), respectively.

3.5 Numerical algorithm flow
Firstly, the initial calculation is performed as follows:

Step 1. From Eqs. (60) to (62), M, C, K , and f are determined;
Step 2. Essential boundary condition is applied;
Step 3. u, u̇, and ü are set;
Step 4. �t, β1, and β2 are set, and α1, α2, and α3 are obtained.
Secondly, the time step is looped. For every time step,
Step 1. The payload is calculated at time t + �t;
Step 2. According to Eq. (56), the displacement ut+�t at time t + �t is obtained;
Step 3. The velocity u̇t+�t at time t + �t is found;
Step 4. The acceleration üt+�t at time t + �t is found;
Step 5. After the particle displacement vector ut+�t is obtained, the stress and strain of

the particle are obtained according to Eqs. (2) and (3).
Finally, the time step cycle ends, and the particle displacement response, velocity, and

stress are output. In this paper, the average acceleration method is adopted, which is an
unconditionally stable integral scheme. Thus the new meshless method is formed.

4 Numerical examples
4.1 Vibration analysis of cantilever beam
As shown in Fig. 2, the cantilever beam subjected to a dynamic sudden load at the free end.
The length and height of the cantilever beam are l = 0.4 m and h = 0.05 m, respectively.
The material constants are Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3, and the
density ρ = 7850 kg/m3. The effect of damping is ignored. The sudden uniform tangen-
tial load p(t) = 1000 Pa is applied on the free end of the beam at time t = 0. As shown in
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Figure 2 The cantilever beam subjected to a dynamic sudden load

Figure 3 The dynamic load

Figure 4 The node distribution of the cantilever
beam

Fig. 3, ignoring the static load, the plane stress method is adopted to calculate. The dis-
placement along the x1 direction is u. The displacement along the x2 direction is v. The
initial conditions are u0 = u̇0 = 0.

Analytic solution of deflection at the midpoint of the free end of the beam is

w(t) =
1
2

[
1 – cos

(
2π t
T

)]
wmax, (74)

where T and wmax are the natural vibration frequency of the cantilever beam and maxi-
mum deflection of the free end of the beam, respectively,

T =
2π

1.8752

√
12ρl4

Eh2 , (75)

wmax =
2phl3

3EI
. (76)

21 × 6 particles are used in the domain, as shown in Fig. 4. The cubic spline function is
used as a weight function. The linear basis function is used as a base function. The time
step chosen for the time integration is �t = 2 × 10–6 s.

The solutions of the displacement at the free end midpoint of the beam obtained by
IRKPM and analytical method are shown in Fig. 5. The comparison of the results calcu-
lated by IRKPM and analytical method is shown in Table 1, where R is the relative error,
and the maximum relative error is 3.8%. Combining Fig. 5 and Table 1, we can see that
IRKPM has a great precision and stability.
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Figure 5 The time-dependent deflection of the midpoint of the free end

Table 1 The deflection of the midpoint of the free end

Time
(ms)

IRKPM
displacement
v (10–4 mm)

Analysis
displacement
v (10–4 mm)

R

0 0 0 –
0.5 1.60 1.55 3.2%
1.0 5.32 5.27 0.9%
1.5 8.68 8.90 2.5%
2.0 9.84 10.23 3.8%
2.5 8.30 8.46 1.9%
3.0 4.79 4.66 2.8%
3.5 1.18 1.14 3.5%
4.0 0.04 0.04 0%
4.5 2.07 2.02 2.5%
5.0 5.90 5.89 0.2%

Figure 6 The cantilever beam under axial linear sudden load

4.2 The dynamic response of cantilever beam under the axial sudden load
As shown in Fig. 6, the cantilever beam is under the sudden load in the axial direction. The
geometric and physical parameters are as in Sect. 4.1. The effect of damping is ignored,
and the sudden axial load p(t) = 1 GPa is applied on the free end of the beam at time t = 0.
The sudden load remains the same.

21 × 6 particles are used in the domain. The cubic spline function is used as a weight
function. The linear basis function is used as a base function. The mesh of the finite ele-
ment method corresponds to the density of the particles.
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Figure 7 The time-dependent displacement u at the point A

Figure 8 The time-dependent displacement v at the point A

Table 2 The displacement v of the point A

Time
(ms)

IRKPM
displacement
u (mm)

FEM
displacement
u (mm)

R IRKPM
displacement
v (mm)

FEM
displacement
v (mm)

R

0 0 0 – 0 0 –
0.5 2.17 2.20 1.4% –2.84 –2.88 1.4%
1.0 1.78 1.80 1.1% –8.44 –8.50 0.7%
1.5 2.49 2.45 1.6% –12.84 –12.90 0.5%
2.0 2.63 2.67 1.5% –14.39 –14.43 0.3%
2.5 1.75 1.79 2.2% –12.25 –12.30 0.4%
3.0 2.90 2.92 0.7% –7.77 –7.81 0.5%
3.5 0.74 0.76 2.6% –2.53 –2.56 1.2%
4.0 1.77 1.77 0% –0.38 –0.39 2.6%
4.5 1.59 1.61 1.2% –3.87 –3.90 0.8%
5.0 2.04 2.01 1.5% –9.55 –9.59 0.4%

Figure 7 shows the time-dependent displacements u at the point A calculated by IRKPM
and finite element method. Figure 8 shows the time-dependent displacements v at the
point A calculated by IRKPM and finite element method.
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Figure 9 The time-dependent stress σ11 at the point B

Table 2 shows the displacements of point A at different times calculated by the IRKPM
and the finite element method, where R is the relative error. The maximum relative error of
time-dependent displacement u is 2.6%. The maximum relative error of time-dependent
displacement v is 2.6%. Figure 9 shows the time-dependent stress σ11 at point B.

5 Conclusions
The high-order smooth IRKPM for two-dimensional problems has been formed by com-
bining the shape function of interpolated reproducing kernel particle method and the
principle of virtual displacement of elastodynamics. The discrete form of the algorithm
has been deduced subsequently.

This method has the advantage of applying the boundary conditions directly like the
finite element method and improves the computational efficiency. The new method can be
directly used in engineering more easily. Several examples show that the proposed method
has higher accuracy and stability as dealing with two-dimensional elastokinetic problems.
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