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Abstract
We consider the global well-posedness and large time behavior of solutions for
epitaxy thin film growth model in R

d with the dimensional d ≥ 3. First, using the pure
energy method and a standard continuity argument, we prove that there exists a
unique global strong solution under the condition that the initial data is sufficiently
small. Moreover, we also establish the suitable negative Sobolev norm estimates and
obtain the optimal decay rates of the higher-order spatial derivatives of the strong
solution.
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1 Introduction
In this paper, we consider the following equation modeling epitaxy thin film growth

∂th + ν1�h + ν2�
2h – ν3∇ · (|∇h|2∇h

)
+ ν4�|∇h|2 = ν5|∇h|2, (1)

with the initial condition

h(x, 0) = h0(x), (2)

on R
d with d ≥ 3. Equation (1) arises in epitaxial growth of nanoscale thin films, where

h(x, t) denotes the height from the surface of the film in epitaxial growth [23, 26]. The
term �2u denotes the capillarity-driven surface diffusion, div(|∇h|2∇h) correspond to the
upward hopping of atoms, �h can be used to describe the diffusion due to evaporation-
condensation, �|∇h|2 is related to the equilibration of the inhomogeneous concentration
of the diffusing particles on the surface, and the term |∇h|2 is related to the density vari-
ations, respectively [15–17]. Similar to [1], in this paper, we assume that the coefficients
satisfy ν1,ν3,ν4,ν5 ≥ 0 and ν2 > 0.

Remark 1.1 There are many papers studied equation (1) with ν4 = ν5 = 0, see, for instance,
[5, 6, 10, 11, 13, 18]. For the case ν3 = ν5 = 0, we refer the reader to [22, 25] and the reference
therein.
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In 2015, Agélas [1] studied the global regularity of solutions for the Cauchy problem
(1)–(2) in 1D and 2D cases. The author assumed that the condition ν2ν3 > ν2

4 proved the
existence and uniqueness of global strong solutions for problem (1)–(2). In this paper,
we continue this research and study the global well-posedness of solutions for problem
(1)–(2) in R

d with d ≥ 3.
To study the global well-posedness of problem (1)–(2) in R

d with d ≥ 3, the main chal-
lenge is caused by the strong nonlinear term �|∇h|2. Because of this term, it is difficult
to obtain the higher order estimate of h, and we cannot obtain an idea of the global well-
posedness result without any additional condition. Hence, in this paper, assuming that the
initial data is sufficiently small and using the pure energy method, we show the following
result:

Theorem 1.2 (Small initial data global well-posedness) Let h0 ∈ HN (Rd) with N ≥ 2 + d
2

and d ≥ 3. Assume that there exists a constant δ0 > 0 such that if

‖h0‖
H[ d+1

2 ] ≤ δ0, (3)

then system (1) has a unique solution satisfying that for all t ≥ 0,

‖h‖2
HN +

∫ t

0

(‖�h‖2
HN + ‖∇h‖2

HN
)

ds ≤ C‖h0‖2
HN . (4)

For dissipative equations, there are many different kinds of styles for large time behavior,
e.g., global attractor, exponential attractors, and so on. However, since we only obtain the
small initial data global well-posedness for problem (1)–(2) in R

d , and there exists a strong
nonlinear term �|∇h|2, it is difficult to consider the global or exponential attractors. In
this paper, we consider another style of large-time behavior and study the temporary al-
gebraic decay rate of strong solutions of problem (1)–(2) in R

d with d ≥ 3 provided that
Theorem 1.2 holds. More precisely, we prove the following theorem:

Theorem 1.3 (Large-time behavior) Under the assumptions of Theorem 1.2, if h0 ∈ Lp(Rd)
( d

d–1 ≤ p ≤ 2), then for all t ≥ 0 and l = 0, 1, . . . , N – 1,

∥∥∇ lh(t)
∥∥

HN–l ≤ C(1 + t)– d
2 ( 1

p – 1
2 )– l

2 . (5)

Remark 1.4 One of the main tools to study the decay rate is the Fourier splitting method
introduced by Schonbek [19, 20] in the 1980s. Since then, it has become a standard way
(also a powerful tool) to establish the decay rate of solutions (see, for example, [2–4, 12, 27]
and the reference therein). Here, as the structure of the equation is so complex, it is not
suitable to deal with the decay rate of solutions for problem (1)–(2) using the Fourier split-
ting method and the Zhou method. Motivated by [8, 24], we establish suitable a priori es-
timates in the negative Sobolev space Ḣ–s (0 ≤ s ≤ d

2 ), use the Hardy–Littlewood–Sobolev
theorem (Lp(R3) ⊂ Ḣ–s(R3) with s = d( 1

p – 1
2 ) ∈ [0, d

2 ]), and obtain the decay estimate.

In the following, ∇ l with an integral l ≥ 0 stands for the usual spatial derivatives of order
l. If l < 0 or l is not a positive integer, ∇ l stands for �l defined by

(–�)δf (x) = �2δf (x) =
∫

R3
|x|2δ f̂ (ξ )e2π ix·ξ dξ . (6)
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The rest of this paper is organized as follows. We prove Theorem 1.2 in Sect. 2. The
proof of Theorem 1.3 we give in Sect. 3.

2 Preliminaries
We first give the Gagliardo–Nirenberg inequality proved in [14]:

Lemma 2.1 ([14]) Suppose that 0 ≤ m,α ≤ l, then

∥
∥∇αf

∥
∥

Lp(Rd) �
∥
∥∇mf

∥
∥1–θ

Lq(Rd)

∥
∥∇ lf

∥
∥θ

Lr (Rd), (7)

where θ ∈ [0, 1] and

α

d
–

1
p

=
(

m
d

–
1
q

)
(1 – θ ) +

(
l
d

–
1
r

)
θ . (8)

Here, when p = ∞, we require that 0 < θ < 1.

The Kato–Ponce inequality is so important in the proofs of our main theorems.

Lemma 2.2 ([9]) Let 1 < p < ∞, s > 0. Then, there exists a constant C > 0 such that

∥∥�s(fg) – f �sg
∥∥

Lp ≤ C
(‖∇f ‖Lp1

∥∥�s–1g
∥∥

Lp2 +
∥∥�sf

∥∥
Lq1 ‖g‖Lq2

)
, (9)

and

∥
∥�sfg

∥
∥

Lp ≤ C(‖f ‖Lp1
∥
∥�sg

∥
∥

Lp2 +
∥
∥�sf

∥
∥

Lq1 ‖g‖Lq2 , (10)

where p2, q2 ∈ (1,∞) satisfying 1
p = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
.

We also introduce the Hardy–Littlewood–Sobolev theorem, which implies the following
Lp type inequality.

Lemma 2.3 ([7, 21]) Let 0 ≤ s < d
2 , 1 < p ≤ 2 and 1

2 + s
d = 1

p , then

‖f ‖Ḣ–s � ‖f ‖Lp . (11)

The following special Sobolev interpolation lemma will be used in this paper.

Lemma 2.4 ([21]) Let s, k ≥ 0 and l ≥ 0, then

∥∥∇ lf
∥∥

L2 ≤ ∥∥∇ l+1f
∥∥1–θ

L2 ‖f ‖θ

Ḣ–s , with θ =
1

l + 1 + s
. (12)

3 Proof of Theorem 1.2
Rewrite problem (1)–(2) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂th – ν2�h + ν2�
2h + ν4�|∇h|2

= ν3∇ · [(∇h +
√

ν1+ν2
ν3

ω0) · (∇h –
√

ν1+ν2
ν3

ω0)∇h] + ν5|∇h|2,

h(x, 0) = h0(x),

(13)
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where ω0 is a unit vector. Assume that for sufficiently small δ > 0,

√

E [ d+1
2 ]

0 (t) =
∥∥u(t)

∥∥
H[ d+1

2 ] ≤ δ. (14)

Applying ∇k to (13)1, multiplying by ∇kh, and integrating over Rd , we deduce that

1
2

d
dt

∥∥∇kh
∥∥2

L2 + ν2
∥∥∇k+2h

∥∥2
L2 + ν1

∥∥∇k+1h
∥∥2

L2

= ν3

∫

Rd
∇k

{
∇ ·

[(
∇h +

√
ν1 + ν2

ν3
ω0

)
·
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]}
· ∇kh dx

– ν4

∫

Rd
∇k|∇h|2 · ∇k�hdx + ν5

∫

Rd
∇k|∇h|2 · ∇kh dx.

(15)

For the first term of the right-hand side of (15), applying the Kato–Ponce inequality, we
estimate as

ν3

∫

Rd
∇k

{
∇ ·

[(
∇h +

√
ν1 + ν2

ν3
ω0

)
·
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]}
· ∇h dx

≤ C
∥∥∇k+1h

∥∥
L

2d
d–2

∥
∥∥
∥∇k

[(
∇h +

√
ν1 + ν2

ν3
ω0

)
·
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]∥
∥∥
∥

L
2d

d+2

≤ C
∥∥∇k+1h

∥∥
L

2d
d–2

(∥∥∥
∥∇k

(
∇h +

√
ν1 + ν2

ν3
ω0

)∥∥∥
∥

L
2d

d–2

∥∥∥
∥∇h –

√
ν1 + ν2

ν3
ω0

∥∥∥
∥

Ld
‖∇h‖Ld

+
∥∥
∥∥∇k

(
∇h –

√
ν1 + ν2

ν3
ω0

)∥∥
∥∥

L
2d

d–2

∥∥
∥∥∇h +

√
ν1 + ν2

ν3
ω0

∥∥
∥∥

Ld
‖∇h‖Ld

+
∥∥
∥∥∇h +

√
ν1 + ν2

ν3
ω0

∥∥
∥∥

Ld

∥∥
∥∥∇h –

√
ν1 + ν2

ν3
ω0

∥∥
∥∥

Ld

∥
∥∇k+1h

∥
∥

L
2d

d–2

)

≤ C‖∇h‖2

H
[d+1]

2 –1

∥∥∇k+2h
∥∥2

L2 ≤ Cδ2∥∥∇k+2h
∥∥2

L2 .

(16)

The second term of the right-hand of (15) satisfies

–ν4

∫

Rd
∇k|∇h|2 · ∇k�h dx ≤ C

∥∥∇k+2h
∥∥

L2‖∇h‖Ld
∥∥∇k+1h

∥∥
L

2d
d–2

≤ C‖∇h‖
H

[d+1]
2 –1

∥∥∇k+2h
∥∥2

L2 ≤ Cδ
∥∥∇k+2h

∥∥2
L2 .

(17)

Moreover, the third therm of the right-hand of (15) can be estimated as

ν5

∫

Rd
∇k|∇h|2 · ∇kh dx ≤ C

∥∥∇kh
∥∥

L
2d

d–2
‖∇h‖

L
d
2

∥∥∇k+1h
∥∥

L
2d

d–2

≤ C‖∇h‖
H

[d+1]
2 –2

∥
∥∇k+1h

∥
∥2

L2

∥
∥∇k+2h

∥
∥2

L2

≤ Cδ
(∥∥∇k+2h

∥
∥2

L2 +
∥
∥∇k+1h

∥
∥2

L2
)
.

(18)
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Combining (15)–(18) together gives

1
2

d
dt

∥∥∇kh
∥∥2

L2 + ν2
∥∥∇k+2h

∥∥2
L2 + ν1

∥∥∇k+1h
∥∥2

L2

≤ (
δ2 + δ

)(∥∥∇k+2h
∥∥2

L2 +
∥∥∇k+1h

∥∥2
L2

)
.

(19)

We close the energy estimates at each lth level in the weak sense. Suppose that N ≥ 1 and
0 ≤ l ≤ m – 1 with 1 ≤ m ≤ N . Summing up the estimates (19) from k = l to m, we arrive
at

d
dt

∑

l≤k≤m

∥
∥∇kh

∥
∥2

L2 + C1
∑

l≤k≤m

(∥∥∇k+1h
∥
∥2

L2 +
∥
∥∇k+2h

∥
∥2

L2
)

≤ C2
(
δ + δ2) ∑

l≤k≤m

(∥∥∇k+1h
∥∥2

L2 +
∥∥∇k+2h

∥∥2
L2

)
.

(20)

Since δ > 0 is sufficiently small, there exists a positive constant C3 such that for 0 ≤ l ≤
m – 1,

d
dt

∑

l≤k≤m

∥∥∇kh
∥∥2

L2 + C3
∑

l≤k≤m

(∥∥∇k+1h
∥∥2

L2 +
∥∥∇k+2h

∥∥2
L2

) ≤ 0. (21)

Define Em
l (t) to be 1

C3
times the expression under the time derivative in (21). Hence, we

may rewrite (21) as

d
dt

Em
l (t) +

(∥∥∇k+1h
∥
∥2

L2 +
∥
∥∇k+2h

∥
∥2

L2
) ≤ 0, for 0 ≤ l ≤ m – 1. (22)

Taking l = 0 and m = [ d+1
2 ] in (22) and integrating directly in time, we have

∥
∥h(t)

∥
∥2

H[ d+1
2 ] +

∫ t

0

(∥∥∇h(t)
∥
∥2

H[ d+1
2 ] +

∥
∥�h(t)

∥
∥2

H[ d+1
2 ]

)
dt

≤ CE [ d+1
2 ]

0 (0) ≤ C‖h0‖2

H[ d+1
2 ]

.
(23)

Then by a standard continuity argument, this closes the a priori estimates (14) if at the

initial time E [ d+1
2 ]

0 = ‖h0‖2

H[ d+1
2 ]

is sufficiently small. This in turn allows us to take l = 0 and
m = N in (23) and then integrate it directly in time to obtain (4).

4 Proof of Theorem 1.3
In this section, we consider the temporary decay rate of strong solutions of problem (1)–(2)
provided that Theorem 1.2 holds. First of all, one need to derive the evolution of the neg-
ative Sobolev norms of solution to problem (13) (which is equivalent to problem (1)–(2)).
To estimate the nonlinear terms, we need to restrict ourselves to that s ∈ (0, d

2 ).
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Applying �–s to (13)1, multiplying the resulting identity by �–sh, and then integrating
over Rd by parts, we derive that

1
2

d
dt

∥∥�–sh
∥∥2

L2 + ν2
∥∥�–s�h

∥∥2
L2 + ν1

∥∥�–s∇h
∥∥2

L2

= ν3

∫

Rd
�–s

{
∇ ·

[(
∇h +

√
ν1 + ν2

ν3
ω0

)

×
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]}
· �–sh dx

– ν4

∫

Rd
�–s[�|∇h|2] · �–shdx + ν5

∫

Rd
�–s|∇h|2 · �–sh dx.

(24)

First, we assume that 0 < s < d
2 – 1, then 1

2 + s
d < 1. Moreover, on the basis of Theorem 1.2,

we have ‖�h‖L2 + ‖�∇h‖L2 ≤ C. Using estimate (11) of the Riesz potential in Lemma 2.3,
we find that

ν5

∫

Rd
�–s|∇h|2 · �–sh dx

≤ C
∥
∥�–sh

∥
∥

L2

∥
∥�–s|∇h|2∥∥L2

≤ C
∥
∥�–sh

∥
∥

L2‖|∇h|2‖
L

1
1
2 + s

d

≤ C
∥∥�–sh

∥∥
L2‖∇h‖L2‖∇h‖

L
d
s

≤ C
∥∥�–sh

∥∥
L2‖∇h‖L2‖�h‖2– d

2 +s
L2 ‖∇�h‖ d

2 –s–1
L2

≤ C
∥∥�–sh

∥∥
L2

(‖∇h‖2
L2 + ‖�h‖2

L2 + ‖∇�h‖2
L2

)
,

(25)

–ν4

∫

Rd
�–s[�|∇h|2] · �–sh dx

≤ C
∥∥�–sh

∥∥
L2

∥∥�–s�|∇h|2∥∥L2

≤ C
∥∥�–sh

∥∥
L2

∥∥�|∇h|2∥∥
L

1
1
2 + s

d

≤ C
∥
∥�–sh

∥
∥

L2‖�∇h‖L2‖∇h‖
L

d
s

≤ C
∥∥�–sh

∥∥
L2‖�∇h‖L2‖�h‖2– d

2 +s
L2 ‖∇�h‖ d

2 –s–1
L2

≤ C
∥∥�–sh

∥∥
L2

(‖�h‖2
L2 + ‖∇�h‖2

L2
)
,

(26)

and

ν3

∫

Rd
�–s

{
∇ ·

[(
∇h +

√
ν1 + ν2

ν3
ω0

)
·
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]}
· �–sh dx

≤ C
∥
∥�–sh

∥
∥

L2

∥∥
∥∥�–s

{
∇ ·

[(
∇h +

√
ν1 + ν2

ν3
ω0

)
·
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]}∥∥
∥∥

L2

≤ C
∥
∥�–sh

∥
∥

L2

∥∥
∥∥∇ ·

[(
∇h +

√
ν1 + ν2

ν3
ω0

)
·
(

∇h –
√

ν1 + ν2

ν3
ω0

)
∇h

]∥∥
∥∥

L
1

1
2 + s

d

≤ C
∥
∥�–sh

∥
∥

L2

(∥∥
∥∥�

(
∇h +

√
ν1 + ν2

ν3
ω0

)∥∥
∥∥

L2

∥∥
∥∥∇h –

√
ν1 + ν2

ν3
ω0

∥∥
∥∥

L∞
‖∇h‖

L
d
s
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+
∥∥
∥∥�

(
∇h –

√
ν1 + ν2

ν3
ω0

)∥∥
∥∥

L2

∥∥
∥∥∇h +

√
ν1 + ν2

ν3
ω0

∥∥
∥∥

L∞
‖∇h‖

L
d
s

+
∥
∥∥
∥∇h +

√
ν1 + ν2

ν3
ω0

∥
∥∥
∥

L
d
s

∥
∥∥
∥∇h –

√
ν1 + ν2

ν3
ω0

∥
∥∥
∥

L∞
‖�h‖L2

)

≤ C
∥∥�–sh

∥∥
L2

(‖�∇h‖L2‖∇h‖
Ḣ[ d+1

2 ]‖�h‖2– d
2 +s

L2 ‖∇�h‖ d
2 –s–1
L2

+ ‖�∇h‖L2‖∇h‖
Ḣ[ d+1

2 ]‖�h‖2– d
2 +s

L2 ‖∇�h‖ d
2 –s–1
L2

+ ‖�h‖2– d
2 +s

L2 ‖∇�h‖ d
2 –s–1
L2 ‖∇h‖

Ḣ[ d+1
2 ]‖�∇h‖L2

)

≤ C
∥
∥�–sh

∥
∥

L2
(‖∇h‖

Ḣ[ d+1
2 ]‖�h‖2– d

2 +s
L2 ‖∇�h‖ d

2 –s–1
L2

+ ‖∇h‖
Ḣ[ d+1

2 ]‖�h‖2– d
2 +s

L2 ‖∇�h‖ d
2 –s–1
L2 + ‖�h‖2– d

2 +s
L2 ‖∇�h‖ d

2 –s–1
L2 ‖∇h‖

Ḣ[ d+1
2 ]

)

≤ C
∥
∥�–sh

∥
∥

L2
(‖�h‖2

L2 + ‖∇�h‖2
L2 + ‖∇h‖2

Ḣ[ d+1
2 ]

)
. (27)

Combining (24)–(27) together gives

d
dt

∥∥�–sh
∥∥2

L2 + ν2
∥∥�–s�h

∥∥2
L2 + ν1

∥∥�–s∇h
∥∥2

L2

≤ C
∥
∥�–sh

∥
∥(‖∇h‖2

H2 + ‖∇h‖2

Ḣ[ d+1
2 ]

)
.

(28)

Define

E–s(t) :=
∥∥�–sh(t)

∥∥2
L2 .

Consider inequality (28), integrating in time, we find that

E–s(t) ≤ E–s(0) +
∫ t

0

(‖∇h‖2
H2 + ‖∇h‖2

Ḣ[ d+1
2 ]

)√
E–s(τ ) dτ

≤ C0

(
1 + sup

0≤τ≤t

√
E–s(τ ) dτ

)
,

(29)

where we have used the inequality (4) in the above. It follows from (29) that

∥∥�–sh(t)
∥∥2

L2 ≤ C0, ∀s ∈
[

0,
d
2

– 1
]

. (30)

Moreover, using Lemma 2.4, if l = 1, 2, . . . , N – 1, we have

∥∥∇ l+1f
∥∥

L2 ≥ C
∥∥�–sf

∥∥– 1
l+s

L2

∥∥∇ lf
∥∥1+ 1

l+s
L2 .

Then, by this facts and (30), we get

∥∥∇ l+1h
∥∥2

L2 ≥ C0
(∥∥∇ lh

∥∥2
L2

)1+ 1
l+s . (31)

Hence, for 1 = 1, 2, . . . , N – 1, the following inequality holds:

∥∥∇ l+1h
∥∥2

HN–l–1 ≥ C0
(∥∥∇ lh

∥∥2
HN–l

)1+ 1
l+s .
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Thus, we deduce from (22) with m = N the following inequality

d
dt

EN
l + C0

(
EN

l
)1+ 1

l+s ≤ 0, for l = 1, 2, . . . , N – 1. (32)

Solving (32), we find that

EN
l (t) ≤ C0(1 + t)–l–s, for l = 1, 2, . . . , N – 1. (33)

Note that the Hardy–Littlewood–Sobolev theorem implies that for p ∈ [ d
d–1 , 2], Lp(R3) ⊂

Ḣ–s(R3) with s = d( 1
p – 1

2 ) ∈ [0, d
2 – 1]. Therefore, based on Theorem 1.2 and (33), we obtain

∥∥∇ lh(t)
∥∥

HN–l ≤ C(1 + t)– d
2 ( 1

p – 1
2 )– l

2 , for l = 0, 1, . . . , N – 1, (34)

which complete the proof of Theorem 1.3.
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