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Abstract
This paper deals with the existence of solutions for the noncooperative
Schrödinger–Kirchhoff system involving the p-Laplacian operator and critical
nonlinearities on the Heisenberg group. Under some suitable conditions, together
with the limit index theory and the concentration–compactness principle, we obtain
the existence and multiplicity of solutions for this system. To our best knowledge, the
existence results for the noncooperative system with p-Laplacian and critical
nonlinearities are new on the Heisenberg group.
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1 Introduction and main result
In this paper, we consider the existence of solutions for the noncooperative Schrödinger–
Kirchhoff system involving the p-Laplacian operator and critical nonlinearity on the
Heisenberg group:

⎧
⎨

⎩

K(‖DHu‖p
p)�H,pu – V (ξ )|u|p–2u = |u|p∗–2u + Fu(ξ , u, v) in H

n,

–K(‖DHv‖p
p)�H,pv + V (ξ )|v|p–2v = |v|p∗–2v + Fv(ξ , u, v) in H

n,
(1.1)

where �H,p is the p-Laplacian with 1 < p < Q and p∗ = Qp/(Q – p) is the critical Sobolev
exponent on the Heisenberg group, F = F(ξ , u, v), Fu = ∂F

∂u , Fv = ∂F
∂v , K and V are the Kirch-

hoff function and potential function, which satisfy the conditions given later. The operator
�H,pϕ is called p Kohn–Spencer Laplacian, which is defined as follows:

�H,pϕ = div
(|DHϕ|p–2

H DHϕ
)

for all ϕ ∈ C2(Hn).
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Kirchhoff’s problem has a physical background, which is an extension of the model
proposed by Kirchhoff [11] in 1883. Moreover, by considering the effect of string length
changes during vibrations, Kirchhoff proposed Kirchhoff model with the following equa-
tion, which is an extension of D’Alembert wave equation:

ρ
∂2u
∂t2 –

(
p0

λ
+

E
2L

∫ L

0

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣

2

dx
)

∂2u
∂x2 = 0,

where ρ , p0, λ, E, L are constants that represent some physical meanings, respectively.
Later, more and more scholars carried out research on a Kirchhoff-type model. We also
refer to [5, 8, 16, 18, 20, 24] for a wide list of contributions along with [1].

For our problems, first of all, we assume that the Kirchhoff function K : R+
0 → R

+
0 , the

potential function V (ξ ), and the function F(ξ , u, v) satisfy the following conditions:
(K1) K ∈ C(R+

0 →R
+
0 ) satisfies inft∈R+

0
K(t) ≥ k0 > 0, where k0 is a positive constant.

(K2) There exists θ ∈ (1, p∗/p) satisfying

θK(t) ≥ K(t)t for all t ≥ 0,

where K(t) =
∫ t

0 K(ς ) dς .
(V1) V : Hn → R

+ is a continuous function, and there exists V0 > 0 such that
infξ∈Hn V (ξ ) ≥ V0.

(V2) For every d > 0 such that

meas
({

ξ ∈H
n : V (ξ ) ≤ d

})
< ∞,

where meas(·) denotes Lebesgue measure in H
n.

(F1) F ∈ C(Hn ×R
2,R+), where R

+ = {ξ ∈ R|ξ ≥ 0}; and there exist c0, c1 > 0, p < q < p∗

such that

∣
∣Fs(r, s, t)

∣
∣ +

∣
∣Ft(r, s, t)

∣
∣ ≤ c0|s| p–1

2 + c1|t| p–1
2 .

(F2) sFs(ξ , s, t) ≥ 0, tFt(ξ , s, t) ≥ 0, and there exists τ ∈ (θp, p∗) such that

0 < τF(ξ , s, t) ≤ sFs(ξ , s, t) + tFt(ξ , s, t)

for any (ξ , s, t) ∈ (Hn ×R
2,R+).

(F3) F is even: F(ξ , s, t) = F(ξ , –s, –t) for all (ξ , s, t) ∈H
n ×R

2.
Note that condition (V2) is weaker than the coercivity assumption V (x) → ∞ as |ξ | →

∞, which was first proposed by Bartsch and Wang in [2] to overcome the lack of com-
pactness.

Now, we give some notations on the Heisenberg group. Let Hn be the Heisenberg Lie
group of topological dimension 2n + 1, that is, the Lie group which has R2n+2 as a back-
ground manifold, endowed with the non-Abelian group law

τ : Hn →H
n, τξ

(
ξ ′) = ξ ◦ ξ ′
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with

ξ ◦ ξ ′ =
(
x + x′, y + y′, t + t′ + 2

(
x′y – y′x

))
, ∀ξ , ξ ′ ∈ H

n.

The inverse is given by ξ–1 = –ξ so that (ξ ◦ ξ ′)–1 = (ξ ′)–1 ◦ ξ–1.
The anisotropic dilation structure on the Heisenberg group leads to the Korányi norm,

which is defined by

r(ξ ) = r(z, t) =
(|z|4 + t2) 1

4 , ∀ξ = (z, t) ∈ H
n.

Therefore, the Koranyi norm is homogeneous of degree 1 with respect to the dilations
δR, R > 0, that is,

r
(
δR(ξ )

)
= r

(
Rz, R2t

)
=

(|Rz|4 + R4t2)1/4 = Rr(ξ ) for all ξ = (z, t) ∈H
n. (1.2)

For s > 0, a natural group of dilation on H
n is defined by δs(ξ ) = (sx, sy, s2t). Hence, δs(ξ0 ◦

ξ ) = δs(ξ0) ◦ δs(ξ ). For all ξ = (x, y, t) ∈H
n, it is easy to verify that the Jacobian determinant

of dilatations δs : Hn → H
n is constant and equal to R

2n+2. That is the reason why the
natural number Q = 2n + 2 is called homogeneous dimension of Hn and critical exponents
Q∗ := NQ

N–Q .
The horizontal gradient of a C1 function u: Hn → R is defined by

DHu =
n∑

j=1

[
(Xju)Xj + (Yju)Yj

]
.

It is obvious that DHu ∈ span{Xj, Yj}n
j=1. At the same time, for any horizontal vector field

function X = X(ξ ), X = {xjXj + x̃jYj}n
j=1 of class C1(Hn,R2n), we define the horizontal diver-

gence of X by

divH X =
n∑

j=1

[
Xj

(
xj) + Yj

(
x̃j)].

Also, if u ∈ C2(Hn), then the Kohn–Spencer Laplacian in H
n is either equivalent to the

horizontal Laplacian or the sub-Laplacian of u is

�Hn u =
n∑

j=1

(
X2

j + Y 2
j
)
u =

n∑

j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
– 4xj

∂2

∂yj∂t

)

u + 4|z|2 ∂2u
∂t2 ,

where

∇Hn = (X1, X2, X3, . . . , Y1, Y2, . . . , Yn).

The Lie algebra of left-invariant vector fields is generated by the following vector fields:

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Y =

∂

∂yj
– 2xj

∂

∂t
, j = 1, . . . , n.



Sun et al. Boundary Value Problems         (2022) 2022:75 Page 4 of 19

The left-invariant distance dH on H
n is accordingly defined by

dH
(
ξ , ξ ′) = r

(
ξ–1 ◦ ξ ′), ∀(

ξ , ξ ′) ∈H
n ×H

n.

For a complete treatment on the Heisenberg group functional setting, we refer to [7, 10,
14, 23].

The inspiration for our study to problem (1.1) is the application of the Heisenberg group.
Recently, the reason why many scholars are interested in the Heisenberg group is its
important applications in quantum mechanics, partial differential equations, and other
fields. We try to put the same theorem applicable to a Euclidean space on the Heisenberg
group, and many scholars are studying this kind of problem.

Next, we will focus on some latest progress of study related to our problem. In [4], the
authors obtained the existence of solutions for the sub-elliptic equation involving small,
nontrivial perturbations in the whole space H

n

–�H,Qu + V (ξ )|u|Q–2u =
f (ξ , u)
r(ξ )β

+ εh(ξ ), (1.3)

where V is a continuous potential and f has exponential growth. After that, using a min-
imization argument and the Ekeland variational principle, Lam and Lu [13] considered
that in the absence of perturbation (ε = 0), and they obtained the existence and multiplic-
ity of solutions of problem (1.3). Subsequently, by variational methods, Pucci et al. [25, 26]
dealt with the existence of nontrivial solutions for (p, Q) equations and (p, Q) system in the
Heisenberg group H

n by considering the case without the potential function.
On the other hand, in the Euclidean space, Li [15] considered the strongly indefinite

functional involving p-Laplacian elliptic system with the help of limit index theory:

⎧
⎪⎪⎨

⎪⎪⎩

�pu = Fs(x, u, v) in �,

–�pv = Ft(x, u, v) in �,

u|∂� = 0, v|∂� = 0.

(1.4)

More precisely, they obtained an unbounded sequence of solutions with appropriate con-
ditions for F . There are many works in the literature on this subject that are very connected
to this problem. Let us refer to some of them for further reference [9, 15, 17, 19, 21, 22, 27].

Inspired by the above references, our main aim in this paper is to consider the existence
and multiplicity of solutions for problem (1.1) involving p-Laplacian operator and criti-
cal nonlinearity on the Heisenberg group. Undoubtedly, the lack of compactness makes
us encounter serious difficulties. It is worth noting the argument developed in [9], where
one of the emphases is to verify the proof the (PS)c condition. In this paper, we use the
concentration–compactness principle and the concentration–compactness principle at
infinity on the classical Sobolev spaces in the Heisenberg group to prove that the (PS)c

condition holds. To the best of our knowledge, this paper is the first to deal with non-
cooperative Schrödinger–Kirchhoff systems with p-Laplacian and critical nonlinearity on
the Heisenberg group. Furthermore, although some properties are similar between Kohn
Laplacian �H and the classical Laplacian �, the similarities may be deceitful; see, e.g., [7].

Now, we are ready to state our main results.
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Theorem 1.1 Assume that V satisfies (V1) and (V2), K satisfies (K1)–(K2), and F satisfies
(F1)–(F3), then problem (1.1) possesses infinitely solutions.

This paper is organized as follows. In Sect. 2, we present some necessary prelimi-
nary knowledge on the Heisenberg group and collect some properties about the space
HW 1,p. In Sect. 3, we recall the limit index theory due to Li [15]. In Sect. 4, we use the
concentration–compactness principle to prove (PS)c conditions. Section 5 is devoted to
the proofs of Theorem 1.1.

2 Preliminaries
In this section, we give some useful facts about classical Sobolev spaces on the Heisenberg
group and provide some technical lemmas.

Let 1 ≤ p < Q be a real number. Denote by HW 1,p(Hn) the horizontal Sobolev space con-
sisting of the functions u ∈ Lp(Hn) such that DHu ∈ Lp exists in the sense of distributions
and |DHu|H ∈ Lp(Hn), equipped with the natural norm

‖u‖HW 1,p(Hn) :=
(‖u‖p

Lp + ‖DHu‖p
Lp

)
, ‖DHu‖Lp(Hn) =

(∫

Hn
|DHu|pH dξ

) 1
p

. (2.1)

For brevity, we use the notation ‖ · ‖p = ‖ · ‖Lp to denote the usual Lp-norm.
Let HW 1,p

V (Hn) represent the completion of C∞
c (Hn) with the norm

‖u‖HW 1,p
V (Hn) :=

(‖DHu‖p
Lp + ‖u‖p

p,V
) 1

p , ‖u‖p
p,V =

∫

Hn
V (ξ )|u|p dξ . (2.2)

Due to (V1), we can obtain Lp(Hn, V ) = (Lp(Hn, V ),‖ · ‖p,V ) is a uniformly convex Banach
space.

According to Folland and Stein [6], the elliptical Sobolev embedding theorem and C-R
Yamabe problem are often closely linked together. It is valid in the more general case of
the Carnot group, but we state it in the establishment of the Heisenberg group.

The continuous embedding of HW 1,Q(Hn) ↪→ Ls(Hn) for all s ≥ Q by [4]. That is, there
exists a positive constant C such that

‖u‖Ls(Hn) ≤ C‖u‖HW 1,p
V (Hn) for all u ∈ HW 1,p

V
(
H

n). (2.3)

From [28] that Cp∗ is achieved in the Folland–Stein space S1,p(Hn). We define the optimal
Sobolev constant Cp∗ of the Folland–Stein inequality as follows:

Cp∗ := inf
u∈S1,p(Hn),u=0

‖DHu‖p
p

‖u‖p
p∗

. (2.4)

Let Y = HW 1,p
V (Hn) × HW 1,p

V (Hn), equipped with the norm

∥
∥(u, v)

∥
∥ =

(‖u‖HW 1,p
V (Hn) + ‖v‖HW 1,p

V (Hn)

) 1
p

for all (u, v) ∈ Y .
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We will use the embedding theorem below to prove the existence of weak solutions to
problem (1.1).

The energy functional corresponding to problem (1.1) is defined as follows:

J (u, v) = –
1
p
K

(‖DHu‖p
p
)

–
1
p

∫

Hn
V (ξ )|u|p dξ +

1
p
K

(‖DHv‖p
p
)

+
1
p

∫

Hn
V (ξ )|v|p dξ –

1
p∗

∫

Hn
|u|p∗

dξ

–
1
p∗

∫

Hn
|v|p∗

dξ –
∫

Hn
F(ξ , u, v) dξ .

(2.5)

Under the assumption, it is obvious that the energy J : Y →R connected with problem
(1.1) is well defined and J ∈ C1(Y →R),

〈
J ′(u, v), (ϕ,φ)

〉
= –K

(‖DHu‖p
p
)〈u,ϕ〉p –

∫

Hn
V (ξ )|u|p–2uϕ dξ

+ K
(‖DHv‖p

p
)〈v,ϕ〉p +

∫

Hn
V (ξ )|v|p–2vφ dξ

–
∫

Hn
|u|p∗–2uϕ dξ –

∫

Hn
|v|p∗–2vφ dξ

–
∫

Hn
Fu(ξ , u, v)ϕ dξ –

∫

Hn
Fv(ξ , u, v)φ dξ

for all (u, v) ∈ Y and (ϕ,φ) ∈ Y . Therefore, the critical points of function J are weak solu-
tions of problem (1.1).

Next, we recall the concentration–compactness principle of the p Laplacian on the
Heisenberg group.

Definition 2.1 Let M(H) show the finite nonnegative Radon measures space in H
n. For

any μ ∈ M(Hn), μ(Hn) = ‖μ‖ holds. We say that μn
∗

⇀ μ in M(Hn) if (μn,η) → (μ,η)
holds for all η ∈ C0(Hn) as n → ∞.

Proposition 2.1 Let σ ∈ (–∞,Hp) and let (uk)k be a sequence in S1,p(Hn) such that uk ⇀

u in S1,p(Hn), and |uk|p∗ dξ
∗

⇀ ν , |DHuk|pH dξ
∗

⇀ μ, |uk|pψp dξ

r(ξ )p
∗

⇀ ω in M(Hn) for some
appropriate u ∈ S1,p(Hn) and finite nonnegative Radon measure μ, ν , ω on H

n. Then there
exists an at most countable set J , a family of points {ξk}j∈J ⊂H

n, two families of nonnegative
numbers {μk}j∈J , and {νk}j∈J , and there are nonnegative numbers ν0, μ0, ω0 such that

ν = |u|p∗
dξ + ν0δ0 +

∑

j∈J

νjδξj , (2.6)

μ ≥ |DHu|pH dξ + μ0δ0 +
∑

j∈J

μjδξj , (2.7)

ω = |u|pψp dξ

r(ξ )p + ω0δ0, (2.8)

ν
p/p∗
j ≤ μj

Cp∗
for all j ∈ J , ν

p/p∗
0 ≤ μ0 – σω0

Iσ
, (2.9)
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where Cp∗ = I0 and Iσ = infu∈S1,p(Hn),u=0
‖DH u‖p

p–σ‖u‖p
Hp

‖u‖p
p∗

, while δ0, δξj are the Dirac functions

at the points O and ξj of Hn, respectively.

Proposition 2.2 Let (uk)k be a sequence in S1,p(Hn) as in Proposition 2.1 and define

ν∞ = lim
R→∞ lim sup

k→∞

∫

Bc
R

|uk|p∗
dξ , μ∞ = lim

R→∞ lim sup
k→∞

∫

Bc
R

|DHuk|pH dξ (2.10)

and

ω∞ = lim
R→∞ lim sup

k→∞

∫

Bc
R

|uk|pψp dξ

r(ξ )p . (2.11)

Then

lim sup
k→∞

∫

Hn
|uk|p∗

dξ = ν
(
H

n) + ν∞,

lim sup
k→∞

∫

Hn
|DHuk|pH dξ = μ

(
H

n) + μ∞,
(2.12)

lim sup
k→∞

∫

Hn
|uk|pψp dξ

r(ξ )p = ω
(
H

n) + ω∞, νp/p∗
∞ ≤ μ∞ – σω∞

Iσ
, (2.13)

where μ, ν , ω are the measures introduced in Proposition 2.1. Moreover, the following in-
equality holds if σ = 0:

Cp∗νp/p∗
∞ ≤ μ∞.

Remark 2.1 Weak (resp. strong) convergence is denoted by ⇀ (resp., →). G1 = O(Q) is the
group of orthogonal linear transformations in H

n. E = HW 1,p(Hn), EG1 = HW 1,p
O(Q) := {u ∈

HW 1,p(Hn) : gu(ξ ) = u(g–1ξ ) = u(ξ ), g ∈ O(Q)}. G2 = Z2, Y = E × E, X = YG1 = EG1 × EG1 , c
denotes a positive constant.

3 Limit index theory
In this section, we review the limit index theory by Li [15] and give the following defini-
tions.

Definition 3.1 ([15, 29]) The action of a topological group G on a normed space Z is a
continuous map

G × Z → Z : [g, z] �→ gz

such that

1 · z = z, (gh)z = g(hz), z �→ gz is linear, ∀g, h ∈ G.

The action is isometric if

‖gz‖ = ‖z‖ for all g ∈ G, z ∈ Z,

and in this case Z is called the G-space.
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The set of invariant points is defined by

Fix(G) := {z ∈ Z : gz = z,∀g ∈ G}.

A set A ⊂ Z is invariant if gA = A for every g ∈ G. A function ϕ : Z → R is invariant ϕ◦g = ϕ

for every g ∈ G, z ∈ Z. A map f : Z → Z is equivariant if g ◦ f = f ◦ g for every g ∈ G.
Assume that Z is a G-Banach space, that is, there is a G isometric action on Z. Let

� := {A ⊂ Z : A is closed and gA = A,∀g ∈ G}

be a family of all G-invariant closed subsets of Z, and let

� :=
{

h ∈ C0(Z, Z) : h(gu) = g(hu),∀g ∈ G
}

be a class of all G-equivariant mappings of Z. Finally, we call the set

O(u) := {gu : g ∈ G}

the G-orbit of u.

Definition 3.2 ([15]) An index for (G,
∑

,�) is a mapping i :=
∑ → Z+ ∪ {+∞} (where

Z+ is the set of all nonnegative integers) such that, for all A, B ∈ �, h ∈ �, the following
conditions are satisfied:

(1) i(A) = 0 ⇔ A = ∅;
(2) (Monotonicity) A ⊂ B ⇒ i(A) ≤ i(B);
(3) (Subadditivity) i(A ∪ B) ≤ i(A) + i(B);
(4) (Supervariance) i(A) ≤ i(h(A)), ∀h ∈ �;
(5) (Continuity) If A is compact and A ∩ Fix(G) = ∅, then i(A) < +∞ and there is a

G-invariant neighborhood N of A such that i(N) = i(A);
(6) (Normalization) If ξ /∈ Fix(G), then i(O(ξ )) = 1.

Definition 3.3 ([3]) An index theory is said to satisfy the d-dimensional property if there
is a positive integer d such that

i
(
V dk ∩ S1

)
= k

for all dk-dimensional subspaces V dk ∈ � such that V dk ∩ Fix(G) = {0}, where S1 is the
unit sphere in Z.

Suppose that U and V are G-invariant closed subspaces of Z such that

Z = U ⊕ V ,

where V is infinite dimensional and

V =
∞⋃

j=1

Vj,
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where Vj is a dnj-dimensional G-invariant subspace of V , j = 1, 2, . . . , and V1 ⊂ V1 ⊂ · · · ⊂
V1 ⊂ · · · . Let

Zj = U ⊕ Vj

and ∀A ∈ ∑
, let

Aj = A ⊕ Zj.

Definition 3.4 ([15]) Let i be an index theory satisfying the d-dimensional property.
A limit index with respect to (Zj) introduced by i is a mapping

i∞ :
∑

→Z ∪ {–∞, +∞}

given by

i∞(A) = lim sup
j→∞

(
i(Aj) – nj

)
.

Proposition 3.1 ([15]) Let A, B ∈ ∑
, then i∞ satisfies:

(1) A = ∅ ⇒ i∞ = –∞;
(2) (Monotonicity) A ⊂ B ⇒ i∞(A) ≤ i∞(B);
(3) (Subadditivity) i∞(A ∪ B) ≤ i∞(A) + i∞(B);
(4) If V ∩ Fix{G} = 0, then i∞(S� ∩ V ) = 0, where S� = {z ∈ Z : ‖z‖ = �};
(5) If Y0 and Ỹ0 are G-invariant closed subspaces of V such that V = Y0 ⊕ Ỹ0, Ỹ0 ⊂ Vj0

for some j0 and dim(Y0) = dm, then i∞(S� ∩ Y0) ≥ –m.

Definition 3.5 ([29]) A functional J ∈ C1(Z, R) is said to satisfy the condition (PS)∗c if any
sequence {unk }, unk ∈ Zunk

such that

J (unk ) → c, dJ (unk ) → 0, as k → ∞,

possesses a convergent subsequence, where Zunk
is the nk-dimensional subspace of Z,

Jnk = J |Zunk
.

Theorem 3.1 ([15]) Assume that
(B1) J ∈ C1(Z, R) is G-invariant;
(B2) There are G-invariant closed subspaces U and V such that V is infinite dimensional

and Z = U ⊕ V ;
(B3) There is a sequence of G-invariant finite dimensional subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · · , dim(Vj) = dnj,

such that V =
⋃∞

j=1 Vj;
(B4) There is an index theory i on Z satisfying the d-dimensional property;
(B5) There are G-invariant subspaces Y0, Ỹ0, Y1 of V such that V = Y0 ⊕ Ỹ0, Y1, Ỹ0 ⊂ Vj0

for some j0 and dim(Ỹ0) = dm < dk = dim(Y1);
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(B6) There are α, β and α < β such that f satisfies (PS)∗c , ∀c ∈ [α,β];
(B7)

⎧
⎪⎪⎨

⎪⎪⎩

(a) either Fix(G) ⊂ U ⊕ Y1 or Fix(G) ∩ V = {0},
(b) there is � > 0 such that ∀u ∈ Y0 ∩ S�, f (z) ≥ α,

(c) ∀z ∈ U ⊕ Y1, f (z) ≤ β ,

if i∞ is the limit index corresponding to i, then the numbers

cj = inf
i∞(A)≥j

sup
z∈A

f (u), –k + 1 ≤ j ≤ –m

are critical values of f , and α ≤ c–k+1 ≤ · · · ≤ c–m ≤ β . Moreover, if c = cl = · · · = cl+r , r ≥ 0,
then i(Kc) ≥ r + 1, where Kc = {z ∈ Z : df (z) = 0, f (z) = c}.

4 Verification of the (PS)c condition
In this section, with the help of the concentration–compactness principle in the classical
Sobolev space on the Heisenberg group stated above, we show a careful analysis of the be-
havior of minimizing sequences, which is able to recover compactness below some critical
threshold.

It is obvious that J ∈ C1. Moreover, the weak solution of problem (1.1) is consistent
with the critical point of J . According to (H4) and (H6), we can obtain that J is O(Q)-
invariant. Combining with the principle of symmetric criticality due to Krawcewicz and
Marzantowicz [12], we get that (u, v) is a critical point of J if and only if (u, v) is a crit-
ical point of J̃ = J |X=EG1 ×EG1

. So, we are going to focus on verifying the existence of a
sequence of critical points of J on X. At the same time, let E be a real Banach space and
J̃ : E →R be a function of class C1.

Lemma 4.1 Suppose that condition V satisfies (V1) and (V2), K satisfies (K1)–(K2), F sat-
isfies (F1)–(F3). Let {(unk , vnk )} be a sequence such that {(unk , vnk )} ∈ Xnk .

J (unk , vnk ) → c <
(

1
τ

–
1
p∗

)

(k0Cp∗ )
Q
p , dJnk (unk , vnk ) → 0 as k → ∞,

where Jnk = J |Xnk
, then {(unk , vnk )} contains a subsequence converging strongly in X .

Proof To this aim, we need two steps as follows.
Step 1. We show that {(unk , vnk )} is bounded in X.
By conditions (M1) and (F2), we obtain that

o(1)‖unk ‖p ≥ 〈
–dJunk

(unk , vnk ), (unk , 0)
〉

= K
(‖DHu‖p

p
)‖DHu‖p

p +
∫

Hn
V (ξ )|unk |p dξ

+
∫

Hn
|unk |p

∗
dξ +

∫

Hn
Fu(ξ , unk , vnk )unk dξ

≥ k0‖DHunk ‖p
p +

∫

Hn
V (ξ )|unk |p dξ

≥ min{k0, 1}‖unk ‖p
p. (4.1)
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Since p > 1, from (4.1), we obtain that ‖unk ‖ is bounded.
On the other hand, using condition (F2), we have

c + o(1)‖vnk ‖p = Jnk (0, vnk ) –
1
τ

〈
dJnk (vnk , vnk ), (0, vnk )

〉

=
1
p
K

(‖DHvnk ‖p
p
)

–
1
τ

K
(‖DHvnk ‖p

p
)‖DHvnk ‖p

p

+
(

1
p

–
1
τ

)∫

Hn
V (ξ )|vnk |p dξ +

(
1
τ

–
1
p∗

)∫

Hn
|vnk |p

∗
dξ

–
∫

Hn

[

F(ξ , 0, vnk ) –
1
τ

Fv(ξ , 0, vnk )vnk

]

dξ

≥
(

1
p

–
1
τ

)

k0‖DHvnk ‖p
p +

(
1
p

–
1
τ

)∫

Hn
V (ξ )|vnk |p dξ

≥
(

1
p

–
1
τ

)

min{k0, 1}‖vnk ‖p
p.

This shows that {vnk } is bounded in E. Therefore, ‖unk ‖p + ‖vnk ‖p is bounded in X.
Step 2. We prove that {(unk , vnk )} contains a subsequence converging strongly in X.
Note that {unk } is bounded in EG1 . Therefore, up to a sequence, unk ⇀ u0 weakly in EG1

and unk (ξ ) → u0(ξ ), a.e. in H
n.

(I). We claim that unk (ξ ) → u0(ξ ) strongly in EG1 . It follows from conditions (K1) and
(F2) that

0 ← 〈
–dJnk (unk – u0, vnk ), (unk – u0, 0)

〉

= K
(∥
∥DH (unk – u0)

∥
∥p

p

)∥
∥DH(unk – u0)

∥
∥p

p +
∫

Hn
V (ξ )|unk – u0|p dξ

+
∫

Hn
|unk – u0|p∗

dξ +
∫

Hn
Fu(ξ , unk – u0, vnk )(unk – u0) dξ

≥ k0
∥
∥DH (unk – u0)

∥
∥p

p +
∫

Hn
V (ξ )|vnk – v0|p dξ

≥ min{k0, 1}‖unk – u0‖p
p.

This fact implies that

unk → u0 strongly in EG1 . (4.2)

(II). In the following we will prove that there exists v ∈ EG1 such that

vnk → v0 strongly in EG1 . (4.3)

Since {vnk } is also bounded in E, we suppose that there exist v0 and a subsequence, still
denoted by {vnk } ⊂ E, such that

vnk (ξ ) ⇀ v0 weakly in E,

vnk (ξ ) → v0 strongly in Lt
loc

(
H

n) for all t ∈ [
1, p∗),

vnk (ξ ) → v0 a.e. ξ ∈H
n.
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From Proposition 2.1, we obtain that

vnk (ξ ) ⇀ v0 in E,

|unk |p
∗

dξ
∗

⇀ ν in M
(
H

n),

|DHuk|pH
∗

⇀ μ in M
(
H

n).

Then

ν = |u|p∗
dξ + ν0δ0 +

∑

j∈J

νjδξj ,

μ ≥ |DHu|pH dξ + μ0δ0 +
∑

j∈J

μjδξj ,

ω = |u|pψp dξ

r(ξ )p + ω0δ0,

ν
p/p∗
j ≤ μj

Cp∗
for all j ∈ J , ν

p/p∗
0 ≤ μ0 – σω0

Iσ
, (4.4)

where J is at most countable, {νj}j ⊂H
n, δO, δxj are the Dirac functions at the points O and

ξj of Hn, respectively.
Concentration at infinity of the sequence vnk is described by the following quantities:

ν∞ = lim
R→∞ lim sup

k→∞

∫

Bc
R

|uk|p∗
dξ ,

μ∞ = lim
R→∞ lim sup

k→∞

∫

Bc
R

|DHuk|pH dξ ,

ω∞ = lim
R→∞ lim sup

k→∞

∫

Bc
R

|unk |pψp dξ

r(ξ )p .

Now, we will prove that the following three claims hold.

Claim 1.

J is finite and for j ∈ J , either νj = 0 or νj ≥ (k0Cp∗ )
Q
p .

In fact, fix φ ∈ C∞
c (Hn) such that 0 ≤ φ ≤ 1, φ(O) = 1 and supp φ = B1. Take ε > 0 and

put φε(ξ ) = φ(δ1/ε(ξ )), ξ ∈H
n.

Then we get that {vnk φε} is bounded in E.
Hence, we obtain that

lim
n→∞

〈
dJnk (unk , vnk ), (0, vnk φε)

〉
= 0,

that is,

K
(‖DHvnk ‖p

p
)‖DHvnk φε‖p

p +
∫

Hn
V (ξ )|vnk |pφε dξ –

∫

Hn
|vnk |p

∗
φε dξ

–
∫

Hn
Fv(ξ , unk , vnk )vnk φε(ξ ) dξ (4.5)
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= K
(‖DHunk ‖p

p
)
(∫

Hn
|φε|p|DHunk |pH dξ + ‖DHφεunk ‖p

p

)

+
∫

Hn
V (ξ )|vnk |pφε dξ –

∫

Hn
|vnk |p

∗
φε dξ –

∫

Hn
Fv(ξ , unk , vnk )vnk φε(ξ ) dξ

= 0.

In the following, we estimate each term in (4.5).
In fact, arguing as before, we have

∫

Hn
|φε|p|DHvnk |pH dξ + ‖DHφεvnk ‖p

p =
∫

Hn
|φε|p|DHvnk |pH dξ + o(1). (4.6)

Now, by the compactness result (see Proposition 2.1), we know that

lim
ε→0+

lim
k→∞

∫

Hn
|φε|p|DHvnk |pH dξ =

∫

Hn
|φε|p dμ ≥

∫

Hn
|DHv0|pH

∣
∣φε(ξ )

∣
∣p dξ + μj. (4.7)

Therefore, from (4.6) and (4.7), we deduce that

lim
ε→0+

lim
k→∞

K
(‖DHvnk ‖p

p
)‖DHvnk φε‖p

p ≥ k0μj. (4.8)

Also, we can get that

lim
ε→0+

lim
n→∞

∫

Hn
V (ξ )|vnk |pφε dξ = lim

ε→0+
lim

n→∞

∫

Bε

V (ξ )|vnk |pφε dξ = 0, (4.9)

lim
n→∞

∫

Hn
|vn|p∗

φε dξ =
∫

Hn
φε dν =

∫

Hn
|v0|p∗

φε dξ + νj (4.10)

and

lim
ε→0+

lim
n→∞

∫

Hn
Fv(ξ , unk , vnk )vnk φε(ξ ) dξ = 0. (4.11)

Hence, from (4.5) and the aforementioned arguments, we obtain

k0μj – νj ≤ 0. (4.12)

Combining with (4.4), we can deduce

either (i) νj = 0 or (ii) νj ≥ (k0Cp∗ )
Q
p .

Claim 2. Analyzing the concentration at ∞.

Choosing a appropriate cut-off function � ∈ C∞
c (Hn) such that 0 ≤ � ≤ 1, � = 0 in B1

and � = 1 in Bc
2. We take R > 0 and choose �R(ξ ) = �(δ1/R(ξ )), ξ ∈ H

n, then {vnk �R} is
bounded in E and

lim
n→∞

〈
dJnk (unk , vnk ), (0, vnk �R)

〉
= 0,
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that is,

K
(‖DHvnk ‖p

p
)‖DHvnk �R‖p

p +
∫

Hn
V (ξ )|vnk |p�R dξ –

∫

Hn
|vnk |p

∗
�R dξ

–
∫

Hn
Fv(ξ , unk , vnk )vnk �R dξ

= K
(‖DHvnk ‖p

p
)
(∫

Hn
|�R|p|DHvnk |pH dξ + ‖DH�Rvnk ‖p

p

)

+
∫

Hn
V (ξ )|vnk |p�R dξ –

∫

Hn
|vnk |p

∗
�R dξ –

∫

Hn
Fv(ξ , vnk , vnk )vnk �R(ξ ) dξ

= 0.

(4.13)

In the following, we estimate each term in (4.13).
In fact, in the first integral of the right-hand side of (4.13), using the compactness result

(see Proposition 2.2), we have

lim
n→∞

∫

Hn
|�R|p|DHvnk |p dξ =

∫

Hn
�R dμ =

∫

Hn
|�R|p|DHv|p dξ + μ∞. (4.14)

For the second integral of the right-hand side of (4.13), it follows that

lim
R→∞ lim sup

n→∞
‖DH�Rvnk ‖p

p = 0. (4.15)

Hence, we get

lim
R→∞ lim

n→∞ K
(‖DHunk ‖p

p
)‖DHvnk �R‖p

p ≥ k0μ∞. (4.16)

We also can have

lim
R→∞ lim

n→∞

∫

Hn
V (ξ )|vnk |p

∗
�R dξ = lim

R→∞ lim
n→∞

∫

Bc
2R

V (ξ )|vnk |p
∗
�R dξ = 0 (4.17)

and

lim
n→∞

∫

Hn
|vnk |p

∗
�R dξ =

∫

Hn
�R dν =

∫

Hn
|v0|p∗

dξ + ν∞. (4.18)

Note that vnk ⇀ v weakly in E, then
∫

Hn Fv(ξ , u, v)(vnk – v)�R dξ → 0. As

∣
∣
∣
∣

∫

Hn
(Fv

(
ξ , unk , vnk – Fv(ξ , u, v)

)
vnk �R

∣
∣
∣
∣ ≤ c

∣
∣Fv

(
ξ , unk , vnk – Fv(ξ , u, v)

)
�R

∣
∣
(p∗)′ |vnk |(p∗)

≤ c
∣
∣Fv

(
ξ , unk , vnk – Fv(ξ , u, v)

)∣
∣
(p∗)′ ,Hn\BR(0),

by condition (F1), for any ε > 0, there exists R1 > 0 such that, when R > R1,

∣
∣Fv

(
ξ , unk , vnk – Fv(ξ , u, v)

)∣
∣
(p∗)′ ,Hn\BR(0) < ε for any n ∈N.
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Note that
∫

Hn Fv(ξ , u, v)v�R dξ → 0 as R → ∞. Thus, we can deduce that

lim
R→∞ lim sup

n→∞

∫

Hn
Fv(ξ , unk , vnk )vnk �R dξ

= lim
R→∞ lim sup

n→∞

∫

Hn

(
Fv(ξ , unk , vnk ) – Fv(ξ , u, v)

)
vnk �R

+ Fv(ξ , u, v)(vnk – v)�R + Fv(ξ , u, v)v�R dξ

= lim
R→∞

(

lim sup
n→∞

∫

Hn

(
Fv(ξ , unk , vnk ) – Fv(ξ , u, v)

)
vnk �R dξ + Fv(ξ , u, v)v�R dξ

)

= lim
R→∞ lim sup

n→∞

∫

Hn

(
Fv(ξ , unk , vnk ) – Fv(ξ , u, v)

)
vnk �R dξ

+ lim
R→∞

∫

Hn
Fv(ξ , u, v)v�R dξ

= 0.

Due to Proposition 2.2, we deduce that

either (iii) ν∞ = 0 or (iv) ν∞ ≥ (k0Cp∗ )
Q
p .

Claim 3. (ii) and (iv) cannot occur.

By contradiction, we assume that for some j ∈ J , then by condition (F2), we have

c = lim
n→∞

(

Jnk (0, vnk ) –
1
τ

〈
dJnk (unk , vnk ), (0, vnk )

〉
)

= lim
n→∞

(
1
p
K

(‖DHu‖p
p
)

–
1
τ

K
(‖DHu‖p

p
)‖DHu‖p

p

)

+
(

1
p

–
1
τ

)∫

Hn
V (ξ )|vnk |p dξ

+
(

1
τ

–
1
p∗

)∫

Hn
|vnk |p

∗
dξ –

∫

Hn

[

F(ξ , 0, vnk ) –
1
τ

Fv(ξ , 0, vnk )vnk

]

dξ

≥
(

1
p

–
1
τ

)

k0‖DHunk ‖p
p +

(
1
p

–
1
τ

)∫

Hn
V (ξ )|vnk |p dξ +

(
1
τ

–
1
p∗

)∫

Hn
|vnk |p

∗
dξ

≥
(

1
τ

–
1
p∗

)

ν∞ ≥
(

1
τ

–
1
p∗

)

(k0Cp∗ )
Q
p .

This is impossible. Consequently, ν∞ = 0. Similarly, we can prove that (ii) cannot hold
for each j. Hence

lim
n→∞

∫

Hn
vp∗

nk
dξ =

∫

Hn
vp∗

0 dξ . (4.19)

Moreover, the Brézis–Lieb lemma implies that

lim
n→∞

∫

Hn
|vnk – v0|p∗

dξ = 0. (4.20)

Now, we define an operator as follows:

〈
L(v),�

〉
=

∫

Hn
|DHv|p–2

H |DHv|H |DH� |H dξ +
∫

Hn
V (ξ )|v|p–2v� dξ
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for any v,� ∈ E. The Hölder inequality gives

∣
∣
〈
L(v),�

〉∣
∣ ≤ ‖DHv‖p–1

p ‖DH�‖p + ‖v‖p–1
p,V ‖�‖p,V ≤ ‖v‖p–1

HW 1,p‖�‖HW 1,p .

Hence, for each v ∈ E, the linear functional L(v) is continuous on E. Hence, the weak
convergence of vnk in E gives that

lim
k→∞

〈
L(vnk ), v0

〉
=

〈
L(v0), v0

〉
and lim

k→∞
〈
L(v0), vnk – v0

〉
= 0. (4.21)

Clearly, 〈J (vnk ), vnk – v0〉 → 0 as n → ∞. Hence, by (4.21), one has

lim
k→∞

〈
L(vnk ) – L(v0), vnk – v0

〉
= 0. (4.22)

By famous Simon inequalities,

|s – p|p ≤
⎧
⎨

⎩

C′
p(|s|p–2s – |t|p–2t) · (s – t), for p ≥ 2,

C′′
p [(|s|p–2s – |t|p–2t)(s – t)]

p
2 · (|s|p + |t|p)

2–p
2 , for 1 < p < 2,

(4.23)

for all s, t ∈ Hn, where C′
p and C′′

p are positive constants depending only on p.
If p > 2, then if follows from (4.23) that

‖vnk – v0‖p
HW 1,p

V (Hn)
≤ C′

p lim
k→∞

〈
L(vnk ) – L(v0), vnk – v0

〉 → 0 (4.24)

as n → ∞. Hence, vnk → v0 in E.
It remains to deal with the case 1 < p < 2. In order to reach this aim, from (4.23) we get

‖vnk – v0‖HW 1,p
V (Hn)

≤ C′′
p
(〈
L(vnk ) – L(v0), vnk – v0

〉) p
2
(‖DHvnk ‖p

p + ‖DHv0‖p
p
) 2–p

2

≤ C
(〈
L(vnk ) – L(v0), vnk – v0

〉) p
2 → 0,

(4.25)

as n → ∞. Consequently, vnk → v0 in E.
Therefore, we can deduce that vnk → v0 in E as n → ∞. The proof of convergence of

{unk } is similar, so we omit it.
Consequently, we obtain that {(unk , vnk )} contains a sequence converging strongly

in X. �

5 Proof of Theorem 1.1
Proof Now we will prove the condition of Theorem 3.1. Set

X = U ⊕ V , U = EG1 × 0, V = {0} × EG1 ,

Y0 = 0 × Em⊥
G1 , Y1 = {0} × E(k)

G1
,

where m and k are to be determined. It is obvious that Y0, Y1 are G-invariant and
codim V Y0 = m, dim Y1 = k. Clearly, (B1), (B2), (B4) in Theorem 3.1 are satisfied. Set
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Vj = E(j)
G1

= span{e1, e2, . . . , ej}, then (B3) is also satisfied. By dim Ỹ0 = 1 < k = dim Y1, (B5)
holds. In the following, we prove the condition (B7). Since Fix(G) ∩ V = 0, (a) of (B7) are
satisfied. It remains to verify (b), (c) of (B7).

(i) If (0, v) ∈ Y0 ∩ S�m (where �m is to be determined), then by (F1) and (F2),

J (0, v) =
1
p
K

(‖DHv‖p
p
)

+
1
p

∫

Hn
V (ξ )|v|p dξ –

1
p∗

∫

Hn
|v|p∗

dξ –
∫

Hn
F(ξ , 0, v) dξ

≥ k0

p
‖DHv‖p

p +
1
p

∫

Hn
V (ξ )|v|p dξ –

1
p∗

∫

Hn
|v|p∗

dξ –
∫

Hn
F(ξ , 0, v) dξ

≥ min

{
k0

p
,

1
p

}

‖v‖p –
c

p∗ ‖v‖p∗
– c‖v‖q,

since p < q < p∗, there exists � > 0 such that J (0, v) ≥ α for every ‖v‖ = �, that is, (b) of
(B7) holds.

(ii) From (H1), we have

J (u, 0) = –
1
p
K

(‖DHu‖p
p
)

–
1
p

∫

Hn
V (ξ )|u|p dξ –

1
p∗

∫

Hn
|u|p∗

dξ –
∫

Hn
F(ξ , u, 0) dξ ≤ 0.

Therefore, we choose α such that

α > sup
u∈EG1

J (u, 0).

For each (u, v) ∈ U ⊕ Y1, we get

J (u, v) = –
1
p
K

(‖DHu‖p
p
)

–
1
p

∫

Hn
V (ξ )|u|p dξ +

1
p
K

(‖DHv‖p
p
)

+
1
p

∫

Hn
V (ξ )|v|p dξ

–
1
p∗

∫

Hn
|u|p∗

dξ –
1
p∗

∫

Hn
|v|p∗

dξ –
∫

Hn
F(ξ , u, v) dξ

≤ 1
p
‖v‖p –

1
p∗ |v|p∗

p∗ + α.

Since all norms are equivalent on the finite dimensional space Y1, we can choose k > m
and βk > αm such that

JU⊕Y1 ≤ βk ,

hence, we have (c) in (B7). Using Lemma 4.1, for any [αm,βk],J (u, v) satisfies the condition
of (PS)∗c , then (B6) in Theorem 3.1 is satisfied. Therefore, according to Theorem 3.1,

cj = inf
i∞(A)≥j

sup
z∈A

J (u, v), –k + 1 ≤ j ≤ –m,αm ≤ cj ≤ βk

are critical values of J . Letting m → ∞, we can get an unbounded sequence of critical
values cj. And since the functional J is even, we have two critical points ±uj of J corre-
sponding to cj. �
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