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Abstract
G-Brownian motion has potential applications in uncertainty problems and risk
measures, which has attracted the attention of many scholars. This study investigates
the almost sure exponential stability of nonlinear stochastic delay hybrid systems
driven by G-Brownian motion. Due to the non-linearity of G-expectation and
distribution uncertainty of G-Brownian motion, it is difficult to study this issue. Firstly,
the existence of the global unique solution is derived under the linear growth
condition and local Lipschitz condition. Secondly, the almost sure exponential
stability of the system is analyzed by applying the G-Lyapunov function and G-Itô
formula. Finally, an example is introduced to illustrate the stability. The conclusions of
this paper can be applied to the stability and risk management of uncertain financial
markets.
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1 Introduction
Most systems do not satisfy the principle of linear superposition. Thence, except for a
small part that can be approximately regarded as linear systems, most of them are nonlin-
ear systems, such as a turbulent system of fluids [19], simple pendulum system [1], gravi-
tational three-body system [2], and finite channel [20]. In the physical world, the nonlinear
system is the essence, and the linear system is the approximation or part of the nonlinear
system. Therefore, it is necessary to discuss the properties of nonlinear systems. The re-
search of nonlinear systems has always been a hot issue in the field of control. For example,
Ding et al. [8] developed a new approach to the design of nonlinear disturbance observers
for a class of nonlinear systems described by input-output differential equations. Liu et
al. [18] presented an adaptive control design for a nonlinear system with time-varying full
state constraints. Wang et al. [32] applied a fuzzy-logic system to approximate the un-
known nonlinearities and proposed a novel adaptive finite-time control strategy.

Switching systems are an important class of hybrid dynamic systems. The dynamics
of a system can be described by a finite number of subsystems or dynamic models, and
there is a switching law that enables switching between subsystems. There is no jump
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phenomenon in the continuous state of a system at the moment of switching. In recent
years, switching systems have been studied by some authors. For instance, Cheng et al.
[6] concentrated on the nonstationary control for a class of nonlinear Markovian switch-
ing systems with the Tagaki–Sugeno fuzzy model. Cheng et al. [5] discussed the finite-
time static output feedback control of Markovian switching systems. Qi et al. [31] studied
the sliding mode control design for a class of stochastic switching systems subject to the
semi-Markov process via an adaptive event-triggered mechanism. Qi et al. [30] analyzed
the sliding-mode control design methodology for a nonlinear stochastic switching system
subject to semi-Markovian switching parameters, T-S fuzzy strategy, uncertainty, signal
quantization, and nonlinearity. Wu and Liu [34] investigated the Lyapunov and the exter-
nal stability of Caputo fractional order switching systems.

Generally, because of the uncertain communication environment, time delay is always
unavoidable. Therefore, it is required to be taken into consideration for stochastic sys-
tems. Liu et al. [17] developed a novel approach to identify the parameters of the linear
time-delay differential system by analyzing the complex system response in the frequency
domain. Othman et al. [23] used the three-phase-lag model, Green–Naghdi theory with-
out energy dissipation, and Green–Naghdi theory with energy dissipation to study the in-
fluence of the gravity field on a two-temperature fiber-reinforced thermoelastic medium.
Plonis et al. [28] presented the procedure of synthesis of the meander delay system using
the Pareto-optimal multilayer perceptron network and multiple linear regression model
with the M5 descriptor. Qi et al. [29] dealt with the problem of controller design for the
time-delay system with stochastic disturbance and actuator saturation. Zhang et al. [37]
developed a parameter-adjustable-based lemma and established a stability criterion for a
linear time-delay system. Zhu et al. [39] studied an adaptive synchronization for a class
of uncertain chaotic systems represented by the Takagi–Sugeno fuzzy model with time
delay.

In recent years, Peng pioneered the concept of G-expectation and established a corre-
sponding theoretical system [24–27]. Because of the wide applications in the fields of risk
measurements, G-Brownian motion has attracted the attention of many scholars [7, 13].
Furthermore, stochastic systems driven by G-Brownian motion have attracted wide atten-
tion [10, 38]. For example, Chen and Yang [4] analyzed time-varying delay Hopfield neural
networks. Fei et al. [11] proved the existence and uniqueness of solutions to stochastic dif-
ferential delay equations driven by G-Brownian motion under local Lipschitz and linear
growth conditions. By applying aperiodically intermittent adaptive control, Li et al. [14]
concerned the stabilization of a stochastic complex system. Yin et al. [36] studied quasi-
sure exponential stabilization of a stochastic system induced by G-Brownian motion with
discrete-time feedback control.

The nonlinear characteristic makes the performance of a system more complicated,
which brings difficulty to analyzing the stability of the system. Stability has always been the
most fundamental and core issue in system analysis. In recent years, lots of results about
stability have been reported in the literature [9, 33]. For example, by applying Lyapunov
techniques, Caraballo et al. [3] analyzed the stability of a stochastic perturbed singular
system under the assumption that the initial conditions are consistent. Marin et al. [21]
derived some results on stability and continuous dependence in Green–Naghdi thermoe-
lasticity of Cosserat bodies. Ngoc [22] implemented a new method to investigate the mean
square exponential stability of a stochastic delay system. Wu et al. [35] considered the
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mean square exponential input-to-state stability for a stochastic delay reaction-diffusion
neural network. Zhu and Huang [38] studied the pth moment exponential stability prob-
lem for a class of stochastic delay nonlinear systems driven by G-Brownian motion. Zong
et al. [40] investigated the asymptotic properties of systems represented by stochastic
functional differential equations. In [3, 9, 22, 33, 40], G-Brownian motion has not been
considered. In [38], the Markovian switching and the existence of the global unique so-
lution have not been discussed. Since G-Brownian motion has potential applications in
uncertainty problems, risk measures, and superhedging in finance and switching systems
are an important class of hybrid dynamic systems, it is necessary to consider these fac-
tors. Inspired by the works above, the existence of the global unique solution to a non-
linear stochastic delay hybrid system driven by the G-Brownian motion is derived in this
paper. The almost sure exponential stability of the system is investigated using the G-Itô
formula, the Borel–Cantelli lemma, the Gronwall inequality, the Hölder inequality, and
the Chebyshev inequality.

The rest of this paper is organized as follows. In Sect. 2, some lemmas, definitions, and
assumptions are introduced. In Sect. 3, the existence and uniqueness of the global solution
are derived, and the almost sure exponential stability of the system is also investigated. In
Sect. 4, an example is provided. In Sect. 5, the conclusion and future work are given.

2 Problem formulation and preliminaries
Let ({Ft}t≥0) be a filtration generated by the G-Brownian motion {B(t), t ≥ 0}. Denote
by C1,2(Rn × R+ × S;R+) the family of positive real-valued functions V (x, t, i) defined on
R

n ×R+ ×S that are continuously twice differentiable in x ∈R
n and once differentiable in

t ∈ R+. Let r(t), t ≥ 0 be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, . . . , N} with generator � = (γij)N×N given by

P
{

r(t + �) = j|r(t) = i
}

=

⎧
⎨

⎩
γij� + o(�), i �= j,

1 + γii� + o(�), i = j,

where � > 0, γij ≥ 0 denotes the transition rate from i to j if i �= j while γii = –
∑

i�=j γij.
Define Mp,0

G ([0, t],Rn,S) = {αt(ω) =
∑N–1

j=1 γijβtj (ω)I[tj ,tj+1);βtj ∈ Lp
Ft

(�;Rn), t > 0},
Mp

G([0, t],Rn,S) := the completion of Mp,0
G ([0, t],Rn,S) under the norm ‖α‖Mp

G([0,t],Rn ,S) =

(
∫ t

0 Ê|αs|p ds)
1
p , where Lp

Ft
(�;Rn) := the family of all Ft measurable R

n-valued stochastic
variables β satisfies Ê|β|p < ∞.

Here, we consider the following nonlinear stochastic system driven by the G-Brownian
motion:

dx(t) = f
(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
dt (1)

+ g
(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
d〈B〉(t)

+ h
(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
dB(t), t ≥ 0,

where 0 ≤ τ (t) ≤ τ , the nonrandom initial data {x(t) = ξ (t) : –τ ≤ t ≤ 0} = ξ ∈ C([–τ , 0];
R

n), r(0) = r0 ∈ S, B(t) represents a one-dimensional G-Brownian motion with G(a) :=
1
2 Ê[aB2(1)] = 1

2 (σ 2a+ + σa–), for a ∈ R, where a+ = max{a, 0}, a– = max{–a, 0}, σ 2 =
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Ê[B2(1)], σ 2 = –Ê[–B2(1)], 〈B〉(t) denotes the quadratic variation process of the G-
Brownian motion B(t), Ê stands for the G-expectation. f : Rn × R+ × S → R

n, g :
R

n ×R+ ×S →R
n×m, h : Rn ×R+ ×S →R

n. We assume that the Markov chain is ergodic.
Firstly, we introduce some assumptions, definitions, and lemmas that are very important

for the proof of the main results.

Assumption 1 There exists a positive constant LK , for ∀t ≥ 0, |x1| ∨ |x2| ∨ |y1| ∨ |y2| ≤
K and i ∈ S, |f (x1, y1, t, i) – f (x2, y2, t, i)| ∨ |g(x1, y1, t, i) – g(x2, y2, t, i)| ∨ |h(x1, y1, t, i) –
h(x2, y2, t, i)| ≤ LK (|x1 – x2| + |y1 – y2|).

Assumption 2 There exists nonnegative function V (x, y, t, i) ∈ C1,2(Rn ×R
n ×R+ ×S;R+)

and positive constant b1 such that

lim|x|→∞ inf
t≥0,i∈S

V (x, y, t, i) = ∞ and LV (x, y, t, i) ≤ b1V (x, y, t, i).

Assumption 3 f (0, t, i) ≡ 0, g(0, t, i) ≡ 0, h(0, t, i) ≡ 0, ∀i ∈ S.

Definition 1 If there exists a constant λ > 0 satisfying

lim
t→∞ sup

1
t

log
(∣∣x(t; x0, r0)

∣∣) < –λ,

for any x0 ∈ F0 and r0 ∈ S. The system (1) is almost sure exponential stability.
Given V ∈ C1,2(Rn ×R

n ×R+ × S;R+), we define the operator LV by

LV (x, y, t, i)

= Vt(x, y, t, i) + Vx(x, y, t, i)f (x, y, t, i)

+ G
(
2Vx(x, y, t, i)g(x, y, t, i) + hT (x, y, t, i)Vxx(x, y, t, i)h(x, y, t, i)

)
.

Lemma 1 ([27]) For any 0 ≤ s ≤ t < ∞,

Ê

[∣∣∣∣

∫ t

0
νs d〈B〉(s)

∣∣∣∣

]
≤ σ 2

Ê

[∫ t

0
|νs|d(s)

]
, ∀νs ∈ M1

G
(
[0, t],Rn,S

)
,

Ê

[(∫ t

0
νs dB(s)

)2]
= Ê

[∫ t

0

∣∣ν2
s
∣∣d〈B〉(s)

]
, ∀νs ∈ M2

G
(
[0, t],Rn,S

)
,

Ê

[(∫ t

0
|νs|2 ds

)2]
≤

∫ t

0
Ê

[|νs|2
]

ds, ∀νs ∈ M2
G
(
[0, t],Rn,S

)
,

Lemma 2 ([15]) For 0 ≤ s ≤ t < ∞,

Ê

[
sup

s≤d≤t

∣∣∣∣

∫ d

s
νs d〈B〉(s)

∣∣∣∣

2]
≤ σ 4|t – s|2

∫ t

s
Ê
[|νs|2

]
ds, ∀νs ∈ M1

G
(
[0, t],Rn,S

)
.

Lemma 3 ([16])

Ê

[
sup

s≤d≤t

∣∣∣∣

∫ d

s
νs dB(s)

∣
∣∣∣

2]
≤ 4σ 4|t – s|2

∫ t

s
Ê
[|νs|2

]
ds, ∀νs ∈ M2

G
(
[0, t],Rn,S

)
.
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Lemma 4 (G-Itô formula, [25]) Let ϕ ∈ C1,2(Rn ×R+;R+) and

Xt = X0 +
∫ t

0
fs ds +

∫ t

0
gs d〈B〉s +

∫ t

0
hs dBs,

where f , g, h ∈ M2
G(0, T ;Rn). Then, for ∀t > 0,

ϕ(Xt , t) – ϕ(X0, t)

=
∫ t

0

[
∂sϕ(Xs, s) + ∂xϕ(Xs, s)fs + G

(
2∂xϕ(Xs, s)gs

)
+ ∂xxϕ(Xs, s)h2

s
]

ds

+
∫ t

0
∂xϕ(Xs, s)hs dBs +

∫ t

0

[
∂xϕ(Xs, s)gs +

1
2
∂xxϕ(Xs, s)h2

s

]
d〈B〉s

–
∫ t

0
G

(
2∂xϕ(Xs, s)gs + ∂xxϕ(Xs, s)h2

s
)

ds.

3 Main results
In the following theorem, we proved the existence of the global unique solution under the
linear growth condition and the local Lipschitz condition.

Theorem 1 When Assumptions 1–3 hold, the system (1) has a global unique solution
{x(t), t ≥ 0}.

Proof 1 Let the initial value |x0| ≤ ξ . For k ≥ ξ , k ∈N, we suppose that

f (k)(x, y, t, i) = f
( |x| ∧ k

|x| x,
|y| ∧ k

|y| y, t, i
)

,

g(k)(x, y, t, i) = g
( |x| ∧ k

|x| x,
|y| ∧ k

|y| y, t, i
)

,

h(k)(x, y, t, i) = h
( |x| ∧ k

|x| x,
|y| ∧ k

|y| y, t, i
)

, (2)

where ( |x|∧k
|x| x) = 0 when x = 0.

We obtain that f (k), g(k), and h(k) satisfy the linear growth condition and the local Lips-
chitz condition. Thus,

dxk(t) = f (k)(xk(t), xk
(
t – τ (t)

)
, t, r(t)

)
dt

+ g(k)(xk(t), xk
(
t – τ (t)

)
, t, r(t)

)
d〈B〉(t)

+ h(k)(xk(t), xk
(
t – τ (t)

)
, t, r(t)

)
dB(t) (3)

has the global unique solution.
Let

ηk = inf
{

t ≥ 0 :
∣∣xk(t)

∣∣ ≥ k
}

, (4)

where k ∈N, infφ = ∞.
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When 0 ≤ t ≤ ηk , xk(t) = xk+1. Then, {ηk} is increasing. Thus, there exists a stopping
time η such that

η = lim
k→∞

ηk . (5)

Let

x(t) = lim
k→∞

xk(t), –τ ≤ t < η. (6)

It can be confirmed that when –τ ≤ t < η, x(t) is the unique solution of system (1).
Using the G-Itô formula, for t ≥ 0, we obtain

V
(
xk(t ∧ ηk), xk

(
t ∧ ηk – τ (t ∧ ηk)

)
, t ∧ ηk , r(t ∧ ηk)

)

= V
(
ξ (0), xk

(
–τ (0)

)
, 0, r0

)
+

∫ t∧ηk

0
L(k)V

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
ds

+
∫ t∧ηk

0
Vx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
h
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
dB(s)

+
∫ t∧ηk

0

[
Vx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
g
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

+
1
2

hT(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
Vxx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

× h
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)]
d〈B〉(s)

–
∫ t∧ηk

0
G

(
2Vx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
g
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

+ hT(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
Vxx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

× h
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

))
ds

where L(k)V (xk(s), xk(s – τ (s)), s, r(s)) = LV (xk(s), xk(s – τ (s)), s, r(s)) when 0 ≤ s ≤ t ∧ ηk .
From [27], we know that

Ê

[∫ t∧ηk

0
Vx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
h
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
dB(s)

]
= 0,

and

Ê

[∫ t∧ηk

0

[
Vx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
g
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

+
1
2

hT(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
Vxx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

× h
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)]
d〈B〉(s)

–
∫ t∧ηk

0
G

(
2Vx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
g
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
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+ hT(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
Vxx

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)

× h
(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

))
ds

]
≤ 0.

Then, it can be confirmed that

Ê
[
V

(
xk(t ∧ ηk), xk

(
t ∧ ηk – τ (t ∧ ηk)

)
, t ∧ ηk , r(t ∧ ηk)

)]

≤ Ê
[
V

(
ξ (0), xk

(
–τ (0)

)
, 0, r0

)]
+ Ê

[∫ t∧ηk

0
L(k)V

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)
ds

]

≤ Ê
[
V

(
ξ (0), xk

(
–τ (0)

)
, 0, r0

)]
+ b1

∫ t∧ηk

0
Ê

[
V

(
xk(s), xk

(
s – τ (s)

)
, s, r(s)

)]
ds.

According to the Gronwall inequality, we obtain

Ê
[
V

(
xk(t ∧ ηk), xk

(
t ∧ ηk – τ (t ∧ ηk)

)
, t ∧ ηk , r(t ∧ ηk)

)]

≤ Ê
[
V

(
ξ (0), xk

(
–τ (0)

)
, 0, r0

)]
eb1(t∧ηk ). (7)

Furthermore, as

P{ηk ≤ t} inf|x|≥n,|y|≥n,t≥0,i∈S
V (x, y, t, i)

≤
∫

ηk≤t
V

(
xk(t ∧ ηk), xk

(
t ∧ ηk – τ (t ∧ ηk)

)
, t ∧ ηk , r(t ∧ ηk)

)
dP

≤ ÊV
(
xk(t ∧ ηk), xk

(
t ∧ ηk – τ (t ∧ ηk)

)
, t ∧ ηk , r(t ∧ ηk)

)
,

we have

P{ηk ≤ t} ≤ Ê[V (ξ (0), xk(–τ (0)), 0, r0)]eb1(t∧ηk )
inf|x|≥n,|y|≥n,t≥0,i∈S V (x, y, t, i)

. (8)

When t → ∞,

P{η ≤ t} = 0. (9)

Thus,

P{η = ∞} = 1. (10)

The proof is complete.

In the following theorem, the almost sure exponential stability of system (1) is discussed.

Theorem 2 If there exists a function V (x, y, t, i) ∈ C1,2(Rn × R
n × R+ × S;R+) and some

positive constants a2, a3, a4, a5, p, and a1 ∈ R satisfies

Vt(x, y, t, i) + Vx(x, y, t, i)f (x, y, t, i) ≤ a1V (x, y, t, i), (11)
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hT (x, y, t, i)Vxx(x, y, t, i)h(x, y, t, i) ≤ a2V (x, y, t, i), (12)

Vx(x, y, t, i)g(x, y, t, i) ≤ a3V (x, y, t, i), (13)
∣∣Vx(x, y, t, i)h(x, y, t, i)

∣∣2 ≥ a4V 2(x, y, t, i), (14)

a5|x|p ≤ V (x, y, t, i), (15)

for ∀(x, y, t, i) ∈ (Rn ×R
n ×R+ ×S), and (a2+2a3)σ2+2a1–a4σ 2

2p < 0, the system (1) is almost sure
exponential stability.

Proof 2 Using the G-Itô formula, for ∀i ∈ S, t > 0, we get

log V
(
x(t), x

(
t – τ (t)

)
, t, i

)

= log V
(
ξ (0), x

(
–τ (0)

)
, 0, i

)

+
∫ t

0

(Vs(x(s), x(s – τ (s)), s, i) + Vx(x(s), x(s – τ (s)), s, i)f (x(s), x(s – τ (s)), s, i))
V (x(s), x(s – τ (s)), s, i)

ds

+
∫ t

0

hT (x(s), x(s – τ (s)), s, i)Vxx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)
2V (x(s), x(s – τ (s)), s, i)

d〈B〉(S)

+
∫ t

0

Vx(x(s), x(s – τ (s)), s, i)g(x(s), x(s – τ (s)), s, i)
V (x(s), x(s – τ (s)), s, i)

d〈B〉(S)

–
1
2

∫ t

0

[Vx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)]2

V 2(x(s), x(s – τ (s)), s, i)
d〈B〉(S)

+
∫ t

0

Vx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)
V (x(s), x(s – τ (s)), s, i)

dB(s),

where
∫ t

0
Vx(x(s),x(s–τ (s)),s,i)h(x(s),x(s–τ (s)),s,i)

V (x(s),x(s–τ (s)),s,i) dB(s) is a continuous martingale.
According to Lemma 2.6 in [12], for ∀ε ∈ (0, 1) and all ω ∈ �, there exists an integer n0,

when n ≥ n0, we have

∫ t

0

Vx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)
V (x(s), x(s – τ (s)), s, i)

dB(s)

≤ 2
ε

log(n) +
ε

2

∫ t

0

[Vx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)]2

V 2(x(s), x(s – τ (s)), s, i)
d〈B〉(S).

Then, we obtain

log V
(
x(t), x

(
t – τ (t)

)
, t, i

)

≤ log V
(
ξ (0), x

(
–τ (0)

)
, 0, i

)
+

2
ε

log(n)

+
∫ t

0

(Vs(x(s), x(s – τ (s)), s, i) + Vx(x(s), x(s – τ (s)), s, i)f (x(s), x(s – τ (s)), s, i))
V (x(s), x(s – τ (s)), s, i)

ds

+
∫ t

0

hT (x(s), x(s – τ (s)), s, i)Vxx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)
2V (x(s), x(s – τ (s)), s, i)

d〈B〉(S)
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+
∫ t

0

Vx(x(s), x(s – τ (s)), s, i)g(x(s), x(s – τ (s)), s, i)
V (x(s), x(s – τ (s)), s, i)

d〈B〉(S)

–
1
2

(1 – ε)
∫ t

0

[Vx(x(s), x(s – τ (s)), s, i)h(x(s), x(s – τ (s)), s, i)]2

V 2(x(s), x(s – τ (s)), s, i)
d〈B〉(S).

From (11)–(14), we have

log V
(
x(t), x

(
t – τ (t)

)
, t, i

)

≤ log V
(
ξ (0), x

(
–τ (0)

)
, 0, i

)
+

2
ε

log(n) + a1t +
a2

2
σ 2t + a3σ

2t –
1
2

(1 – ε)a4σ
2t

= log V
(
ξ (0), x

(
–τ (0)

)
, 0, i

)
+

2
ε

log(n) + a1t +
(

a2

2
+ a3

)
σ 2t –

1
2

(1 – ε)a4σ
2t.

Thus, it can be checked that

1
t

log V
(
x(t), x

(
t – τ (t)

)
, t, i

)

≤ 1
t

log V
(
ξ (0), x

(
–τ (0)

)
, 0, i

)
+

1
t

2
ε

log(n) + a1 +
(

a2

2
+ a3

)
σ 2 –

1
2

(1 – ε)a4σ
2.

Therefore,

lim sup
t→∞

1
t

log V
(
x(t), x

(
t – τ (t)

)
, t, i

) ≤ a1 +
(

a2

2
+ a3

)
σ 2 –

1
2

(1 – ε)a4σ
2. (16)

According to (15), we have

lim sup
t→∞

1
t

log
∣∣x(t)

∣∣ ≤ (a2 + 2a3)σ 2 – (1 – ε)a4σ
2 + 2a1

2p
. (17)

When ε → 0, we obtain

lim sup
t→∞

1
t

log
∣∣x(t)

∣∣ ≤ (a2 + 2a3)σ 2 – a4σ
2 + 2a1

2p
< 0. (18)

Therefore, system (1) is almost sure exponential stability.
The proof is complete.

Remark 1 Due to the nonlinearity of G-expectation and distribution uncertainty of G-
Brownian motion, it is difficult to study the existence of global unique solutions and sta-
bility of the system. Using G-Lyapunov function, G-Itô formula, Borel–Cantelli lemma,
Gronwall inequality, Hölder inequality, and Chebyshev inequality, we proved the existence
and uniqueness of the global solution under linear growth condition and local Lipschitz
condition and provided sufficient conditions for the stability.

Remark 2 When a financial market is affected by uncertain factors and needs to carry out
risk management, and the current performance of the real economy and financial markets
has not fully reflected the impact of regulation, it can be described by a nonlinear stochas-
tic delay hybrid system driven by the G-Brown motion. The conclusions of this paper can
be applied to the stability and risk management of uncertain financial markets.
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4 Example
Let B(t) be a G-Brownian motion and B(t) ∼ N(0, [σ 2,σ 2]), r(t) ∈ S = {1, 2} and

� = (γij)2×2 =

(
–0.5 0.5
0.3 –0.3

)

Consider the following nonlinear stochastic system driven by the G-Brownian motion:

dx(t)

= f
(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
dt + g

(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
d〈B〉(t)

+ h
(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
dB(t),

where

f
(
x(t), x

(
t – τ (t)

)
, t, 1

)
= –4x(t) + x

(
t – τ (t)

)
,

g
(
x(t), x

(
t – τ (t)

)
, t, 1

)
=

1
4

x(t),

h
(
x(t), x

(
t – τ (t)

)
, t, 1

)
=

1
2

x(t),

f
(
x(t), x

(
t – τ (t)

)
, t, 2

)
= –5x(t) + x

(
t – τ (t)

)
,

g
(
x(t), x

(
t – τ (t)

)
, t, 2

)
=

1
3

x(t),

h
(
x(t), x

(
t – τ (t)

)
, t, 2

)
= x(t),

τ (t) = 1 + 0.3 sin(t).

Hence, τ = 1.3. Let V (x, y, t, i) = x2, i = 1, 2, we have

Vt(x, y, t, 1) + Vx(x, y, t, 1)f (x, y, t, 1) ≤ –5V (x, y, t, 1),

hT (x, y, t, 1)Vxx(x, y, t, 1)h(x, y, t, 1) ≤ 3V (x, y, t, 1),

Vx(x, y, t, 1)g(x, y, t, 1) ≤ V (x, y, t, 1),
∣∣Vx(x, y, t, 1)h(x, y, t, 1)

∣∣2 ≥ 1
2

V 2(x, y, t, 1),

1
2
|x|2 ≤ V (x, y, t, 1),

Vt(x, y, t, 2) + Vx(x, y, t, 2)f (x, y, t, 2) ≤ –5V (x, y, t, 2),

hT (x, y, t, 2)Vxx(x, y, t, 2)h(x, y, t, 2) ≤ 3V (x, y, t, 2),

Vx(x, y, t, 2)g(x, y, t, 2) ≤ V (x, y, t, 2),
∣
∣Vx(x, y, t, 2)h(x, y, t, 2)

∣∣2 ≥ 1
2

V 2(x, y, t, 2),

1
2
|x|2 ≤ V (x, y, t, 2),

where p = 2, a1 = –5, a2 = 3, a3 = 1, a4 = 1
2 , a5 = 1

2 .
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Let σ 2 = 1 and σ 2 = –1, we obtain

(a2 + 2a3)σ 2 – a4σ
2 + 2a1

2p
= –

9
8

< 0.

Therefore, the system is almost sure exponential stability.

5 Conclusion
In this paper, we investigate the almost sure exponential stability of nonlinear stochastic
delay hybrid systems driven by the G-Brownian motion. We have proved the existence and
uniqueness of the global solution under linear growth condition and the local Lipschitz
condition and provided sufficient conditions for stability. We will consider the stability of
nonlinear stochastic hybrid systems driven by the G-Brownian motion with aperiodically
intermittent control in the future.
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